
Network RS codes for Efficient Network Adversary
Localization

Hongyi Yao∗,Sidharth Jaggi†, Minghua Chen†, Tracey Ho∗
∗Department of Electrical Engineering and Computer Science, California Institute of Technology, USA

†Department of Information Engineering, Chinese University of Hong Kong, Hong Kong

Abstract—Network error localizations uses end-to-end obser-
vations to localize random or adversarial glitches. For error
localization under random linear network codes (RLNCs) the
schemes proposed in previous literatures require the priori
knowledge of the network topology. Moreover, adversarial error
localization is proved computationally intractable under RLNCs.
The goal of current paper is designing new network coding
schemes to improve the error localization performance of RLNCs
while maintaining the key advantages of RLNCs. To be concrete,
we introduce Network Reed-Solomon codes (NRSCs), which have
the following features: 1. NRSCs are low-complexity distributed
linear network codes. 2. NRSCs achieve the network multicast
capacity with high probability. 3. In adversarially faulty networks
NRSCs enable the receiver to locate a maximum number of adver-
sarial errors in a computationally efficient manner. Moreover, the
error localization schemes under NRSCs do not need the priori
knowledge of the network topology and thus are robust against
dynamic network updating.
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I. INTRODUCTION

In networks using linear network coding each node mixes
its receiving packets and outputs their linear combinations,
which is proved to attain optimal multicast throughput [1]. In
fact, random linear network codes (RLNCs), where each node
independently and randomly combines the receiving packets
and transmits on outgoing links, suffice to attain the optimal
multicast throughput [2], [3].

The goal of network error localization is to use end-to-
end measurements observed by network terminals to locate
the errors suffered by the interior nodes in the network [4].
The exploring works [5], [6], [7] showed that receivers in
networks performing network coding are able to locate more
errors compared with those in networks that only perform
routing. Later under RLNCs, the work in [8] provided efficient
schemes for locating random errors, and proved that locating
the adversarial errors is computationally intractable.
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More precisely, for directed acyclic networks such that each
internal node has at least d outgoing edges, RLNCs are able to
determine the identity of up to d/2 faulty network edges [8].
The same work shows that this is the best result for net-
work adversarial error localization. Despite such encouraging
progress, some challenges remain for RLNCs.

1) Is it ever possible to locate network adversarial errors
(i.e., errors that are worst-case in terms of location
and content) in a computationally efficient manner?
Unfortunately, it is shown in [8] that locating adversarial
errors is computationally intractable1 for RLNCs.

2) Is it ever possible to locate network errors without the
prior knowledge of network topology? That is, can the
error location algorithm simply outputs some unique
identifying characteristic of the error locations (say the
IP addresses of the nodes adjacent to the links that
experience failure) without knowing in advance the
physical connections between nodes in the network?
Due to the distributed and random design of RLNCs,
all algorithms that we are aware of under RLNC ([6],
[8], [5], [7], [10]) is based on the prior knowledge
of network topology. However, the topology estimation
under RLNC costs exponential time for the networks
with adversarial errors [8].

The current paper studies error localization along another di-
rection. To be concrete, we introduce Network Reed Solomon
Codes (NRSCs), which are linear network codes that address
the two challenges above for network error localization, while
preserving the low-complexity, distributed, and high through-
put features of RLNC.

A. The contributions of NRSCs

NRSCs address the twin challenges for network error local-
ization faced by RLNCs: the high computational complexity of
locating network adversarial errors, and the necessity of prior
topology information. To be concrete, NRSC has the following
advantages:

• Low implementation complexity. The proposed NRSC is
a linear network coding scheme (see Section II-C for
details), and can be implemented in a distribute and

1In fact it is shown to be as hard as the well-studied minimum-codeword-
problem for random linear error-correcting codes [9].



efficient manner where each network node only needs to
know the node-IDs of its adjacent neighbors.

• High throughput. The capacity of multicast is achieved
with high probability.

• NRSC aids tomography in the following two aspects:
i) Computational efficiency. For the adversarial error
model, the receiver under NRSC can locate a maximum
number of adversarial errors in a computationally efficient
manner.
ii) The robustness for dynamic networks. For adversarial
error localization, the algorithms under NRSC do not
require the priori knowledge of the network topology and
thus are robust against edge and node updating.

