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Machine learning, the core of artificial intelligence and big data science, is one of today’s most rapidly grow-
ing interdisciplinary fields. Recently, its tools and techniques have been adopted to tackle intricate quantum
many-body problems. In this work, we introduce machine learning techniques to the detection of quantum
nonlocality in many-body systems, with a focus on the restricted-Boltzmann-machine (RBM) architecture. Us-
ing reinforcement learning, we demonstrate that RBM is capable of finding the maximum quantum violations
of multipartite Bell inequalities with given measurement settings. Our results build a novel bridge between
computer-science-based machine learning and quantum many-body nonlocality, which will benefit future stud-
ies in both areas.

Nonlocality is one of the most fascinating and enigmatic
features of quantum mechanics that denies any local realistic
description of our world [1, 2]. It represents the most profound
departure of quantum from classical physics and has been ex-
perimentally confirmed in a number of systems through vi-
olations of Bell inequalities [3–18]. In addition to its fun-
damental interest, in practice nonlocality is the key resource
for device-independent quantum technologies, such as secure
key distribution [19–21] or certifiable random number gener-
ators [22–26]. Thus, characterizing and detecting nonlocality
is one of the central problems in both quantum information
theory and experiment. Here, we introduce machine learn-
ing, a branch of computer science [27–29], to the detection of
quantum nonlocality (see Fig. 1 for a pictorial illustration).

For quantum many-body systems, whereas entanglement
has been extensively studied [30], nonlocality remains rarely
explored. Mathematically, it has been proved that the com-
plete characterization of classical correlations for a generic
many-body system is an NP-hard problem [31]. Neverthe-
less, an incomplete list of multipartite Bell inequalities with
high-order correlation functions has indeed been discovered
for a long time [2]. More recently, Bell inequalities with only
two-body correlators were constructed [32–36] and multipar-
tite nonlocality has been demonstrated experimentally in a
Bose-Einstein condensate by violating one of these inequal-
ities [37]. This sparks a new wave of interest in the study of
nonlocality in many-body systems.

A particular question of both theoretical and experimen-
tal relevance is that for a given multipartite Bell inequality,
how to obtain its quantum violation in a numerical simula-
tion? To tackle this problem, one has to face at least two chal-
lenges. First of all, the Hilbert space of a quantum many-body
system grows exponentially with the system size and a com-
plete description of its state requires an exponential amount
of information in general, rendering the computation of the
quantum expectation value corresponding to the inequality a
formidably demanding task. Second, the measurement set-
tings for each party involved in a Bell experiment is arbitrary
in principle, making the problem even more complicated. In
fact, it has been shown that the computation of the maximum
violation of a multipartite Bell inequality is an NP-problem
[38]. In this paper, we will not attempt to solve this problem
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FIG. 1. (a) A sketch of the restricted-Boltzmann-machine (RBM)
representation of quantum many-body states. For each spin config-
uration Ξ = (σz1 , σ

z
2 , · · · , σzN ), the artificial neural network out-

puts its corresponding coefficient Φ(Ξ). (b) A pictorial illustration
of the essential idea of machine learning Bell nonlocality in quan-
tum many-body systems. The set of all classical correlations forms a
high-dimensional polytope (yellow region), which is a subset of the
quantum-correlation set that consists of all possible correlations al-
lowed by quantum mechanics. The black line represents a tight Bell
inequality (facet of the polytope). We start with a random RBM,
which typically shows only classical correlations (in the sense that it
does not violate a given Bell inequality). We then optimize its inter-
nal parameters, through reinforcement learning, so as to violate the
Bell inequality maximally.

completely, which is implausible due to the NP complexity.
Instead, we study a simplified scenario where the given mul-
tipartite Bell inequality only involves a polynomial number of
correlation functions and the measurement settings for each
party are restricted (due to experimental requirements, for in-
stance) and preassigned. We show that machine learning may
provide an unprecedented perspective for solving this simpli-
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fied, but still sufficiently intricate, quantum many-body prob-
lem. Within physics, applications of machine-learning tech-
niques have recently been invoked in various contexts [39–
72], such as black hole detection [56], gravitational lenses
[57] and wave analysis [58, 59], material design [60], glassy
dynamics [61], Monte Carlo simulation [62, 63], topological
codes [64], quantum machine learning [72], and topological
phases and phase transitions [41–50], etc. Here, we apply ma-
chine learning to the detection of quantum many-body nonlo-
cality, focusing on one of the simplest stochastic neural net-
works for unsupervised learning—the restricted Boltzmann
machine (RBM) [73–75] as an example. We demonstrate,
through three concrete examples, that RBM-based reinforce-
ment learning is capable of finding the maximum quantum vi-
olations of multipartite Bell inequalities with given measure-
ment settings. Our method works for generic Bell inequalities
that involve a polynomial number (in system size) of correla-
tion functions, independent of dimensionality, the order of the
correlations, or whether the correlation functions are short-
range or not. Our results showcase the exceptional power of
machine learning in the detection of quantum nonlocality for
many-body systems, thus would provide a valuable guide for
both theory and experiment.

