
Theoretical Computer Science 468 (2013) 83–91

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the sensitivity complexity of bipartite graph properties
Yihan Gao a, Jieming Mao a, Xiaoming Sun b,∗, Song Zuo a

a Institute for Interdisciplinary Information Sciences, Tsinghua University, China
b Institute of Computing Technology, Chinese Academy of Sciences, China

a r t i c l e i n f o

Article history:
Received 14 May 2012
Received in revised form 21 October 2012
Accepted 5 November 2012
Communicated by D.-Z. Du

Keywords:
Sensitivity complexity
Bipartite graph
Graph properties
Turan conjecture
Decision tree

a b s t r a c t

Sensitivity complexity, introduced by Cook, Dwork, and Reischuk (1982, 1986) in [2,3], is an
important complexitymeasure of Boolean functions. Turán (1984) [7] initiated the study of
sensitivity complexity for graph properties. He conjectured that for any non-trivial graph
property on n vertices, the sensitivity complexity is at least n−1. He proved that it is greater
than n/4 in his paper. Wegener (1985) [8] verified this conjecture for all monotone graph
properties. Recently Sun (2011) [6] improved the lower bound to 6

17n for general graph
properties. We follow their steps and investigate the sensitivity complexity of bipartite
graph properties. In this paper we propose the following conjecture about the sensitivity
of bipartite graph properties, which can be considered as the bipartite analogue of Turán’s
conjecture: for any non-trivial n × m bipartite graph property f ,

s(f) ≥ max


n + 1
m + 1

m


,


m + 1
n + 1

n


.

We prove this conjecture for all n × 2 bipartite graph properties. For general n × m
bipartite graph properties, we show amax{⌈n/2⌉, ⌈m/2⌉} lower bound.We also prove this
conjecture when the bipartite graph property can be written as a composite function.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Sensitivity complexity is a useful measure of Boolean functions which shows how sensitive the value of a Boolean
function is to the changes in the input. It was first introduced by Cook, Dwork and Reischuk in [2,3] (under the name critical
complexity). They showed that its logarithm (in base (5+

√
21)/2 ≈ 4.79) is a lower bound for the time needed by a PRAM

to compute function f .

Definition 1. Let f : {0, 1}n → {0, 1} be a Boolean function. The sensitivity s(f , x) of f on input x is defined as the number of
bits onwhich the function is sensitive, i.e. s(f , x) =

{i|f (x) ≠ f (xi)}
, where xi is obtained by flipping the i-th bit of x. Define

the sensitivity of f as s(f) = max

s(f , x)|x ∈ {0, 1}n


and the 0-sensitivity and 1-sensitivity of f as s0(f) = max


s(f , x)|x ∈

{0, 1}n, f (x) = 0

, s1(f) = max


s(f , x)|x ∈ {0, 1}n, f (x) = 1


.

Sensitivity complexity is closely related to the concept of decision tree complexity and other complexity measures of
Boolean functions. For an excellent survey of decision tree complexity we refer the readers to [1]. The study of the decision
tree complexity of graph properties dates back to 1970s [4,5]. Informally, a graph property is a property preserved under all
possible isomorphisms of a graph.

∗ Corresponding author. Tel.: +86 10 62601250.
E-mail address: sunxiaoming@ict.ac.cn (X. Sun).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.11.006

http://dx.doi.org/10.1016/j.tcs.2012.11.006
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:sunxiaoming@ict.ac.cn
http://dx.doi.org/10.1016/j.tcs.2012.11.006

84 Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91

Definition 2. A graph property is a Boolean function f : {0, 1}(
n
2) → {0, 1} such that for every input x ∈ {0, 1}(

n
2),

∀ π ∈ Sn, f (x1,2, . . . , xn−1,n) = f (xπ(1),π(2), . . . , xπ(n−1),π(n)),

where the input x represents the adjacency matrix of an undirected graph Gwith n vertices.

Turán [7] initiated the study of sensitivity of graph properties. He proved that the sensitivity is at least n/4 for graph
properties and made the following conjecture in his paper:

Conjecture 1 (Turán [7]). For any non-trivial graph property on n vertices, the sensitivity complexity is at least n − 1.

Here (n−1) is tight since the ‘‘contained an isolated vertex" property reaches this bound.Wegener [8] verified this conjecture
for all monotone graph properties. Recently Sun [6] improved the bound from n

4 to 6
17n for general graph properties. There

is still a large gap there.
In this paper we focus our attention on bipartite graph properties. Suppose that G = (U, V , E) is a bipartite graph where

U = {u1, . . . , un} and V = {v1, . . . , vm}.

Definition 3. A bipartite graph property on G is a Boolean function f : {0, 1}nm → {0, 1} such that for every input x ∈

{0, 1}nm,

∀ π1 ∈ Sn, ∀ π2 ∈ Sm, f (x1,1, . . . , xn,m) = f

xπ1(1),π2(1), . . . , xπ1(n),π2(m)


,

where input x ∈ {0, 1}nm represents the adjacency matrix of G, i.e. xi,j = 1 iff {ui, vj} ∈ E. Besides, we define Bn,m as the
class of all the bipartite graph properties.

