
Ex-post IR Dynamic Auctions with Cost-per-action Payments

Weiran Shen1, Zihe Wang2, Song Zuo1

1 Institute for Interdisciplinary Information Sciences, Tsinghua University
2 Institute for Theoretical Computer Science, Shanghai University of Finance

emersonswr@gmail.com, wang.zihe@mail.shufe.edu.cn, songzuo.z@gmail.com

Abstract
Motivated by online ad auctions, we consider a re-
peated auction between one seller and many buy-
ers, where each buyer only has an estimation of her
value in each period until she actually receives the
item in that period. The seller is allowed to con-
duct a dynamic auction but must guarantee ex-post
individual rationality.
In this paper, we use a structure that we call credit
accounts to enable a general reduction from any in-
centive compatible and ex-ante individual rational
dynamic auction to an approximate incentive com-
patible and ex-post individually rational dynamic
auction with credit accounts. Our reduction obtains
stronger individual rationality guarantees at the cost
of weaker incentive compatibility. Surprisingly, our
reduction works without any common knowledge
assumption. Finally, as a complement to our reduc-
tion, we prove that there is no non-trivial auction
that is exactly incentive compatible and ex-post in-
dividually rational under this setting.

1 Introduction
Internet advertising has been playing a very important role
in the advertising industry. Most online advertising plat-
forms, such as search engines and social media, have gone
through the evolution from the cost-per-mille impressions
(CPM) model to the cost-per-click (CPC) model, where the
former is aligned with traditional advertising while the latter
focuses more on performance. In the CPC model, when a user
requests a certain web page, the platform collects bids from
the advertisers and based on the bids, determines whose ad to
display on the page. The corresponding advertiser is charged
when her advertisement is clicked by the user. Such an adver-
tising model is called the CPC model because the advertiser
only needs to pay when her advertisement is clicked. This
CPC model has been the de facto model for most major online
advertising platforms, and is proven to be profitable [Edelman
et al., 2007]. However, despite its success, this model is crit-
icized to have the click fraud problem, i.e., the competitors
of an advertiser, or even the platform itself, may deliberately
create false clicks to increase the advertiser’s cost or to ex-
tract more revenue. Furthermore, the advertisers have to pay

for clicks that do not lead to final purchase of their products.
Although one may argue that in expectation the advertisers
are indeed profitable, it may still be a serious problem for
small companies that cannot ignore such risks.

A relatively new model that has gained much research
attention recently is the cost-per-action (CPA) advertising
model. In contrast to the CPC model, the CPA model is even
more performance-oriented and focuses directly on user ac-
tions. In the CPA model, the advertisers are only charged
when the users make certain actions, such as purchases or
transactions. It seems that the CPA model and the CPC model
are almost the same except for the payment. However, this ad-
vertising model clears the uncertainty faced by the advertiser
and can potentially decrease the vulnerability to click fraud.
Besides these advantages, the CPA model also gives more
incentives to the platforms to deliver high-quality impres-
sions to the users. In 2007, the CPA model was described as
the “Holy Grail” of targeted advertising by Google [Spencer,
2007]. Currently, many online advertising platforms, includ-
ing Google, eBay, Amazon, Facebook, Baidu and WeChat
have already started to test the CPA model.

Another essential difference between these two models is
that the platform cannot directly observe the users’ actions on
the advertisers’ websites whereas the users’ clicks are observ-
able by both the platform and the advertiser. Such an undesir-
able property may cause the advertisers to hide the users’ ac-
tions to avoid payments. This also poses challenges in putting
the CPA model in practice to replace the CPC model that is
currently dominant in the advertising industry.

This paper is directly motivated by the above challenge.
In this paper, we aim to tackle the incentive problem and
present a new reduction framework that we call the credit
account mechanism. Our mechanism solves the incentive is-
sue by adding a credit account for each advertiser on top of
the original mechanism that follows the “allocate-report-pay”
scheme. In our mechanism, the advertisers are given a cer-
tain amount of “credit quota” and an advertiser cannot win
the auction if her credit runs out of her “quota”. When an
impression is allocated, the winner observes her value and re-
ports to the platform. Our mechanism then charges her by
some modified payment based on the original mechanism.
The payment is chosen such that it never exceeds the bidder’s
reported value so that ex-post individual rationality is guaran-
teed. In the meanwhile, the winner’s credit balance is updated

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

505



according to the difference between her actual payment and
her expected payment in the original mechanism.