To begin with, let us first briefly introduce the RBM repre-
sentation of quantum states [39] and the general recipe for ma-
chine learning Bell nonlocality. We consider a quantum sys-
tem withN spin- 12 particles (qubits) Ξ = (σ1, σ2, · · ·σN ) and
use a RBM neural network to describe its many-body wave-
function Φ(Ξ). A RBM consists of two layers: one called
visible layer withN nodes (visible neurons), corresponding to
the physical spins; the other called hidden layer withM auxil-
iary nodes (hidden neurons). The hidden neurons are coupled
to the visible ones, but there is no coupling among neurons in
the same layer, as schematically illustrated in Fig. 1(a). By
tracing out the hidden neurons, we obtain a RBM representa-
tion of a quantum many-body state [39]:

ΦM (Ξ,Ω) =
∑
{hk}

e
∑
k akσ

z
k+

∑
k′ bk′hk′+

∑
kk′ Wk′khk′σ

z
k , (1)

where Ω ≡ (a, b,W ) are internal parameters that fully spec-
ify the RBM neural network and {hk} = {−1, 1}M denotes
the possible hidden neuron configurations. We mention that
any quantum state can be approximated to arbitrary accuracy
by the above RBM representation, as long as the number of
hidden neurons is large enough [76–78]. It is shown in Ref.
[44] that RBM can represent topological states, either sym-
metry protected or with intrinsic topological order, in an exact
and efficient fashion, and the entanglement properties of RBM
states are extensively studied in Ref [79].

We consider a standard Bell experiment in which N parties
each can freely choose to perform one of K possible mea-
surements M(i)

k (i = 1, · · · , N and k = 0, · · · ,K − 1)
with binary outcomes ±1. We describe the observed corre-
lations by using a collection of expectation values of corre-
lators 〈M(i1)

k1
· · ·M(iα)

kα
〉 and we say that the correlations are

classical when they can be simulated with only shared clas-
sical information between parties (or in other words, can be
described by a local hidden variable theory [80]). Classical
correlations form a high-dimensional (exponential inN ) poly-
tope P, which is a bounded convex set with a finite number of
extreme points. Each facet of P corresponds to a tight Bell
inequality and correlations that fall outside of P will violate
a Bell inequality and thus manifest nonlocality. We write the
Bell inequalities in a generic form: I ≥ B(c), where I is a
function of the expectation values of the correlators and B(c)
is the classical bound. Within this framework, our general
recipe for machine learning of nonlocality through violation
of a given Bell inequality is as follows: we begin with a ran-
dom RBM state, whose observed correlations may or may not
fall inside P, but typically do not violate the given inequality;
we then use a reinforcement learning scheme recently intro-
duced by Carleo and Troyer [39] to iteratively optimize the in-
ternal parameters, such that the minimal expectation value of
I within quantum mechanics will be achieved. If the minimal
value is smaller than B(c), the Bell inequality is maximally
violated with a given measurement setting and nonlocality is
detected. A pictorial illustration of the classical polytope, a
tight Bell inequality, and the essential idea of machine learn-
ing Bell nonlocality is shown in Fig. 1(b).

One may also choose another measurement setting and run
the same process to obtain the maximal violation for this set-
ting. In order to obtain the maximal violation of the Bell in-
equality for all measurement settings, one can just scan all
possible settings and do the same process repeatedly. We men-
tion that an alternative and more efficient way is to regard all
the parameters that specify the measurements as variational
parameters as well (on an equal footing as the RBM parame-
ters Ω) and optimize them together with the RBM parameters
using a similar reinforcement learning procedure. But this is
more technically involved. Here, we will only focus on the
former cases with fixed measurement settings (parameters for
measurements are preassigned) for simplicity and leave the
later approach for future studies.