We propose the following conjecture about the sensitivity complexity of bipartite graph properties, it can be considered
as the bipartite analogue of Turán’s conjecture [7].

Conjecture 2. For any non-trivial bipartite graph property f ∈ Bn,m, the sensitivity complexity

s(f) ≥ max
 n + 1

m + 1
m


,
m + 1
n + 1

n


,

particularly for any non-trivial f ∈ Bn,n, s(f) ≥ n.

Remark 1. The lower bound max{
 n+1

m+1m

,
m+1

n+1 n

} is tight, see Section 4 for functions which achieve this bound.

In this paper we prove this conjecture when min{m, n} = 2. Actually we prove a stronger result which gives a tradeoff
between s0(·) and s1(·) in this case.

Theorem 1. For any non-trivial bipartite graph property f ∈ Bn,2,

max {s0(f) + 2s1(f), 2s0(f) + s1(f)} ≥ 2n + 2,

particularly, s(f) ≥ ⌈2(n + 1)/3⌉.

For general bipartite graph properties in Bn,m, we cannot even prove that the bound is monotone on m and n. We can
only prove the following weaker lower bound.

Theorem 2. For any non-trivial bipartite graph property f ∈ Bn,m, s(f) ≥ max{n,m}/2.

We also prove the conjecture for an important special case when the bipartite graph property is a composite function.
Informally, composite functions consider vertices in V and subgraphs on U × {v} separately, which take count on the
subgraphs of size n × 1 that keep some properties to decide the value.

Definition 4. A Boolean function f : {0, 1}nm → {0, 1} is a composition of Boolean functions g : {0, 1}m → {0, 1} and
h : {0, 1}n → {0, 1}, if for every input x = (x1,1, . . . , xn,m) ∈ {0, 1}nm,

f (x) = g(h(x1,1, . . . , xn,1), h(x1,2, . . . , xn,2), . . . , h(x1,m, . . . , xn,m)),

written as f = g ◦ h.

Theorem 3. For any non-trivial f ∈ Bn,m, if f = g ◦ h is composed of two symmetric Boolean functions g : {0, 1}m → {0, 1}
and h : {0, 1}n → {0, 1}, then we have

s(f) ≥ max
 n + 1

m + 1
m


,
m + 1
n + 1

n


.

The rest of the paper is organized as follows: in Section 2we prove Theorem 2 first. We prove Theorem 1 in Section 3.We
consider the composite function case in Section 4 and discuss the feasible region of (s0(f), s1(f)) in Section 5. We conclude
the paper in Section 6 with a general conjecture.

Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91 85

2. Lower bound for general bipartite graph properties

We prove Theorem 2 in this section. W.l.o.g. we assume that f (En,m) = 0, where En,m denotes the empty bipartite graph.
For any bipartite graph G = (U, V , E) where U, V are the sets of vertices and E is the set of edges. We use the notation U≥1
to denote the set of non-isolated vertices in U . We need the following lemma in the proof.

Lemma 1. For any non-trivial f ∈ Bn,m, if s(f) < n
2 , then for any graph G ≠ En,m, there exists a graph G′ such that f (G) = f (G′)

and |U≥1(G′)| < |U≥1(G)|.

Once Lemma 1 is proved, then Theorem 2 followed immediately: Since f is non-trivial, there exists a graph G such that
f (G) = 1. We choose G to be the graph which minimizes the size of U≥1(G). Then from the lemma above, there is another
graph G′ such that f (G′) = f (G) = 1 and |U≥1(G′)| < |U≥1(G)|, which is a contradiction. By symmetry we can also rule out
the case s(f) < m

2 .
The proof of Lemma 1 is based on the following fact: If we find at least s(f) + 1 adjacent1 graphs of any specific graph G,

there will be at least one graph G′ among them such that f (G) = f (G′). Since s(f) < n
2 , we just need to find n

2 such graphs
in each step.

Proof. For any non-empty bipartite graph G = (U, V , E), we divide the vertices in U into two different sets:

- For each ui ∈ U , we say ui is regulated iff Γ (ui) = {v1, v2, . . . , vdeg(ui)}, where Γ (ui) denotes the set of vertices that are
adjacent to ui in V . In other words, ui is regulated when it is adjacent to the first k vertices in V , where k is the degree of
ui. We use the notation Ureg to denote the set of regulated vertices.

- Otherwise, we say that ui is unregulated. We use the notation Uunr to denote the set of unregulated vertices.

Notice that isolated vertices in U are also regulated, therefore Uunr ⊆ U≥1. We can relabel all the vertices in U and V ,
such that u1 ∈ U≥1 and u1 is regulated. Then we get |Uunr | < |U≥1|.