Intuitively, the credit account tracks the difference between
one’s actual payments and expected payments. An honest
advertiser only has a negligible chance of consuming all her
credit, while an advertiser shading her reports will quickly
run out of credit and will be blocked in future auctions.

Our contributions Firstly, we formalize the credit ac-
counts framework.1 As for incentive compatibility (IC) and
individual rationality (IR) properties, our framework can re-
duce any IC and ex-ante IR mechanism to a credit account
mechanism that gives the same allocation rule as the original
mechanism with high probability (Theorem 4.1) and guaran-
tees approximate IC (see Definition 3.3) and ex-post IR (see
Definition 2.4). We emphasize that the notion of approximate
IC serves the motivating example of online advertising, since
the benefit of deviation on average is vanishingly small as the
number of periods grows (Theorem 4.2).

Such a reduction then naturally induces a trade-off between
the strength of truthfulness and the probability of desired im-
plementation (see Section 4). In particular, it also applies to
second price auctions (Proposition 4.3).

Finally, as a complement to the constructed credit account
mechanisms, we show that the exact IC and the ex-post IR
cannot be achieved simultaneously, unless the mechanism is
trivial (Theorem 5.1). In this sense, credit account mecha-
nisms have achieved the strongest properties we can hope for.

1.1 Related Works
Ever since Myerson’s seminal paper on designing revenue
optimal auctions [Myerson, 1981], there have been inten-
sive researches on analyzing and designing one-shot auction
mechanisms. For example, Edelman et al. [2007] and Var-
ian [2007] study the performance of the generalized second
price auction (GSP). Hartline and Roughgarden [2009], Shen
and Tang [2017] and Bachrach et al. [2014] provide mecha-
nisms that can tradeoff among different objectives. There is
also a rich literature on multi-item auctions [Cai et al., 2012;
Daskalakis et al., 2013; Wang and Tang, 2014; Yao, 2014;
Tang and Wang, 2017; Yao, 2017], and on repeated auc-
tions motivated by online advertising [Amin et al., 2013;
Amin et al., 2014; Kanoria and Nazerzadeh, 2014; Balseiro
et al., 2017; Epasto et al., 2018; Tang and Zeng, 2018].

A closely related line of work is dynamic mechanism de-
sign (see Bergemann and Välimäki [2017] for a comprehen-
sive survey). Our mechanism is also related to works on auc-
tions with unknown types, for example the “common value”
literature [Klemperer, 1998; Bergemann and Morris, 2013].

There is also a series of works that focus on designing
mechanisms with the CPA advertising model. Nazerzadeh et
al. [2013] study the setting where the advertisers’ value may
evolve over time. They present a mechanism that satisfies
asymptotic IR and asymptotic IC. However, their mechanism
does not exactly fall into the CPA advertising model, since

1In fact, we are not the first to use the idea of credit accounts in
mechanism design. Similar reputation based structures are used for
other settings [Liu et al., 2014; Hajaj et al., 2015].

the winner still needs to pay even if the user does not click
on her ad. Hu et al. [2015] compare the CPC model and the
CPA model. Their results show that the CPA model is bet-
ter in incentivizing the platform to improve the purchase rate,
but suffers from the adverse selection problem. Agarwal et al.
[2009] consider a similar setting where the advertisers report
both the predefined actions and the action probabilities. They
show that at equilibrium, the advertisers may report skewed
bids. However, their results only hold in one-shot games.

Our mechanism also borrows some highlevel ideas from
the “bank account” mechanism, where the seller maintains a
“bank account” for each buyer during the dynamic auction
[Mirrokni et al., 2016a; Mirrokni et al., 2016b; Mirrokni et
al., 2018a; Mirrokni et al., 2018b]. Although with similar
names, the “credit account” in this paper is fundamentally dif-
ferent: (i) the bank account mechanisms are designed under
the common knowledge assumption to ensure dynamic IC,
while the credit account mechanism guarantees approximate
dynamic IC without any common knowledge assumption; (ii)
the “balance” in bank accounts can be thought of as money,
where the buyers might pay their bank account balance, while
the “credit” in the credit accounts is more like a reliability
measure of the buyers based on their past behaviors.