Besides above theoretical analysis of NRSCs, we further note
that NRSCs are flexible with different practical scenarios.
More details can be found in Section VI.

The comparison on error localization performance between
NRSCs and RLNCs is summarized in Table I. Note that the
terms “polynomial” and “exponential” are all in the size of
the network.

TABLE I
COMPARISON OF NRSCS AND RLNCS ON ERROR LOCALIZATION

PERFORMANCE

Network Field Size Computational Knowledge of
codes required complexity network topology

RLNCs Exponential Exponential Required
NRSCs Polynomial Polynomial Not required

The rest of this paper is organized as follows. We formulate
the network error localization problem in Section II and
present preliminaries in Section III. We then present our main
technical results. In Section IV NRSCs are constructed for the
multicast scenario and proved to attain optimal throughput. In
Section V the error localization scheme based on NRSCs is
provided. Section VI generalizes NRSCs to the scenario in
which a subset of network edges are trustable.

II. PROBLEM SETTING

A. Notational convention

Scalars are in lower-case (e.g. z). Matrices are in upper-case
(e.g. X). Vectors are in lower-case bold-face (e.g. e). Sets are
in upper-case calligraphic font (e.g. Z).

B. Network model

For ease of discussion, we consider a direct acyclic and
delay-free network G = (V, E), where V is the set of vertices
and E is the set of edges. For each node u ∈ V let ΓO(u)
be the set of outgoing edges of u and ΓI(u) be the set of
incoming edges of u. The out-degree (or in-degree) of a node
u is defined to be |ΓO(u)| (or |ΓI(u)|).

The capacity of each edge is normalized to equal one
symbol of a finite field of size q, Fq , per unit time. Edges
with non-unit capacity is modeled as parallel edges. An edge
e with head u and tail v in V is denoted as e(u, v).

We focus on the multicast scenario where a single source s
communicates with a set of receivers R ⊆ V over the network.
In general our results can be generalized to other scenarios
where RLNCs suffice, such as multiple-source multicast net-
work. For ease of notation we assume that the source has no
incoming edges and that the receivers have no outgoing edges.
Also, that each internal node has at least one incoming edge
and one outgoing edge. Otherwise u is isolated and not useful
to the communication problem.

C. Network transmission via linear network codes

In this paper we consider the linear network coding scheme
proposed in [11]. Let C be the capacity of the multicast
network, i.e., C = minr∈R max-flow(s, r). Let each packet
have n symbols from Fq , and each edge have the capacity of
transmitting one packet, i.e., a row vector in F1×n

q .
Source encoder: The source s arranges the data into a C×n

message matrix X over Fq . Then on each outgoing edge of s a
linear combination over Fq of the rows of X is transmitted. X
contains a pre-determined “short” header, known in advance
to both the source and the receiver, to indicate the linear
transform from the source to the receiver.

Network encoders: Each internal node similarly takes linear
combinations of the packets on incoming edges to generate
the packets transmitted on outgoing edges. Let x(e) represent
the packet traversing edge e. An internal node v generates its
outgoing packet x(e′) for edge e′ ∈ ΓO(v) as

x(e′) =
∑

e∈ΓI(v)

β(e, v, e′)x(e), (1)

where β(e, v, e′) is the linear coding coefficient from the
packet x(e) to the packet x(e′) via v.

Receiver decoder: The decoder r ∈ R constructs the
d × n matrix Y over Fq by treating the received packets as
consecutive length-n row vectors of Y , where d is the in-
degree of r. The network’s internal linear operations induce a
linear transform between X and Y as

Y = TX, (2)

where T is the overall transform matrix. The receiver r can
extract T by comparing the received packet headers (recall
that internal nodes mix headers in the same way as they mix
messages) and the pre-determined headers. Once T has rank
no less than C the receiver can decode X by X = T−1Y .

In the well-known random linear network codes introduced
by Ho et al. [3] all linear coding coefficients are chosen
uniformly at random and independently by the source and
internal nodes. It is shown that in such a code with high
probability T has rank no less than C for each receiver.