The proof is rather similar to a proof based on induction. Starting with graph G, each time we either add an edge to it or
delete an edge from it while keeping the function value unchanged, such that one of the following thing would happen:

1. d(Uunr) is decreased. Here d(Uunr) denotes the total degree of all vertices in Uunr , i.e.

d(Uunr) =


u∈Uunr

deg(u). (1)

2. H(Ureg) is decreased. Here H(Ureg) is the potential energy function of Ureg , which is defined as follows:

H(Ureg) =


u∈Ureg

(|∆(Ureg) − 1 − deg(u)| + ∆(Ureg)). (2)

Here we use the notation ∆(Ureg) to denote the maximum degree of vertices in Ureg , i.e.

∆(Ureg) = max{deg(u)|u ∈ Ureg}.

To achieve the goal above, we can either delete an edge e = (u, v) with u ∈ Uunr , or we can add an edge e = (u, v)
with u ∈ Ureg and deg(u) < ∆(Ureg) − 1 such that u remains regulated after the insertion of e. Additionally, for any vertex
u ∈ Ureg with maximum degree, we can delete an edge associated with uwhile keeping u regulated after the deletion of the
edge.

There are d(Uunr) ways to delete an edge to achieve the first goal (to decrease d(Uunr)). For the second goal, for each
u ∈ Ureg that d(u) ≠ ∆(Ureg) − 1, we can always add/delete an edge to decrease H(Ureg). In the special case when there
is exactly one vertex u in Ureg with maximum degree, deletion of the edge will also decrease H(Ureg). Therefore, the total
number of ways to add/delete an edge is equal to

D = d(Uunr) + |Ureg | −


u∈Ureg

I{deg(u) = ∆(Ureg) − 1}. (3)

Here I{deg(u) = ∆(Ureg) − 1} is the indicator function.
Notice that d(Uunr) + |Ureg | ≥ |Uunr | + |Ureg | = n, therefore unless there are more than n

2 vertices u in Ureg satisfying
deg(u) = ∆(Ureg) − 1, we can always find enough neighbours so that at least one among them would keep the function
value unchanged.

We keep doing the step above until we cannot find enough ways to add or delete edges, whichmeans that D ≤ s(f) < n
2 .

At this time, we have:
u∈Ureg

I{deg(u) = ∆(Ureg) − 1} >
n
2
. (4)

1 We call two graphs are adjacent if they differ on one edge.

86 Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91

By relabelling the vertices in U , we assume w.l.o.g. that u1 takes the maximum degree among all vertices in Ureg , i.e.
deg(u1) = ∆(Ureg). Assume deg(u1) = k. Since u1 is regulated, we have Γ (u1) = {v1, v2, . . . , vk}. We claim that if we
delete the edge e = (u1, vk) from the current graph G, the function value f (G) would not change.

In fact, consider the graph G′
= G − (u1, vk), there are at least n

2 + 1 vertices in Ureg with the same degree k − 1(=
∆(Ureg) − 1). Since they are all regulated, their adjacency sets would be identical ({v1, . . . , vk−1}). Therefore, the graph
G′

= G − (u1, vk) has at least n
2 + 1 ways to add an edge to get an isomorphic graph of G. Thus f (G′) = f (G), i.e. there still

exists a way to delete an edge from G while keeping f (G) unchanged. The deletion of such edge will also decrease H(Ureg).
There is only one exception that we cannot continue this procedure: all vertices in Ureg become isolated. If this happens,

we already achieved the requirements described in Lemma 1 (arrive at a graph G′ with f (G′) = f (G) and smaller U≥1(∗)).
Finally we need to prove that the above procedure cannot drop into a cycle. Indeed, in each step either d(Uunr) or H(Ureg)

is decreased, and d(Uunr) and H(Ureg) are both upper bounded by O(mn). H(Ureg) might increase in some cases, but this can
only happen for finite times. Actually, H(Ureg) may increase when some vertex u in Uunr becomes regulated after some step.
Notice that whenever some vertex u becomes regulated, it cannot change back to unregulated again. It is clear that H(Ureg)
will only increase for finite times. �

3. Lower bound for functions in Bn,2

We give the proof of Theorem 1 in this section. The proof is by contradiction. We claim that for any function f ∈ Bn,2, if
s0(f)+2s1(f) < 2n+2 and s1(f)+2s0(f) < 2n+2, then f must be a constant function.Wewill use the following notations
in the proof.

For an input x = (x1,1, . . . , xn,2) ∈ {0, 1}2n, let N00(x) = |{i ∈ [n]|xi,1 = 0, xi,2 = 0}|, N10(x) = |{i|xi,1 = 1, xi,2 = 0}|,
N01(x) = |{i|xi,1 = 0, xi,2 = 1}|, and N11(x) = |{i|xi,1 = 1, xi,2 = 1}|. If f ∈ Bn,2, then f (x1,1, . . . , xn,2) only depends on
these four numbers N00(x),N10(x),N01(x), and N11(x). We let

F(N00(x),N10(x),N01(x),N11(x)) = f (x1,1, . . . , xn,2),

and

S((N00(x),N10(x),N01(x),N11(x))) = s(f , x).