To show more precisely how this RBM-based reinforce-
ment learning protocol works, we give three concrete exam-
ples. The first one concerns Bell inequalities with only short-
range two-body correlators in one dimension (1D). This is a
case where traditional methods, such as density-matrix renor-
malization group (DMRG), also work remarkably well [81–
83]. We compare our RBM results with that from exact di-
agonalization (ED) for small system size N and DMRG for
larger N , and find that they agree excellently. This validates
the effectiveness of our RBM approach. The second and third
examples are about Bell inequalities with, either all-to-all but
two-body or multipartite, correlators. These examples are be-
yond the capacity of the DMRG or ED methods for large sys-
tem sizes and show a striking advantage of RBMs in detecting
many-body nonlocality.

Bell inequalities with short-range two-body correla-
tors.—Now, let us consider a 1D system with N (an even
integer) qubits. A Bell inequality involving only two-body
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FIG. 2. RBM-based reinforcement learning of many-body Bell nonlocality through quantum violations of the Ineq. (2). The red dashed
lines represent the classical bounds B(c)

1 , the regions below which show quantum nonlocality and thus are not attainable by any local hidden
variable models. We denote the quantum expectation value corresponding to I1 asQ(1)

v , and without loss of generality, we have fixed δ = 0.9
throughout this figure for simplicity. (a) A comparison between results from RBM and exact diagonalization (ED) for a small system size
N = 20. The results match each other very well. (b) The obtained quantum expectation value as a function of the iteration number of the
learning process, for a larger system size N = 100. For this particular learning process,Q(1)

v begins to cross the classical bound B(c)
1 after 65

iterations, and all the RBM states thereafter violate Ineq. (2) and thus show many-body nonlocality. As the iteration number increases, Q(1)
v

converges quickly to the value computed from DMRG [84]. (c) RBM learned Q(1)
v as a function of N for ∆ = 2. The inset shows the result

for ∆ = 3, where no quantum violation is observed.

correlators with nearest-neighbor couplings has recently been
obtained through a dynamic programming procedure [34]:

I1 =

N/2−1∑
k=0

(1 + δ)I(k)even + (1− δ)I(k)odd ≥ B
(c)
1 , (2)

where I(k)even =
∑4
a=0

∑3
b=0 Λa,b(∆)〈M(2k)

a M(2k+1)
b 〉 and

I(k)odd = I(k)even(2k → 2k + 1) with Λ(∆) a four-by-three ma-
trix [85]; B(c)1 is the classical bound depending on the real
parameters δ and ∆: B(c)1 = −(4 + 2|∆|)N for |∆| ≤ 2 and
|δ| ≤ 1, and B(c)1 = −4|∆|N for 2 ≤ |∆| ≤ 3 and |δ| ≤ 1.
By choosing the measurement settings properly [86], the Bell
operator corresponding to the above inequality reduces to the
following XXZ-type Hamiltonian:

H =

N−1∑
k=0

gk(δ)[σ̂xk σ̂
x
k+1 + σ̂yk σ̂

y
k+1 + ∆σ̂zkσ̂

z
k+1],

where gk(δ) = 4[1 + (−1)k]/
√

3, and σ̂x, σ̂y and σ̂z are the
usual Pauli matrices. For this particular measurement settings,
the maximal quantum violation of Ineq. (2) corresponds to the
ground state energy ofH and can be calculated using DMRG,
as already discussed in Ref. [34]. Here, we use the above
introduced reinforcement learning method to obtain the same
quantum violation.

Our results are plotted in Fig. 2. In Fig. 2(a), we compare
our results with that from ED for N = 20. As shown in this
figure, the RBM result matches the ED result very well [84].
We find that the quantum expectation value of I1 (denoted
by Q(1)

v ) decreases approximately linearly as we increase ∆.

There is a critical value ∆ ≈ 2.4, after which no quantum vio-
lation will be observed. In Fig. 2(b), we show the convergence
of the RBM learning and compare the obtained results with
that of DMRG. We find that the initial random RBM states
typically do not violate the Ineq. 2, but as the learning process
goes on,Q(1)

v will decrease and begin to violate the inequality
after a certain critical iteration number. As the iteration num-
ber increases further, Q(1)

v quickly converges to the DMRG
value, validating the effectiveness of the RBM method. Fig.
2(c) shows the converged Q(1)

v as a function of N . We find
that Q(1)

v decreases linearly with increasing N for the chosen
parameters (δ,∆) = (0.9, 2). For ∆ = 2, the slope forQ(1)

v is
smaller than that of B(c)1 , thus the larger N the stronger quan-
tum violations. For ∆ = 3, no violation is observed for all N ,
which is consistent with the results in Ref. [34].