2 Preliminaries and Setup
Setup We study the problem of cost-per-action mechanism
design in the environment with one seller and multiple buy-
ers. In particular, we will focus on the setting with repeated
sales, that is, in each period t ∈ [T ], the seller has a new item
to sell to the buyers. If not sold, the item is then destroyed.
Throughout this paper, we consider the finite horizon case
without discount factor, hence T <∞.2

Similar to the standard setting, in each period, what the
seller does is to allocate the item to one (or none) of the buyers
and charge the buyers some amount of money as payments.
Formally, we use xit ∈ [0, 1] to denote the probability of buyer
i ∈ [n] receiving the item of period t and pit ∈ R to denote
the payment from buyer i to the seller in period t.

The main difference between our setup and the standard
setting is how the buyers value the received items:

• In the standard setting, there is a private value vit of buyer
i receiving the t-th item, only known to buyer i;3

• In our setup, each buyer is uncertain about her exact
value for the item until she actually receives it.

Formally, an estimation of buyer i for the t-th item is a pri-
vate distribution F it of her possible exact values and her exact
value vit ∈ [0, v̄] is realized only after receiving the item.4
In particular, vit ∼ F it and we assume that each vt (i.e., the
vector of v1

t , . . . , v
n
t ) is sampled from the joint distributionFt

2Note that the extension to infinite horizon case with discount
factor is straightforward.

3In Bayesian settings, the other agents (including the seller and
the buyers other than i) might only have a common knowledge of
the distribution of vit.

4v̄ is just a finite upper bound on the buyer’s value and does not
restrict the bid of the buyers (see Mechanism 2.1).
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but independently over time. Hence F it is a marginal distribu-
tion of Ft for buyer i. We also allow each F it to be different
across both the buyers and periods.

Although such a setup is quite different from the canonical
auction setting, it does help us to capture the nature of on-
line advertising. In online advertising, there are two types of
ads, brand based ads and performance based ads. For the first
type of ads, the advertisers acquire value whenever the ads are
shown to a user, while for the second type of ads, the adver-
tisers acquire value from some specific user actions on their
websites (e.g., buying some goods or services, subscribing to
the website, etc.). In other words, for the second type of ads,
the advertiser only has an estimation for her value of an im-
pression (or a click) to a user, while her exact value depends
on the actual actions taken by the user.

Under such a setup, we assume that both estimation F it
and the exact value vit are private information of buyer i.
Although in general, the estimation could rely on both the
seller’s private information, such as the characteristics of the
user, and the buyer’s private information, such as the prior
knowledge of certain users’ behaviors. However, such an in-
formation structure is not the main focus of this paper. Hence,
to make the model clean, we assume that the estimation F it is
private information of buyer i. With such a simplification, we
can ensure a more robust incentive guarantee for the buyers.
In fact, ours results also easily extend to the general settings.

Throughout this paper, we focus on “direct mechanisms”,
where the seller requires the buyers to report all their private
information and determine the allocation of the item and the
payments from the buyers. Although in general, reporting the
entire estimation F it is required, for most practical mecha-
nisms, reporting the expected value E[F it ] would suffice.

The following abstract auction outlines the common struc-
ture of a direct mechanism under this setup:

Mechanism 2.1 (Abstract direct mechanism). For each
period t ∈ [T ]:

1. Each buyer has a private estimation F it for the t-th
item and reports an estimation F̂ it to the seller;

2. The seller determines the allocation xt ∈ [0, 1]n

of the t-th item based on the reported estimations
F̂ t and all the historical reports, i.e., F̂ 1..t−1 :=

F̂ 1, . . . , F̂ t−1 and v̂1..t−1 := v̂1, . . . , v̂t−1;
3. The winner j receives the item, realizes her exact

value vjt ∼ F
j
t , and reports v̂jt ∈ R+ to the seller;

4. The seller determines the payment pt based on the
reported estimations and values from the current
and past periods, i.e., F̂ 1..t, v̂1..t.

Since only the winner reported her exact value in each pe-
riod, hence vt (or v̂t) is a vector consists of one vjtt (or v̂jtt )
and n− 1 empty elements ⊥:

vt = ⊥, . . . , vjtt , . . . ,⊥ v̂t = ⊥, . . . , v̂jtt , . . . ,⊥,
where jt is the index of the winner in period t.5 In addition,

5If there is no winner in period t, then vt = v̂t = ⊥, . . . ,⊥.

we will adopt the short notation a1..t for a1, . . . , at through-
out this paper.

In such a direct mechanism, in each period t, each buyer
acquires a quasi-linear utility uit:
uit(F̂ 1..t, v̂1..t; v

i
t) = vit · xit(F̂ 1..t, v̂1..t−1)− pit(F̂ 1..t, v̂1..t).