A configuration C is a collection of isomorphic bipartite graphs. We use a tuple (a, b, c, d) to represent it:

x ∈ C iff (N00(x),N10(x),N01(x),N11(x)) = (a, b, c, d) or (a, c, b, d).

Obviously for any legal configuration (a, b, c, d), we have a+ b+ c + d = n. Notice that (a, b, c, d) and (a, c, b, d) represent
the same configuration.

For two configurations C1 and C2, for each x ∈ C1, let w(C1, C2) denote the number of edges (i, j) such that x(i,j) is in C2,
i.e.

w(C1, C2) =
{(i, j)|x ∈ C1, x(i,j)

∈ C2}
,

where x(i,j) represents the vector by flipping xi,j in x. w(·) is closely related to the sensitivity complexity:

S(C) =


F(C ′)≠F(C)

w(C, C ′).

For some particular configurations C1 and C2, the values of w(C1, C2) can be computed as follow:

C1 C2 w(C1, C2)

(a, b, c, d) (a − 1, b + 1, c, d) a
(a, b, c, d) (a − 1, b, c + 1, d) a
(a, b, c, d) (a + 1, b − 1, c, d) b
(a, b, c, d) (a + 1, b, c − 1, d) c
(a, b, c, d) (a, b − 1, c, d + 1) b
(a, b, c, d) (a, b, c − 1, d + 1) c
(a, b, c, d) (a, b + 1, c, d − 1) d
(a, b, c, d) (a, b, c + 1, d − 1) d

There are some exceptions on the boundary (when b = c):

C1 C2 w(C1, C2)

(a, b, b, d) (a − 1, b, b + 1, d) 2a
(a, b, b, d) (a + 1, b − 1, b, d) 2b
(a, b, b, d) (a, b, b + 1, d − 1) 2d
(a, b, b, d) (a, b − 1, b, d + 1) 2b

Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91 87

Fig. 1. Sensitivity between configurations, where n − k = 2q and p + r = k.

We start the proof with the following lemma.

Lemma 2. If s0(f) + 2s1(f) < 2n + 2 and s1(f) + 2s0(f) < 2n + 2, then F(p, q0, q1, r) is constant for all (p, q0, q1, r) such
that |q0 − q1| ≤ 1.

Proof. We prove the lemma by induction on p + r . For the case p + r = 0, notice that there is exactly one configuration
(p, q0, q1, r) satisfying |q0 − q1| ≤ 1. For n = 2t , it is (0, t, t, 0). For n = 2t + 1, it is (0, t, t + 1, 0). Therefore, we can
assume w.l.o.g. that F(0, q0, q1, 0) = 0 when |q0 − q1| ≤ 1. Assume for all p + r ≤ k, |q0 − q1| ≤ 1, F(p, q0, q1, r) = 0. We
want to prove that F(p, q0, q1, r) = 0 also holds when p + r = k + 1.

We prove it in the following two cases: First we consider the case n − k = 2q, which means that n and k has the same
parity. Consider the following configurations:

α = (p, q, q, r), β = (p + 1, q, q, r − 1), γ = (p, q − 1, q, r + 1), δ = (p + 1, q − 1, q, r),
ϵ = (p + 2, q − 1, q, r − 1),
ζ = (p, q − 1, q + 1, r), η = (p + 1, q − 1, q + 1, r − 1), θ = (p − 1, q, q + 1, r),
ι = (p, q, q + 1, r − 1), κ = (p + 1, q, q + 1, r − 2)

where p + r = k. As shown in Fig. 1, it can be verified that

w(α, γ) = w(α, δ) = w(β, δ) = w(β, ϵ) = 2q, w(δ, α) = w(δ, ζ) = p + 1,

and

w(δ, β) = w(δ, η) = r, w(ζ , θ) = p, w(ζ , ι) = r, w(η, ι) = p + 1, w(η, κ)

= r − 1, w(ζ , γ) = w(η, ϵ) = q + 1.

By the induction hypothesis, F(α) = F(β) = 0. All we need to show is that F(γ) = F(δ) = 0. We do it for F(δ) here, the
proof of F(γ) = 0 is similar (if we flip all the bits, configuration (p, q0, q1, r) becomes (r, q1, q0, p)).