Bell inequalities with all-to-all two-body correlators.—As
the second example to show the power of RBM in detecting
nonlocality, we consider the following Bell inequality intro-
duced by Tura et al [32], which involves all-to-all two-body
correlators and thus are beyond the scope of DMRG:

I2 = −2S0 − S01 +
1

2
(S00 + S11) ≥ B(c)2 , (3)

where the one- and two- body correlators are defined as: Sa =∑N
k=1〈M

(k)
a 〉 and Sab =

∑N
k 6=l〈M

(k)
a M(l)

b 〉 (a, b = 0, 1),

and the classical bound B(c)2 = −2N . This inequality has
been used in a recent experiment to demonstrate many-body
nonlocality of about 480 atoms in a Bose-Einstein condensate
[37]. For permutationally-symmetric states, its quantum vio-
lations were numerically studied in Ref. [32]. Here, we find
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FIG. 3. (a) RBM-learned quantum expectation value (Q(2)
v ) as a

function of the iteration number, for a typical random sample of mea-
surement angles (see [84]). (b) RBM-learned quantum violations
(Q(3)

v ) of Ineq. (4) as a function of measurement angle θ. In both (a)
and (b), the system size is fixed to be N = 20.

that, using the RBM approach, one can obtain the same max-
imal violations readily if one chooses a permutation-invariant
neural network. More interestingly, we find that the RBM ap-
proach also works for the cases where the permutation sym-
metry is released. To this end, we consider a scenario where
the measurement settings are chosen as: M(k)

0 = σz and
M(k)

1 = cos θkσ
z + sin θkσ

x (k = 1, 2, · · · , N ), where θk
are random rotation angles drawn from some uniform distri-
butions [84]. We mention that in a real experiment, the mea-
surement angles will never be exact due to various control im-
perfections or system noises. For instance, in quantum dot
spin-qubit experiments, the precision of single qubit rotations
is typically limited due to charge fluctuations [87] and Over-
hauser noise [88, 89]. Thus our consideration of random mea-
surement settings is of both theoretical and experimental rel-
evance. In Fig. 3(a), we show the quantum expectation value
corresponding to I2 (denoted as Q(2)

v ) as a function of the it-
eration number of the learning process for a typical random
sample of θks. It is clear that Q(2)

v decreases as the learn-
ing process continues and becomes smaller than the classical
bound at a critical iteration number. It converges to the exact
minimal value as we increase the iteration number further.

Bell inequalities with multipartite correlators.—To show
that RBM is also capable of dealing with Bell inequalities
with multipartite correlators, we consider the following Bell
inequality introduced in Ref. [90]:

I3 = −〈M(1)
0 M

(2)
0 · · ·M

(N)
0 〉 − 〈M(1)

1 M
(2)
0 · · ·M

(N)
0 〉

+
1

N − 1

N∑
k=2

[〈M(1)
0 M

(k)
1 〉 − 〈M

(1)
1 M

(k)
1 〉] ≥ −2. (4)

This inequality contains only two dichotomic measurements
per party, hence in order to find its maximal quantum viola-
tion it is sufficient to consider only traceless real observables
[91, 92]. As a result, we consider the following choice of

measurements: M(1)
0 = σ̂z, M(1)

1 = cos θσ̂x + sin θσ̂z ,
M(k)

0 = σ̂z and M(k)
1 = σ̂x for all k = 2, · · ·N . By us-

ing RBM-based reinforcement learning, we have computed
the quantum violations of Ineq. (4) and part of our results
are plotted in Fig. 3(b) [84]. From this figure, we find that
the Ineq. (4) is always violated when θ 6= π/2 and the max-
imal violation is achieved at θ = 0 or π. When θ = π/2,
M(1)

0 =M(1)
1 = σ̂z and the first party actually has only one

measurement hence no quantum violation can be obtained. In
addition, from our numerical results we also find that the max-
imal violation of Ineq. (4) is always−2

√
2, independent of the

system size [84]. This can be understood from the observation
that the Ineq. (4) is in fact reminiscent of the Clauser-Horne-
Shimony-Holt inequality [93], whose maximal quantum vio-
lation has proved to be bounded by 2

√
2 [94].