Her cumulative utility is the sum of her utility in each period:
U i(F̂ 1..T , v̂1..T ; vi1..T ) =

∑
t∈[T ] u

i
t(F̂ 1..t, v̂1..t; v

i
t).

Finally, the revenue of the seller, REV, is the cumulative
payments collected from the buyers, and the social welfare,
WEL, is the sum of REV and all the cumulative buyer utilities:

REV =
∑
t∈[T ]

∑
i∈[n] p

i
t

WEL = REV +
∑
i∈[n] U

i =
∑
t∈[T ]

∑
i∈[n] v

i
t · xit.

We assume the buyers are risk-neutral and self-interested,
hence the best strategy of each buyer i must maximize her
cumulative utility U i. For the seller we do not fix any specific
goal now, since we mainly focus on the implementability.

A direct mechanism is truthful or incentive compatible, if
in each period t, reporting F̂ it = F it and v̂it = vit (if she won
the item) is the dominant strategy of buyer i, regardless of the
strategies of others and all historical bids. In this paper, we
focus on dominant-strategy incentive compatibility because
we do not make any common knowledge assumptions.

Let 〈F̂ 1..t, v̂1..t〉 be any reporting profile, and 〈F̂
∗iτ
1..t, v̂

∗iτ
1..t〉

be the reporting profile where buyer i reports truthfully in
periods τ, . . . , t, while the other entries remain the same:

F̂
∗iτ
1..t = F̂ 1..τ−1, F̂

−i
τ..t, F

i
τ..t v̂∗iτ1..t = v̂1..τ−1, v̂

−i
τ..t, v

i
τ..t,

where superscript −i indicates the quantities for all buyers
other than i.

To make the definition compact, we define the following
notations. Let Iit be the expected utility of buyer i reporting
truthfully since the first step of period t with arbitrary fixed
historical reports and reports by other buyers:

Iit = Evit..T∼F i
t..T

[
U i(F̂

∗it
1..T , v̂

∗it
1..T ; vi1..T )

]
.

Let IIit be the similar utility of buyer i, except that she reports
truthfully since the second step of period twhile her report for
the first step is fixed:

IIit = Evit..T∼F i
t..T

[
U i(F̂

∗i,t+1

1..T , v̂∗it1..T ; vi1..T )
]
.

Let I′it and II′it be the expected utility for buyer imisreporting
solely in the first step and the second step of period t:

I′it = Evit+1..T∼F i
t+1..T

[
U i(F̂

∗i,t+1

1..T , v̂∗it1..T ; vi1..T )
]

;

II′it = Evit+1..T∼F i
t+1..T

[
U i(F̂

∗i,t+1

1..T , v̂∗i,t+1
1..T ; vi1..T )

]
.

Formally, we have the following definition:

Definition 2.2 ((Dynamic) Dominant-Strategy Incentive
Compatible). A direct mechanism is dominant-strategy in-
centive compatible, if truthfully reporting is the best strategy
for each buyer i in each period t (both before and after the
allocation of the item):

∀i, t, F̂ 1..T , v̂1..T , F
i
1..T , v

i
1..t−1, Iit ≥ I′it;

∀i, t, F̂ 1..T , v̂1..T , F
i
1..T , v

i
1..t, IIit ≥ II′it.

(DIC)

Besides the incentive compatibility, another important
guarantee is individual rationality, which means that the util-
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ity of each buyer must be non-negative. Formally,
Definition 2.3 (Ex-ante Individually Rational). A direct
mechanism is ex-ante individually rational, if each buyer’s
expected utility in each period t is non-negative, ∀F̂

∗it
1..t, v̂1..t:

Evit∼F i
t

[
uit(F̂

∗it
1..t, v̂

∗it
1..t; v

i
t)
]
≥ 0. (EX-ANTE IR)

Ex-post individual rationality is a stronger condition in the
sense that the utility of each buyer in each period must be
non-negative without taking expectation over vit:
Definition 2.4 (Ex-post Individual Rational). A direct mecha-
nism is ex-post individual rational, if the utility of each buyer
i is non-negative in each period t for any vit:

∀i, t, F̂
∗it
1..t, v̂

∗it
1..t, uit(F̂

∗it
1..t, v̂

∗it
1..t; v

i
t) ≥ 0. (EX-POST IR)

3 Mechanisms
In this section, we present our first main result, the credit ac-
count mechanism, which is a general reduction framework
that reduces any (DIC) and (EX-ANTE IR) mechanism to an
mechanism that achieves approximate incentive compatibil-
ity (to be defined later) and (EX-POST IR). In particular, as
we will show in the next section, the new mechanism imple-
ments the same allocation rule as the original one with high
probability when the buyers report truthfully.