Case 1: s0(f) < 2q. Noticing that S(α) ≤ s0(f) < 2q = w(α, δ), we have F(δ) = F(α) = 0.
Case 2: 2q ≤ s0(f) < 4q. Since s0(f) + 2s1(f) < 2n + 2 and s1(f) + 2s0(f) < 2n + 2, we have s1(f) < n − q + 1 and

s1(f) < 2n − 4q + 2.
Assume F(δ) = 1. Since w(α, γ) + w(α, δ) = 4q > s0(f) ≥ S(α), we have F(γ) = 0, and F(ϵ) = 0 for the same

reason. Also we have F(θ) = F(ι) = 0 from the induction hypothesis. Then we claim that F(ζ) = 0, otherwise S(ζ) ≥

w(ζ , γ) + w(ζ , θ) + w(ζ , ι) = (q+ 1) + p+ r = n− q+ 1 > s1(f). Similarly we can prove that F(η) = 0. Finally we have
S(δ) ≥ w(δ, α) + w(δ, β) + w(δ, ζ) + w(δ, η) = (p + 1) + r + (p + 1) + r = 2n − 4q + 2 > s1(f). It is a contradiction.
Therefore F(δ) = 0.

Case 3: s0(f) ≥ 4q, then from s0(f) + 2s1(f) < 2n + 2 we get s1(f) < n − 2q + 1. Notice that w(δ, α) + w(δ, β) =

(p + 1) + r = n − 2q + 1 > s1(f), we have F(δ) = 0.
Now let us consider the case n − k = 2q + 1. In Fig. 2, suppose p + r = k + 1. Same as previous case, λ, µ, ξ, . . .

are configurations. λ = (p − 1, q, q + 1, r), µ = (p, q, q + 1, r − 1), ν = (p, q − 1, q + 1, r), ξ = (p, q, q, r),

88 Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91

Fig. 2. Sensitivity between configurations, where n − k = 2q + 1 and p + r = k + 1.

o = (p + 1, q − 1, q, r), π = (p, q − 1, q, r + 1). The transitions between them are:

w(λ, ν) = w(µ, ν) = q, w(λ, ξ) = w(µ, ξ) = q + 1,
w(ν, o) = w(ν, π) = q + 1, w(ξ, o) = w(ξ, π) = 2q, w(ξ, λ) = 2p, w(ξ, µ) = 2r.

The goal is to prove that F(ξ) = 0. By induction hypothesis we have F(λ) = F(µ) = 0.
Case 1: s0(f) ≤ q. Since S(λ) ≤ s0(f) < q + 1 = w(λ, ξ), we have F(ξ) = F(λ) = 0.
Case 2: q + 1 ≤ s0(f) < 2q + 1. Since 2s0(f) + s1(f) < 2n + 2, we have s1(f) < 2n − 2q. Assume F(ξ) = 1. Since

w(λ, ν)+w(λ, ξ) = 2q+1 > s0(f), we have F(ν) = 0. Notice thatw(ν, o)+w(ν, π) = 2q+2 > s0(f), at least one of F(o)
and F(π) is equal to 0. Then S(ξ) ≥ min{w(ξ, o), w(ξ, π)} + w(ξ, λ) + w(ξ, µ) = 2n − 2q > s1(f). It is a contradiction.
Therefore F(ξ) = 0.

Case 3: s0(f) ≥ 2q + 1, then s1(f) < 2n − 4q. Noticing that w(ξ, λ) + w(ξ, µ) = 2n − 4q > s1(f), we have F(ξ) = 0.
In conclusion, all configurations (p, q0, q1, r) in Bn,2 such that |q0 − q1| ≤ 1 must take the same function value. �

Nowwe can use this lemma to prove Theorem 1. The sketch of the proof is to prove that for every possible configuration
C , there exists another configuration C ′, such that F(C) = F(C ′), and C ′

= (p, q0, q1, r) where |q0 − q1| ≤ 1.

Lemma 3. If s(f) < n, then for any configuration (p, q0, q1, r), q0 ≠ q1, there exists another configuration (p′, q′

0, q
′

1, r
′) such

that F(p, q0, q1, r) = F(p′, q′

0, q
′

1, r
′), and |q′

0 − q′

1| < |q0 − q1|.

Proof. Assume that there is a configuration C that does not satisfy the lemma above, we assume w.l.o.g. that C =

(p, q0, q1, r) and q0 > q1. Notice that C1 = (p+ 1, q0 − 1, q1, r), C2 = (p, q0 − 1, q1, r + 1), C3 = (p− 1, q0, q1 + 1, r) and
C4 = (p, q0, q1 + 1, r − 1) are all legal configurations, and from the assumption these configurations should have different
function value with F(C). Therefore,

S(C) ≥ w(C, C1) + w(C, C2) + w(C, C3) + w(C, C4) = q0 + q0 + p + r > p + q0 + q1 + r = n > s(f) (5)

which contradicted to the condition s(f) < n. �

By using Lemma3 iteratively, we show that every configuration C has the same function valuewith another configuration
C ′

= (p, q, q, r). However, by Lemma 2, all configurations of the form (p, q, q, r) should have the same function value.
Therefore the function f must be a constant function.