We emphasize that in the last two examples, we did not
specify the spatial dimensionality of the systems. Unlike
DMRG, our RBM approach works for any dimension. In ad-
dition, as shown in Ref. [79], entanglement is not a limiting
factor for the efficiency of the neural-network representation
of quantum many-body states. Thus, we expect that RBM can
be used to detect many-body nonlocality for quantum states
with massive (e.g., volume-law) entanglement as well. This
implies another unparalleled advantage of the RBM approach,
when compared with traditional methods, such as DMRG,
PEPS [95] (projected entangled pair states), or MERA [96]
(multiscale entanglement renormalization ansatz). We also
note that one may use other type of neural networks (e.g., deep
Boltzmann machine [65] or feedforward neural networks [97],
etc.) with different learning algorithms to detect many-body
nonlocality. A complete study on detecting nonlocality with
different neural network would not only bring new powerful
tools for solving intricate problems in the quantum informa-
tion area, but also provide helpful insight on understanding the
internal data structures of the networks themselves. We leave
this interesting and important topic for future investigation.

Discussion and conclusion.—Finding out experimentally-
friendly Bell inequalities for a given many-body system is
a challenging problem, since in general the complexity of
characterizing the set of classical correlations scales exponen-
tially with the system size. In the future, it would also be
interesting to study how machine learning can provide valu-
able ideas in designing optimal Bell inequalities for many-
body systems. Particularly, recent experiments in cold atomic
[98] and trapped ion [99] systems have realized programmable
quantum simulators with more than fifty qubits and observed
exotic quantum dynamics and phases transitions. It is highly
desirable to find appropriate Bell inequalities that can be used
in these experiments to demonstrate many-body nonlocality.
We believe that machine learning will provide valuable wis-
dom in tackling this problem as well.

In summary, we have introduced machine learning to the
detection of quantum nonlocality in many-body systems. Our
discussion is mainly based on the RBM architecture, but its
generalizations to other artificial neural networks are possible
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and straightforward. Through three concrete examples, we
have demonstrated that RBM-based reinforcement learning
shows remarkable power in computing quantum violations of
certain multipartite Bell inequalities. Our results open a door
for machine learning Bell nonlocality, which would benefit
future studies across quantum information, machine learning,
and artificial intelligence.
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Supplementary Material for: Machine
Learning Bell Nonlocality in Quantum

Many-body Systems

I. BELL INEQUALITIES WITH SHORT-RANGE
TWO-BODY CORRELATORS

In the main text, we have shown that one can use the RBM-
based reinforcement learning to obtain the quantum violations
of Ineq. (2). Here, we give more details on the structure of the
neural networks, the DMRG calculations, and the comparison
between obtained results from different methods.

As discussed in the main text, with properly chosen mea-
surement settings, the Bell operator corresponding to I1 re-
duces to the XXZ-type Hamiltonian H [34]. With the open
boundary condition, H does not have other obvious symme-
try, except that the total Σz =

∑
σzk is conserved. Thus,

it is straightforward to choose a RBM without any symme-
try. In this case, the number of variational parameters is
N + M + N ×M , which is large when N ≈ 100 (∼ 104).
Training this RBM is both time and memory consuming. For
this particular example, we find that one can instead use a
short-range RBM to reduce the number of parameters, and
the accuracy of the final results will not be affected to much.
To be more concrete, we consider a RBM with M = αN (α
denotes the hidden unit density and we choose it to be an inte-
ger number for simplicity) and we rearrange the positions of
the hidden neurons, such that at each site there are α hidden
neurons coupling only locally (within range R) to the visible
neurons. This significantly reduces the number of parameters,
from O(N2) to O(N).

We begin with a random short-range RBM (i.e., all the in-
ternal parameters are chosen randomly and independently),
which typically does not violate the Ineq. (1) in the main text.
We then use a reinforcement learning algorithm introduced in
Ref. [39] to optimize the internal parameters of the RBM.
The details of this algorithm can be found in the Supplemen-
tary Materials of Ref. [39]. In Fig. S1, we plot partial of the
weight parameters for the final trained RBM in Fig. 2(b) in
the main text. Here, only the wight parameters corresponding
to the neurons in the first hidden layer are plotted. The param-
eters associated to other hidden layers looks similar and thus
are omitted for the sake of conciseness.