3.1 An Efficient Auction with Ex-ante IR
Let’s start with a simple auction that maximizes the social
welfare WEL and satisfies (DIC) and (EX-ANTE IR). Then
we show how we can strengthen the IR from (EX-ANTE IR)
to (EX-POST IR) with a tolerable loss in the guarantee of IC.

The following auction in each period is in fact a second
price auction with E[F̂ it ] as each buyer’s bid. Note that the
payment pit is independent of her reported exact value v̂it, so
the mechanism satisfies (DIC). On the other hand, since only
the winner is charged and for each winner, Evit∼F i

t

[
uit
]

= xit ·
(bit − b

(2)
t ) ≥ 0, the mechanism also satisfies (EX-ANTE IR).

However, in general, it does not satisfy (EX-POST IR) since if
buyer j wins in period t and vjt = 0, ujt = −b(2)

t is negative.

Mechanism 3.1 (Ex-ante IR Auction). In each period t:

1. Ask each buyer to report F̂ it and define her bid as
bit = E[F̂ it ] := Ev∼F̂ i

t
[v], or equivalently, ask each

buyer to report such bit directly.

2. Allocate the item to the buyer with the highest bid,
break ties arbitrarily:

xit =

 1 ∀j 6= i, bit > bjt
0 ∃j 6= i, bit < bjt
by the tie-breaking rule otherwise

3. Ignore the winner i’s exact value and simply charge
her the second highest bid: pit = xit · b

(2)
t , where

b
(2)
t = maxj 6=i b

j
t is the second highest bid.

Lemma 3.2. Mechanism 3.1 maximizes the social welfare
and is (DIC) and (EX-ANTE IR), but not (EX-POST IR).

3.2 The Credit Account Mechanism
We now present the credit account mechanism. As we men-
tioned previously, it reduces a mechanism M to another
mechanism M̃ that is approximate incentive compatible (see
Definition 3.3 below) and ex-post individually rational.

Definition 3.3. A direct mechanism is ε-approximate incen-
tive compatible, if for each buyer i, no strategy could outper-
form truthfully reporting by a margin larger than ε:
∀F i1..T ,vi1..T , F̂ 1..T , v̂1..T ,U i ≥ U i′ − ε, (APPROX IC)

where U i = E[U i(F i1..T , F̂
−i
1..T , v

i
1..T , v̂

−i
1..T ; vi1..T )] and

U i′ = E[U i(F̂ 1..T , v̂1..T ; vi1..T )] are buyer i’s expected util-
ity for truth-telling and any given strategy, respectively.

Credit account mechanisms To enforce the ex-post IR
constraint, the major challenge is that the winner is incen-
tivized to report her exact value as 0, because her payment
will be restricted to 0 by (EX-POST IR). In other words, if
the strict IC is also enforced, the payment must be always 0
and cannot implement general allocation rules.

The credit account mechanism circumvents the contradic-
tion by slightly relaxing the IC constraint as well as tolerating
a small probability that the allocation of the resulting mecha-
nism M̃ is different from the originalM.

The core concept of the reduction framework, is a credit
account for each buyer. Intuitively, each credit account main-
tains the “reliability” of the corresponding buyer, i.e., it tracks
the difference between the total price the buyer should pay
under the rule of the original mechanism M and the price
she actually paid so far in the resulting mechanism M̃. Since
the draws of each vit ∼ F it are independent over time, by
the law of large numbers, the magnitude of the credit account
balance grows at the order of

√
t with high probability.

Based on the observation, there are two major changes in
the resulting mechanism comparing with the original:

• The payment rule is modified in the way such that i) it
never exceeds the reported exact value v̂it and ii) its ex-
pectation equals the payment rule of the original mech-
anism if the buyer reports her exact value truthfully;
• A gradually growing credit quota, qt, is set for the buy-

ers. Once a buyer’s credit balance exceed the quota, she
will be labeled as “unreliable” and the item won’t be
allocated when she wins. Hence her overall benefit of
misreporting is essentially bounded by the quota.