D. Adversarial models and adversary localization

Networks may experience disruption as a part of normal
operation. Edge errors are considered in this work – node
errors may be modeled as errors of its outgoing edges. Let
x(e) ∈ F1×n

q be the input packet of e. For each edge e ∈ E
a length-n row-vector z(e) is added to x(e). Thus the output



packet of e is y(e) = x(e)+z(e). Edge e is said to suffer an
error if and only if z(e) is a not zero vector.

Let ER be the edges incoming to the receivers in R. We
define error localization as follows.

Definition 1: The set of edges ER is said to be able to
locate z worst-case errors if all z (or fewer) edges in E
suffering non-zero injected errors can be located from the
output packets of ER.

The error-localization performance of linear network codes
was first proved in [8] as follows:

Theorem 2: The set of edges ER can locate z errors if and
only if each internal node has out-degree at least d = 2z.

Remark 1: Note that Theorem 2 is for acyclic networks. The
result for networks with cycles is still unknown.

Remark 2: In Definition 1 the adversary is assumed to be
able to corrupt any z edges in the network. In Section VI we
consider the scenario where a subset of network edges can be
trusted.

III. DECODING OF REED-SOLOMON CODES

We begin by recalling some properties of the well-studied
Reed-Solomon codes (RSCs) [12], used in particular for worst-
case error-correction for point-to-point channels. A Reed
Solomon code (RSC) is a linear error-correcting code over
a finite field Fq defined by its parity check matrix H ∈ Fd×n

q .
Here d + 1 denotes the minimum Hamming distance, i.e.,
the minimum number of nonzero components among the
codewords belonging to the code. In particular, H is formed
as

H = [h1,h2, ...,hn], (3)

where hi = [hi, (hi)
2, ..., (hi)

d]T ∈ Fd
q and hi ̸= 0 for each

i ∈ [1, n] and hi ̸= hj for i ̸= j.
Given v which is a linear combination of any z ≤ d/2

columns of H , the decoding algorithm of RS-CODE, denoted
as RS-DECODE(H,v), outputs a z-sparse solution of Hb =
v with O(nd) operations over Fq (see [12]). That is, b ∈ Fn

q

has at most z non-zero components and v = Hb. Further
more, for any b′ ̸= b either v ̸= Hb′ or b′ has more than z
non-zero components, i.e., b is the unique z-sparse solution
of Hb = v.

IV. THE CONSTRUCTION OF NRSCS

A. Node and edge IDs

Each pair of nodes (u, v) in V ⊗ V has an ID id(u, v)
chosen independently and uniformly at random from Fq . These
IDs can be broadcast by the source using digital signature
schemes such as RSA [13], or outputted by a pseudorandom
hash function2 (with input as a pair of nodes) such as AES
that can be accessed by all parties. Thus this set of |V|2 IDs is
publicly known a priori to all parties, even though they may
not know which nodes and edges are actually in the network.

2Note that the randomness of the IDs is used in proving Lemma 3 and
Theorem 4, which (the distinctness of node-pair IDs and the throughput
of multicast) are polynomial time distinguishable. Thus pseudorandomness
suffices [13].

The following lemma shows that each node pair has a
distinct ID with high probability:

Lemma 3: With probability at least 1 − |V|4/q, for any
(u, v) ̸= (u′, v′) in E , id(u, v) ̸= id(u′, v′).
Proof: For any (u, v) ̸= (u′, v′), id(u, v) ̸= id(u′, v′) with
probability at most 1/q. Since V×V has size |V|2, there are at
most

(|V|2
2

)
< |V|4 distinct pairs in V×V . Using Union Bound

over all these |V|4 pairs the lemma is true with probability at
least 1− |V|4/q. �

For each edge e(u, v) ∈ E the ID of e is id(e) = id(u, v).
Thus the ID of edge e(u, v) can be figured out by both u and v
if they know their adjacent neighbors. Thus a direct corollary
of Lemma 3 is that each edge has a distinct ID with high
probability. We henceforth assume that this is indeed the case.

Note that for graphs with parallel edges, each pair of nodes
has multiple IDs, the ith of which is for the ith parallel edge.

For each edge e the virtual impulse response vector (VIRV)
is t′′(e, i) ∈ Fi

q , which is [id(e), (id(e))2, ..., (id(e))i]T . For
any set of edges Z with size z, the virtual impulse-response-
matrix (VIRM) is T ′′(Z, i) ∈ Fi×z

q , with the columns
comprised of {t′′(e, i), e ∈ Z}. Note that T ′′(Z, z) is a
Vandermonde matrix and invertible when the edges in Z have
distinct IDs.