In order to characterize the accuracy of the trained RBM,
one can introduced a quantity called the relative error defined
as εrel = |E(RBM)

0 − E0|/E0, where E0 is the true ground-
state energy of H and E(RBM)

0 denotes the value calculated
via the RBM approach. For small system sizes (N ≤ 20), we
find that εrel ∼ 10−4 in our calculations. For larger system
sizes, we compare our RBM results with that from DMRG.
In our DMRG calculations, we use a MPS representation of
the quantum many-body states and variationally optimizes the
MPS to minimize the ground state energy (see [82] for de-
tails). The maximal bond dimension (where we truncate the
MPS) is chosen to be χmax = 100 and we have checked
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FIG. S1. The learned weight parameters for representing the ground
state ofH with a short-range restricted Boltzmann machine (here, we
have fixed α = 4 andR = 2). We denote byW (η)

k′k (η = 1, 2, · · · , α,
k′, k = 1, 2, · · · , N ) the coupling strength between the η-th hidden
neuron at site k′ and the visible neuron at sit k. (a) and (b) show the
real and imaginary parts of W (1)

k′k, respectively. They share the same
legend. The parameters specifying H are chosen the same as in Fig.
2(b) in the main text.

that the neglected weight for all the truncations are smaller
than 10−6. We have also examined that the typical variances
σ2 = 〈H2〉−〈H〉2 is smaller than 10−8, verifying that the ob-
tained MPS is indeed an eigenstate ofH (up to a negligible er-
ror rate). In comparing our RBM and DMRG results, we find
that the relative error εrel = |E(RBM)

0 − E(DMRG)
0 |/E(DMRG)

0 ∼
10−3. We mention that the accuracy of the RBM results can be
systematically improved by increasingR and α, or the number
of iterations in the training process. In this work of detecting
many-body nonlocality via RBM, high accuracy is not a major
concern, hence ε ∼ 10−3 is already sufficient for our purpose.

II. BELL INEQUALITIES WITH ALL-TO-ALL
TWO-BODY CORRELATORS

The Bell inequality in Ineq. (3) in the main text has a
permutation symmetry by construction [32]. Thus, its cor-
responding Bell operator will also has a permutation sym-
metry if we choose the same measurement settings for each
party. In this case, it is natural to use a permutation-invariant
RBM to calculate the quantum violations. This greatly re-
duces the number of the variational parameters and the same
quantum violations as given in Ref. [32] can be readily ob-
tained. What might be more interesting is the case in which
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FIG. S3. RBM-learned quantum violations Q(3)
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different party choose different measurement settings. In this
case, the permutation symmetry is violated and it is very chal-
lenging to compute the quantum violations of Ineq. (3). In
the main text, we have considered a scenario where the mea-

surement setting for each party is random. More specifically,
we have chosen the measurement settings to be: M(k)

0 = σz

andM(k)
1 = cos θkσ

z + sin θkσ
x with θk being random rota-

tion angles drawn independently from a uniform distribution
[θ − ε, θ + ε]. Since there is no obvious symmetry for the
corresponding Bell operator and the correlators are all-to-all,
we choose the most general RBM with each hidden neuron
connected to all the visible ones. In plotting Fig. 3(a) in the
main text, we have fixed θ = 2π/3 and ε = 0.1.

III. BELL INEQUALITIES WITH MULTIPARTITE
CORRELATORS

For the Bell inequality (4) in the main text, it is easy to
observe that there is a permutation symmetry between par-
ties indexed from 2 to N . In addition, the considered mea-
surement settings also have this symmetry, and thus so does
the corresponding Bell operator. Taking this into considera-
tion, we choose a RBM with the same symmetry: the RBM
contains M hidden neurons and each of them connects to all
visible neurons, but the baise and weight parameters satisfy
a2 = a3 = · · · = aN and Wk′,1 = Wk′,2 = · · · = Wk′,N

(for k′ = 2, 3, · · · ,M ), respectively. This reduces the num-
ber of parameters from O(MN) to O(M) and significantly
simplified the calculations.

In Fig. S2, we show the RBM-learnedQ(3)
v as a function of

the iteration number for different measurement angle θ. It is
clear from this figure that Q(3)

v converges rapidly to the cor-
responding exact values for different θ. We note that in our
calculations we have chosen the learning rate to be an expo-
nential decaying function of the iteration number, following
Ref. [39]. Thus, at the beginning of the learning process, the
learning rate is large. This explains the large fluctuations at
the beginning of the learning process. As the iteration num-
ber increases, the learning rate becomes small and the curves
become smooth.

In Fig. S3, we plot the RBM-learned quantum violations
Q(3)
v as a function of the measurement angle θ for different

system sizes. We find that the quantum violations are inde-
pendent of N (up to negligible numerical errors).
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