Formally, the credit account mechanism M̃ = 〈x̃, p̃〉 for
any givenM = 〈x,p〉 is defined as follows:

Mechanism 3.4 (Credit Account Mechanism). Initially,
let the credit account of each buyer be ci1 = 0 and qt be
the quota at period t all buyers.

For each period t:

1. Ask each buyer i to report F̂ it and define αit as:6

αit = min{cit + qt,E[F̂ it ]}/E[F̂ it ]; (1)
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2. Allocate the item according to
x̃it(ct, F̂ t) = αit · xit(F̂ 1..t, v̂1..t−1); (2)

3. Winner j reports her exact value v̂jt and pays

p̃jt (ct, F̂ t, v̂t) =
αj

t ·v̂
j
t

E[F̂ j
t ]
· p̄jt , (3)

where p̄jt is her expected payment under the original
mechanismM with value v′ sampled from F̂ jt :7

p̄jt = Ev′∼F̂ j
t
[pjt (F̂ 1..t, v̂1..t−1, v̂

−j
t , v′)]; (4)

4. Increase the credit account of the winner by her
payment and reduce the credit account of the win-
ner by pjt , i.e.,

cjt+1 = cjt + p̃jt − α
j
t · p̄

j
t ; (5)

5. For all other (not winning) buyers, charge them
nothing and keep their credit accounts unchanged:
∀i 6= j, p̃it(ct, F̂ t, v̂t) = 0, cit+1 = cit. (6)

4 Truthfulness vs Efficiency
With the general reduction, we can construct a dynamic cost-
per-action auction that is approximate efficient, achieving at
least (1 − δ) fraction of the maximum social welfare, and
approximate IC with ε = 2qT + v̄ (see Proposition 4.3).

In this section, we present the second main result of this
paper, which is how the qt determines the trade-off between
implementation tolerance δ and the truthfulness tolerance ε.

To establish such a trade-off, we prove some even stronger
properties of the credit account mechanisms with any general
M satisfying (DIC) and (EX-ANTE IR). Intuitively:

• Implementation: The resulting credit account mecha-
nism M̃ implements the same allocation rule asM with
high probability 1− δ (Theorem 4.1);
• Truthfulness: The resulting credit account mechanism
M̃ is ε-APPROX IC and EX-POST IR (Theorem 4.2).

The trade-off between the failure probability δ and the ap-
proximate IC ε is roughly as follows:

ε ≤ 4v̄
√
t(ln t+ lnn+ ln δ−1).

We remark that having ε sub-linear in t is especially meaning-
ful for the application of online advertising, where the value
in each period v̄ is typically small, whereas T is quite large.

Formally, we have the following two theorems, whose
proofs are deferred to Section 4.1:

Theorem 4.1. For any DIC and EX-ANTE IR mechanism
M, there exists an equivalent credit account mechanism M̃,
such that when all buyers report truthfully, for all possible
F 1..T and v1..T ∼ F 1..T , the allocation x̃1..T are the same
as inM with high probability (1− δ), where the quota qt ≤
2v̄
√
t(ln t+ lnn+ ln δ−1).

6αi
t is set in the way that ensures the buyer i’s credit balance

never exceeds the quota in the worst case.
7Note that v′ is not the private value realized by the winner j. It

is just sampled from her reported estimation F̂ j
t .

Theorem 4.2. For any DIC and EX-ANTE IR mechanism
M, the corresponding credit account mechanism M̃ defined
according to Mechanism 3.4 satisfies both (APPROX IC) and
(EX-POST IR), with ε ≤ 2qT + v̄ = Õ(

√
T ) sub-linear in T .

Taking Mechanism 3.1 asM, we get a direct consequence:

Proposition 4.3. LetM be Mechanism 3.1, then the corre-
sponding credit account mechanism M̃ is APPROX IC with
ε = 2qT + v̄ = Õ(

√
T ) and EX-POST IR. Meanwhile, under

truthful reporting, M̃ can achieve at least (1− δ) fraction of
the maximum social welfare, where δ can be as small as any
polynomial of 1/T , i.e., Ω(T−k) for any constant k.

In particular, in each period, each buyer only needs to re-
port her expected value E[F̂ it ] (instead of her full estimation)
and the winner also needs to report her realized value v̂it.