4. Sensitivity of composite Boolean functions

In this section, we will present an upper bound for our conjecture, particularly we also specialize the upper bound for
non-trivial f ∈ Bn,2 to show that Theorem 1 is tight. Besides the proof, we also give a lower bound for those f , which are
composed of two symmetric Boolean functions g and h. Notice that according to the symmetry and non-trivialness of f both
g and h should be symmetric and non-constant Boolean functions.

Proof of Theorem 3. Suppose f = g ◦ h, where g : {0, 1}m → {0, 1} and h : {0, 1}n → {0, 1} are both symmetric and
non-trivial Boolean functions.

Since g is symmetric, its value only depends on the number of 1-bits in the input x, so there exists a function g∗
: [m] →

{0, 1}, such that ∀ x ∈ {0, 1}m, g(x) = g∗(|x|), where |x| =
{i|xi = 1}

 denotes the number of 1-bits in x. Also we have
such a function h∗ for h.

Since g is not a constant function, theremust exist a 0 ≤ j ≤ m−1, such that g∗(j) ≠ g∗(j+1), w.l.o.g. assume g∗(j) = 0
and g∗(j+ 1) = 1. Similarly we assume h∗(i) = 0 and h∗(i+ 1) = 1, where 0 ≤ i ≤ n− 1. (Otherwise, if such an i does not
exist, we can flip all the input bits and substitute h∗ by h∗.) Then we have

s0(g) ≥ s0(g, 1j0m−j) = m − j, s1(g) ≥ s1(g, 1j+10m−j−1) = j + 1,

Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91 89

and

s0(h) ≥ s0(h, 1i0n−i) = n − i, s1(h) ≥ s1(h, 1i+10n−i−1) = i + 1.

Then we focus on the sensitivity of f . We calculate s0(f) first. Suppose x = x(1)x(2) . . . x(m), where each x(k) is a n-bits
string (k ∈ [m]), i.e. x(k)

= x(k)
1 x(k)

2 . . . x(k)
n . Then f (x) = g(y), where y = y1 . . . ym and yk = h(x(k)), for k = 1, 2, . . . ,m.

Now let us consider the following x = x(1)x(2) . . . x(m), where

x(k)
=


1i+10n−i+1, if 1 ≤ k ≤ j;
1i0n−i, otherwise.

It is easy to see that the corresponding y = 1j0m−j. Then g is sensitive on yj+1yj+2 . . . ym, which are all 0-bits. For j + 1 ≤

k ≤ m, each yk = h(x(k)) is sensitive on x(k)
i+1x

(k)
i+2 . . . x(k)

n . Now if we flip any x(k)
l where i + 1 ≤ l ≤ n, then the value of

yk = h(x(k)) will flip, hence the value of g(y) will also change. Therefore,

s0(f) = s0(g ◦ h) ≥ s0(g ◦ h, x) =

m
k=j+1

s0(h, x(k)) = (m − j)(n − i). (6)

Similarly,

s1(f) ≥ (j + 1)(i + 1). (7)

Nowwe prove that max{m · s0(f) + s1(f), s0(f) +m · s1(f)} ≥ mn+m. W.l.o.g., suppose (m− j)(n− i) ≥ (j+ 1)(i+ 1),
then we claim that

m · s0(f) + s1(f) ≥ mn + m. (8)

In fact from Eqs. (6) and (7), we have

m · s0(f) + s1(f) ≥ m · (m − j)(n − i) + (j + 1)(i + 1). (9)

Notice that

m · (m − j)(n − i) + (j + 1)(i + 1) − (mn + m) = m(m − j − 1)(n − i) + m(n − i) + (j + 1)(i + 1) − (mn + m)

= m(m − j − 1)(n − i) + (j + 1)(i + 1) − mi − m
= m(m − j − 1)(n − i) + (j + 1 − m)(i + 1)
= (m − j − 1)[m(n − i) − (i + 1)]. (10)

Since we assumed (m − j)(n − i) ≥ (j + 1)(i + 1), it implies that

m(n − i) ≥ j(n − i) + (j + 1)(i + 1) ≥ (j + 1)(i + 1) ≥ i + 1. (11)

Combining Eq. (10), (11) and the fact that j ≤ m − 1, we get

m · (m − j)(n − i) + (j + 1)(i + 1) ≥ mn + m. (12)

Eqs. (9) and (12) implym · s0(f) + s1(f) ≥ mn + m.
Similarly, when (m − j)(n − i) ≤ (j + 1)(i + 1) we can show

s0(f) + m · s1(f) ≥ mn + m.

Finally by the symmetry ofm and n in Eqs. (6) and (7), we have

max{m · s0(f) + s1(f), s0(f) + m · s1(f)} ≥ mn + m,

max{n · s0(f) + s1(f), s0(f) + n · s1(f)} ≥ mn + n. �

Tightness of Conjecture 2
Assumem ≤ n, then max{

 n+1
m+1m


,
m+1

n+1 n

} =

 n+1
m+1m


. Consider the following function f : {0, 1}mn

→ {0, 1},

f = Tm
1 ◦ T n

⌈
n+1
m+1m⌉

,

where T l
k : {0, 1}l → {0, 1} is the threshold function, T l

k(x) = 1 if and only if |x| ≥ k. Notice that

s0(T l
k) = s0(T l

k, 1
k−10l+1−k) = l + 1 − k, s1(T l

k) = s1(T l
k, 1

k0l−k) = k.