B. Code construction of NRSCs

We assume by default that the edges in E have distinct
IDs, which happens with probability at least 1 − |V|4/q by
Lemma 3. Let C be the capacity of the multicast network,
i.e., C = minr∈R max-flow(s, r).

The construction of NRSCs is then as follows.
Source encoder: Let ΓO(s) = {e1, e2, ..., ep} be the outgo-

ing edges of the source s and X ∈ FC×n
q be the source mes-

sage matrix. The source s computes M = T ′′(ΓO(s), p)
−1X

and sends the ith row of M as the packet over ei. Similar
to RLNCs [3], the matrix X contains a known “header” to
indicate the network transform to the receiver.

Network encoders: Let ΓO(v) = {e1, e2, ..., ed} be the
outgoing edges of node v. For an incoming edge e of v,
v computes b(e) = T ′′(ΓO(v), d)

−1t′′(e, d). For the coding
coefficient β(e, v, ei) from e via v to ei, v sets β(e, v, ei) to
be the ith component of b(e).

Receiver decoder: The receiver receives

Y = TX, (4)

where T ∈ FC×C
q can be indicated by the header of Y . If T

is invertible the receiver can decode X correctly.
Thus, just like random linear network codes [3], NRSCs

can be implemented in a distributed manner once each node
knows its local topology, i.e., the adjacent neighbors. If an
edge/node has been added/deleted, only local adjustments are
needed.

C. Optimal throughput for multicast scenario

Theorem 4 below shows that with high probability NRSCs
achieve the multicast capacity.



Theorem 4: With probability at least 1−C|E|4|R|/q, each
receiver in R can decode X correctly.
Proof: We first prove that for any receiver r ∈ R, receiver r
can correctly decode X with probability at least 1−C|E|4/q.

Let X be the set of all random variables involved, i.e., X =
{id(u, v), (u, v) ∈ V ⊗ V}. By default we assume that any
polynomial mentioned in the proof has variables in X .

Let detG = Πu∈Vdet(u), where det(u) is the determinant
of the matrix T ′′(ΓO(u), |ΓO(u)|) for node u ∈ V . For each
u ∈ V , since each component of T ′′(ΓO(u), |ΓO(u)|) is a
polynomial of degree at most |ΓO(u)|, det(u) is a polynomial
of degree at most |ΓO(u)|2. Thus detG is a polynomial of
degree at most

∑
u∈V |ΓO(u)|2 ≤ (

∑
u∈V |ΓO(u)|)2 = |E|2.

Let T be the transform matrix from s to r defined
in Equation (4). We claim each element of detGT is a
polynomial of degree at most |E|4. To see this, we first
note that each component in det(u)T ′′(ΓO(u), |ΓO(u)|)−1

is a polynomial of degree at most |ΓO(u)|2 − |ΓO(u)| (see
Cramer’s rule in [14]). Thus in the construction of NRSCs
each local coding coefficient β(e, u, e′) used by u ∈ V is
Poly(e,u,e′)/det(u), where Poly(e,u,e′) is a polynomial of
degree at most |ΓO(u)|2. Each element in T can be expressed
as

∑
α β̄(α), where β̄(α) = Π(e,u,e′)∈αβ(e, u, e

′) and α is
a path from s to r (see [3] for references). Thus each ele-
ment in T can be expressed as Polyα/(Πu∈αdet(u)), where
Polyα = Π(e,u,e′)∈αPoly(e,u,e′). Thus Polyα is a polynomial
of degree at most

∑
u∈α |ΓO(u)|2 ≤

∑
u∈V |ΓO(u)|2 ≤ |E|2.

Since no node appears twice in a path of an acyclic network,
detG is divisible by Πu∈αdet(u) for each path α. Thus
detG

∑
α Polyα(X )/(Πu∈αdet(u)) is a polynomial of degree

at most |E|4. This completes the proof of the claim that each
element of detGT is a polynomial of degree at most |E|4.

Now we prove detGT is invertible with high probability.
The determinant of detGT is denoted as detr, which is
therefore a polynomial of degree at most |E|4C.