4.1 Formal Proofs
Proof of Theorem 4.1. According to the construction of
Mechanism 3.4, the allocation of the constructed M̃ is al-
most the same as in M. In particular, if ∀i, t, αit = 1, the
allocations, x1..T and x̃1..T , will be exactly the same. In the
rest of the proof, we show it holds with high probability:

Pr[∀i, t, αit = 1] ≥ 1− δ. (�)
Note that αit < 1 only if cit + qt ≤ E[F it ] ≤ v̄, hence

Pr[∀i, t, αit = 1] ≥ Pr[∀i, t, cit ≥ v̄ − qt]. According to
the construction of M̃, for any i, {cit}Tt=1 is a martingale. To
prove this, it suffices to show E[cit+1|cit] = cit:

If buyer i is not the winner in period t, then cit+1 = cit.
Otherwise, buyer i is the winner and by the construction (5),
E[cit+1|cit] = E[cit + p̃it − αit · p̄it|cit] = cit + E[p̃it − αit · p̄it|cit].

According to the construction (3), for any fixed F it ,

E[p̃it|cit, F it ] = E
[
αi

t·v
i
t

E[F i
t ]
· p̄it
∣∣cit, F it ]

= αit ·
E
vi
t∼Fi

t
[vit]

E[F i
t ]
· E[p̄it|cit, F it ] = αit · p̄it,

where the second equality is from the independence between
vit and the randomness of p̄it and the last equality is from the
construction (4) (p̄it is fixed once cit and F it are given).

Hence E[p̃it−αit·p̄it|cit] = 0 and E[cit+1|cit] = cit, so {cit}Tt=1

is a martingale. Note that |cit+1−cit| ≤ v̄, then by the Azuma-
Hoeffding inequality,

Pr[cit − ci0 < v̄ − qt] ≤ exp(− (v̄−qt)2
2tv̄2 ).

By qt = v̄+ v̄
√

2t ·
√

2 ln t+ lnn+ 2 lnπ − ln 6 + ln δ−1 =
Õ(
√
t) and the union bound, we conclude that8

Pr[∃i, t, cit < v̄ − qt] ≤
∑
i∈[n],t∈[T ] Pr[cit − ci0 < v̄ − qt]

≤n
∑
t∈[T ]

6
π2 · δ

nt2 ≤ δ ·
6
π2

∑∞
t=1

1
t2 = δ.

Therefore, we complete the proof of (�): Pr[∀i, t, αit =
1] ≥ 1− Pr[∃i, t, cit < v̄ − qt] ≥ 1− δ

Proof of Theorem 4.2. EX-POST IR:
We first prove that M̃ is (EX-POST IR). Note that the orig-

inal mechanism M is (EX-ANTE IR), thus we have for the

8The famous Basel problem is used here: 1/12 + 1/22 + · · · +
1/n2 + · · · = π2/6. The problem is first solved by Euler in 1734.
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winner j in period t
p̄jt = Evjt [pjt (F̂ 1..t, v̂1..t−1, v̂

−j
t , vjt )]

≤Evjt [vjt · x
j
t (F̂ 1..t, v̂1..t−1)] ≤ E[F jt ] · xjt (F̂ 1..t, v̂1..t−1).

Then by construction (3), p̃jt =
αj

t ·v̂
j
t

E[F j
t ]
· p̄jt ≤ α

j
t ·x

j
t · v̂

j
t = v̂jt ·

x̃jt =⇒ (EX-POST IR) In particular, for i 6= j, the payment
p̃it = 0 by construction (6), hence (EX-POST IR) holds.

APPROX IC:
Next, we prove that M̃ is (APPROX IC). We first upper

bound one’s expected cumulative utility under M̃.
One key observation is that in Mechanism 3.4, for each

buyer i and any fixed F̂
−i
1..T , v̂

−i
1..T , F

i
1..T , even if buyer i is

using the best strategy in M̃, her expected cumulative util-
ity E[Ũ i∗] under the credit account mechanism M̃ cannot be
much larger than E[U i∗] under the original mechanism M
while using the same strategy. Formally,

E[Ũ i∗] ≤ E[U i∗] + qT . (?)
To show this, note that by the construction (5) and (6), the

cumulative payments under M̃ of each buyer should be close
to her expected cumulative payments underM:∑

t∈[T ] p̃
i
t = ciT+1 +

∑
t∈[T ] α

i
t · p̄it.