90 Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91

Then we calculate the sensitivity of f . For the outer function Tm
1 , 0-sensitivity is non-zero if and only if the input is all

zero. If any of these zeros flips, the outcome of f would change. On the other hand, to flip any one of them, we have exactly
s0(T n

⌈
n+1
m+1m⌉

) ways, by flipping any of the sensitive bits in the input, to change the interim outcome. Hence

s0(f) = s0(Tm
1) · s0(T n

⌈
n+1
m+1m⌉

) = m ·


n + 1 −

 n + 1
m + 1

m


= m(n + 1) − m
 n + 1
m + 1

m


=

 n + 1
m + 1

m


+ m(n + 1) − (m + 1)
 n + 1
m + 1

m


≤

 n + 1
m + 1

m

,

the last ‘‘≤’’ is due to ⌈
n+1
m+1m⌉ ≥

n+1
m+1m. Similarly

s1(f) = s1(Tm
1) · s1(T n

⌈
n+1
m+1m⌉

) =

 n + 1
m + 1

m

.

So s(f) = max{s0(f), s1(f)} =
 n+1

m+1m

. Particularly for m = 2, if we use the configuration notation described in Section 3,

the function is like

F(a, b, c, d) =


0, if a ≥

2
3 (n + 1);

1, otherwise

which gives an upper bound of Theorem 1.

5. The region of feasible (s0(f), s1(f))

In Section 3 we have proved that for any non-trivial f ∈ Bn,2, the sensitivity of f satisfies that

max{s0(f) + 2s1(f), 2s0(f) + s1(f)} ≥ 2n + 2. (13)

We have also shown some functions with (s0(f), s1(f)) on the boundary (equality holds in Eq. (13)). However, it does not
mean that for every pair (s0(f), s1(f))withmax{s0(f)+2s1(f), 2s0(f)+ s1(f)} ≥ 2n+2, there exists a non-trivial f ∈ Bn,2.
Next we show that (1,m) withm < 2n is not feasible for (s0(f), s1(f)).

Theorem 4. There does not exist function f ∈ Bn,2 with s0(f) = 1 and s1(f) ≤ 2n − 1.

Proof. We use the same terminology as in Section 3. Besides, for any k ∈ N and configurations A, B and C , we use notations
A

k
→ B to indicate w(A, B) ≥ k and A

k
→ B + C to indicate w(A, B) + w(A, C) ≥ k in the following proof. Notice that

if k > sf (A)(f), then A
k

→ B implies f (A) = f (B). Similarly if k > sf (A)(f) and f (B) = f (C), then A
k

→ B + C implies
f (A) = f (B) = f (C).

The intuition is to prove that f is a constant function under conditions s0(f) = 1 and s1(f) ≤ 2n − 1. The proof contains
three parts. The first two parts prove that either F(n, 0, 0, 0) = 1 or F(0, 0, 0, n) = 1 will lead to the result that f becomes
constant. The third part proves that under conditions F(n, 0, 0, 0) = 0 and F(0, 0, 0, n) = 0, f will also become constant.

On the contrary, assume such f exists.

1. When F(n, 0, 0, 0) = 1, since (n, 0, 0, 0)
2n
→ (n − 1, 0, 1, 0) and s1(f) ≤ 2n − 1, F(n − 1, 0, 1, 0) = 1. Let (a, b, c, d) be

the configuration that F(a, b, c, d) = 0 and b+c+2d has the least value. Since F(n, 0, 0, 0) = 1 and F(n−1, 0, 1, 0) = 1,
b + c + 2d ≥ 2.
(a) If d ≥ 1 and b = c , then (a, b, c, d)

2
→ (a, b, c + 1, d − 1). So F(a, b, c + 1, d − 1) = F(a, b, c, d) = 0. But

b + (c + 1) + 2(d − 1) < b + c + 2d which indicates F(a, b, c + 1, d − 1) = 1. Thus we get a contradiction.

(b) If d ≥ 1 and b ≠ c , then (a, b, c, d)
2

→ (a, b+1, c, d−1)+(a, b, c+1, d−1). So F(a, b, c+1, d−1) = F(a, b, c, d) = 0.
But b + (c + 1) + 2(d − 1) < b + c + 2d which indicates F(a, b, c + 1, d − 1) = 1. Thus we get a contradiction.

(c) If d = 0 and c ≥ 2, then (a, b, c, d)
2

→ (a + 1, b, c − 1, d). So F(a + 1, b, c − 1, d) = F(a, b, c, d) = 0. But
b + (c − 1) + 2d < b + c + 2d which indicates F(a + 1, b, c − 1, d) = 1. Thus we get a contradiction.