Without loss of generality let {P1,P2, ...,PC} be the edge-
disjoint paths from the source s to the receiver r. We first
prove that detr is a nonzero polynomial, i.e., that there exists
an evaluation of X such that detG ̸= 0 (i.e., the edges in
ΓO(u) have distinct IDs for each u ∈ V) and the source can
transmit C linearly independent packets via P1,P2, ...,PC .

The evaluation of X is described as follows: First, as-
sume each edge has a distinct ID. Second, since the ith
outgoing edge of the source sends the ith row of M =
T ′′(ΓO(s), C)−1X , the paths P1,P2, ...,PC carry linearly
independent packets on their initial edges. Third, the IDs of
edges in Pi are all changed to be the ID of the first edge in Pi.
Note that this operation preserves the property that the edges
in ΓO(u) have distinct IDs for each u ∈ V (i.e., detG ̸= 0).
Finally in fact the network uses routing to transmit the C
independent source packets via P1,P2, ...,PC .

Thus under the above evaluation of X the matrix detGT
is invertible and therefore detr ̸= 0. Using Schwartz-Zippel
lemma [3] detr ̸= 0 with probability at least 1 − |E|4C/q
over the choices of X . In the end using Union Bound over
all receivers, with probability at least 1 − |E|4|R|C/q each

receiver can recover the source message X . �
Therefor the techniques over random linear network codes

in multicast scenario can be directly moved into NRSC. For
instance using network error-correcting codes [15], [16] NRSC
are able to attain the optimal throughput for multicast with
network errors.

V. LOCATING ADVERSARIAL ERRORS UNDER NRSCS

In this section the error-locating model defined in Sec-
tion II-D is assumed. The NRSCs described in Section IV
are used for network communications. For networks satisfying
|ΓO(u)| ≥ d for each node u ∈ V − R, to simplify notation
we use t′′(e) for each VIRV t′′(e, d) in the following. Recall
that ER is the set of incoming edges of R and y(e) is the
output packet on any edge e ∈ E . We define:

Definition 5: The Reed-Solomon matrix of ER is
YR =

∑
e∈ER

t′′(e)y(e). (5)

Assumptions and Justifications
1) At most z edges in Z suffer errors, i.e., {e : e ∈

E , z(e) ̸= 0} = Z and |Z| ≤ z. Recall that z(e) is
the error packet injected on edge e. When 2z + 1 ≤ C,
network error-correcting-codes (ECC) (see [15], [16]
for details) are used so that the source message X is
provably decodable .

2) Each node in V−R has out-degree at least d = 2z. Note
that such connectivity requirement is shown necessary
in Theorem 2.

3) The elements in V ⊗ V are indexed by {1, 2, ..., |V|2}.
The parity check matrix H ∈ Fd×|V|2

q is defined as H =
[h1,h2, ...,h|V|2 ]. Here hi = [hi, (hi)

2, ..., (hi)
d]T and

hi is the ID for the ith element in V ⊗ V .
The error locating algorithm is:
• LOCATE: The input of the algorithm is the source matrix

X , the parity-check matrix H , the source message X
(which is decoded by network ECC [15], [16]) and the
output packets of ER, i.e., {y(e) : e ∈ ER}. The output
of the algorithm is a set of edges Z ′ (initialized as an
empty set).

• Step A: Compute YR by Equation (5) and L = YR−(X)d,
where (X)d comprises of the first d rows of X .

• Step B: For each column of L, say v, compute b =
RS-DECODE(H,v). If the ith component of b is
nonzero, the ith node pair (u, v) in V ⊗V is added as an
edge e = (u, v) into Z ′.

• Step C: End LOCATE.
We state the main theorem in the following.
Theorem 6: The edge set Z ′ output by LOCATE equals

Z . The computational complexity of LOCATE is O(n|V|2d).

Before the proof we show the following lemma:
Lemma 7: If the source message matrix X equals 0,

YR =
∑
e∈E

t′′(e)z(e). (6)



Proof: We proceed inductively. Throughout the proof let
ET be the set of edges satisfying the theorem, i.e., YR =∑

e∈E t
′′(e)z(e) when z(e) = 0 for all e ∈ E − ET .

Step A: If ET = ER, the theorem is true by the definition.
Step B: Since the network is acyclic, unless ET = E , there

must exist an edge e ∈ E − ET with an outgoing edge set
ΓO(e) ⊆ ET . Let ΓO(e) = {e1, e2, ..., ek} with k ≥ d be
the set of all outgoing edges of the tail node of e. If only e
suffers non-zero injected errors z(e), the output of e is z(e).
Thus for each i ∈ [1, k] the output of ei is βiz(e), where
βi is the ith component of b(e) = T ′′(ΓO(e), k)

−1t′′(e, k)
(see Section IV-B). Thus

∑
i∈[1,k] βit

′′(ei, k) = t′′(e, k).
Since NRSCs are linear network codes and d ≤ k, YR =∑

i∈[1,k] βit
′′(ei)z(e) = t′′(e)z(e). Therefore Equation (6) is

true for the case where only e suffers non-zero injected error
z(e). Also, since NRSCs are linear codes, e can be added into
ET .

Step C: Since the network is acyclic and each node (or
edge) in V (or E) is connected to R, we can repeat Step B
until ET = E .

For the case where no error happens in the network and the
source s transmits the C × n message matrix X with C ≥ d,
by Theorem 7 above we have YR =

∑
i∈[1,C] t

′′(ei)x(ei),
where x(ei) is the ith row of M = T ′′(ΓO(s), C)−1X , i.e.,
the packet transmitted on the ith outgoing edge of the source
s (see Section IV-B). Thus YR = T ′′(ΓO(s), d)M = (X)d,
where (X)d is the matrix consisting of the first d rows of X .

Then we have the corollary:
Corollary 8: When the source message is X , YR = (X)d+∑
e∈E t

′′(e)z(e).
Then we can prove Theorem 6 as:

Proof of Theorem 6: Using Corollary 8 we have L =∑
e∈Z t′′(e)z(e). Since |Z| = z ≤ d/2, each column of L is a

linear combination of at most d/2 columns of H . Additionally,
since H is also a parity check matrix of a Reed-Solomon
code, RS-DECODE correctly finds all the edges with nonzero
injected errors, and therefore Z ′ = Z . For each column of L,
RS-DECODE runs in time O(|V|2d). Thus the overall time
complexity of the algorithm is O(n|V|2d). �

VI. GENERALIZATION OF NRSCS

In the following, assume E ′ ⊆ E to be the set of edges
that are candidates for adversarial corrupting, and E − E ′ to
be the set of trustable edges, and no more than z edges in
E ′ are corrupted. In such scenario, directly using the NRSCs
constructed above requires that any node in the network has
max-flow at least 2z to the receivers. To release such high
connectivity requirement, we generalize NRSCs as follows.
• For each receiver, say R, the IRVs of its incoming edges

ΓI(R) are set to be the desired VIRVs.
• For each node, say V , if the outgoing edges ΓO(V ) of V

have rank at least 2z, NRSC is used by V such that the IRVs
of edges in ΓI(V ) equals the desired VIRVs. Otherwise, node
V performs random linear network coding (RLNC) to choose
the coding coefficients. Node V then informs the IRV of each
edge e in ΓI(V ) to the upstreaming node of e.

• The receivers perform the same algorithm LOCATE in
Section V to locate adversarial edges in E ′.

Using Theorem 4 of this paper and the capacity achievable
results for RLNC [3], we conclude for any node (say V ) with
max-flow at least 2z to the receivers, with high probability the
IRVs of edges in ΓO(V ) have rank at least 2z. Thus the IRVs
of edges in ΓI(V ) all equal the desired VIRVs.

Thus, to locate z adversarial edges in E ′, only the nodes
in {V : ΓI(V ) ∩ E ′ ̸= ∅} need to meet the connectivity
requirement. We note that this condition well fits the practical
network scenarios. In practical networks (e.g. Internet), local
area networks are more trustable than the public networks,
which on the other hand have better connectivity conditions.

VII. CONCLUSION AND FUTURE WORK

The paper designs network Reed-Solomon codes (NRSCs)
addressing the negative tomography results of adversary lo-
calization arising at RLNCs, and meanwhile preserving the
advantages of RLNCs. In fact, instead of Reed-Solomon codes
we can implant other traditional linear error-correction-codes
(e.g. BCH codes) into network coding to achieve the same
goals. Thus more benefits are hoped to be explored from such
network coding structure.
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