(d) If d = 0 and c < 2, since b + c + 2d ≥ 2, then b = c = 1. Then (a, b, c, d)
2

→ (a + 1, b − 1, c, d) and so
F(a+ 1, b− 1, c, d) = F(a, b, c, d) = 0. But (b− 1)+ c + 2d < b+ c + 2dwhich indicates F(a+ 1, b− 1, c, d) = 1.
Thus we get a contradiction.

As above, when F(n, 0, 0, 0) = 1, f becomes a constant function which contradicts the fact that f is non-trivial.

Y. Gao et al. / Theoretical Computer Science 468 (2013) 83–91 91

2. When F(0, 0, 0, n) = 1 , it is similar to the first case. We can also get a contradiction.
3. The left case is when F(n, 0, 0, 0) = F(0, 0, 0, n) = 0. From this two conditions together with the restriction that

s0(f) = 1 and s1(f) ≤ 2n − 1, we can prove that f is a constant function step by step:
For each configuration (a, b, c, d):

(a) When a ≥ 1, c ≥ 1, (a + 1, b, c − 1, d)
2

→ (a, b, c, d).
(b) When a ≥ 2, b = c = 0, (a, 0, 1, d − 1)

2
→ (a − 1, 1, 1, d − 1)

2
→ (a − 1, 0, 1, d) and (a, 0, 0, d)

2n
→

(a, 0, 1, d − 1) + (a − 1, 0, 1, d).
(c) When (a, b, c, d) = (1, 0, 0, n − 1), (0, 0, 0, n)

2
→ (1, 0, 0, n − 1).

(d) When a = 0, d ≠ 0 , it is similar to d = 0, a ≠ 0. The configurations with d = 0, a ≠ 0 can be treated similarly as
(a)–(c), since we have F(n, 0, 0, 0) = 0 and F(0, 0, 0, n) = 0.

(e) When a = 0, d = 0, (0, b, c, 0)
2n
→ some configurations in previous cases.

We can sort all the configurations (a, b, c, d) using a as the first keyword and d as the second keyword, both in
decreasing order. Then these five steps give a way for proving f (x) = 0 from the base F(n, 0, 0, 0) = F(0, 0, 0, n) = 0.
Just follow these five steps and then we can get that f is a constant function which contradicts the fact that f is non-
trivial. �

6. Conclusion and discussion

In this paper we proposed analogue conjecture of Turán conjecture about the sensitivity of bipartite graph properties
and show examples which achieve the lower bound.We proved our conjecture for n×2 bipartite graph properties and gave
a weaker lower bound for general m × n bipartite graph properties. We also proved the conjecture for composite Boolean
functions. The proofs of Theorems 1 and 3 actually suggest the following stronger conjecture:

Conjecture 2′. For any non-trivial bipartite graph property f ∈ Bn,m, the 0-sensitivity and 1-sensitivity of f satisfy

max {s0(f) + m · s1(f),m · s0(f) + s1(f)} ≥ m(n + 1).

It is also interesting to know which is the feasible region of the pair (s0(f), s1(f)) ∈ N2.

Acknowledgments

The author would like to thank the anonymous referees for their helpful comments and suggestion to improve the
presentation of this paper. This work was supported in part by the National Natural Science Foundation of China Grant
61170062, 61222202.

References

[1] Harry Buhrman, Ronald de Wolf, Complexity measures and decision tree complexity: a survey, Theoret. Comput. Sci. 288 (1) (2002) 21–43.
[2] Stephen Cook, Cynthia Dwork, Bounds on the time for parallel RAM’s to compute simple functions, in: STOC, 1982, pp. 231–233.
[3] Stephen Cook, Cynthia Dwork, Rüdiger Reischuk, Upper and lower time bounds for parallel random access machines without simultaneous writes,

SIAM J. Comput. 15 (1) (1986) 87–97.
[4] R. Holt, E. Reingold, On the time required to detect cycles and connectivity in graphs, Math. Systems Theory 6 (1972) 103–106.
[5] Arnold Rosenberg, On the time required to recognize properties of graphs: a problem, ACM SIGACT News 5 (4) (1973) 15–16.
[6] Xiaoming Sun, An improved lower bound on the sensitivity complexity of graph properties, Theoret. Comput. Sci. 412 (29) (2011) 3524–3529.
[7] György Turán, The critical complexity of graph properties, Inf. Process. Lett. 18 (3) (1984) 151–153.
[8] Ingo Wegener, The critical complexity of all (monotone) Boolean functions and monotone graph properties, in: FCT, 1985, pp. 494–502.

	On the sensitivity complexity of bipartite graph properties
	Introduction
	Lower bound for general bipartite graph properties
	Lower bound for functions in Bn,2
	Sensitivity of composite Boolean functions
	The region of feasible (s0(f),s1(f))
	Conclusion and discussion
	Acknowledgments
	References