In the meanwhile, the credit account mechanism, in fact,
guarantees that cit+1 + qt ≥ 0. Because according to (5),
cit+1 = cit + p̃it−αit · p̄it ≥ cit−αit ·E[F̂ it ] ≥ cit− (cit + qt) =

−qt where the last inequality is from (1) that αit · E[F̂ it ] =

min{cit + qt,E[F̂ it ]}. Therefore, we have∑
t∈[T ] p̃

i
t = ciT+1 +

∑
t∈[T ] α

i
t · p̄it ≥ −qT +

∑
t∈[T ] α

i
t · p̄it.

Then E[Ũ i∗] under M̃ can be bounded:

E[Ũ i∗] =E
[∑

t∈[T ] v
i
t · x̃it − p̃it

]
≤E

[∑
t∈[T ] α

i
t · vit · xit − αit · p̄it

]
+ qT

=
∑
t∈[T ] E

[
αit(v

i
t · xit − p̄it)

]
+ qT

=
∑
t∈[T ] E

[
αit Evit [v

i
t · xit − p̄it]

]
+ qT ,

where the last equation is because αit, x
i
t, and p̄it are all in-

dependent of vit. In particular, since M is EX-ANTE IR,
Evit [v

i
t · xit − p̄it] ≥ 0. Combining with αit ≤ 1, we have

E[Ũ i∗] ≤
∑
t∈[T ] E[vit · xit − p̄it] + qT = E[U i∗] + qT =⇒ (?).

On the other hand, since M is dominant-strategy IC, by
(DIC), we know that E[U i∗] cannot be more than the utility of
truthfully reporting E[U i], hence

E[Ũ i∗] ≤ E[U i∗] + qT ≤ E[U i] + qT . (??)
We then provide a lower bound on one’s expected cumula-

tive utility in M̃ when reporting truthfully, denoted as E[Ũ i].
According to the proof of Theorem 4.1, we know that with

high probability the credit cit is always close to zero, i.e.,
Pr[∀t, cit + qt ≥ 0 and ciT+1 ≤ qT ] ≥ 1− δ.

In this case, ∀t ∈ [T ], αit = 1 and hence buyer i’s alloca-
tions are identical with truthfully reporting under the original
mechanismM, x̃i1..T = xi1..T . Again, by (5) and (6),∑

t∈[T ] p̃
i
t = ciT+1 +

∑
t∈[T ] p̄

i
t ≤ qT +

∑
t∈[T ] p̄

i
t,

where the last inequality is implied by αiT = 1.
Hence, in this case,

E[Ũ i] =E
[∑

t∈[T ] v
i
t · x̃it − p̃it

]
= E

[∑
t∈[T ] v

i
t · xit − p̃it

]
≥E

[∑
t∈[T ] v

i
t · xit − p̄it

]
− qT = E[U i]− qT .

Otherwise, if ∃t ∈ [T ] such that αit < 1 or ciT+1 > qT ,
since M̃ is ex-post individual rational, by (EX-POST IR),
buyer i’s cumulative utility must be non-negative.

Combining the cases above, we conclude that
E[Ũ i] ≥ (1− δ)(E[U i]− qT )

=⇒ E[Ũ i] ≥ E[U i]−
(

δ
1−δ E[Ũ i] + (1− δ)qT

)
.

Applying the upper bound (??),

E[Ũ i] ≥ E[Ũ i∗]−
(

δ
1−δ E[Ũ i] + (2− δ)qT

)
.

By choosing δ = 1/(T + 1), qT is still in Õ(
√
T ), and

δ/(1− δ) = 1/T . Since E[Ũ i] ≤ T v̄, we have
E[Ũ i] ≥ E[Ũ i∗]− (2qT + v̄).

Therefore, the credit account mechanism M̃ is approxi-
mately truthful with ε = 2qT + v̄ = Õ(

√
T ).

5 Impossibility Result
As a complement to the constructed APPROX IC and EX-
POST IR credit account mechanism, the third main result
shows that DIC and EX-POST IR cannot be achieved simul-
taneously, unless the mechanism is trivial, i.e., the allocation
and payment are constant functions.
Theorem 5.1. No non-trivial mechanism that achieves
dominant-strategy incentive compatibility (DIC) and ex-post
individual rationality (EX-POST IR) at the same time.

Proof. To satisfy (DIC), reporting truthfully must be the best
action of a buyer for any realization of F 1..T and v1..t.

LetM be any EX-POST IR mechanism. Consider any pe-
riod t. Suppose i is the winner in period t. For any t′ ∈ (t, T ],
let F it′ be the distribution that vit = 0 with probability 1, while
other buyers have positive expected values.

Therefore, buyer i has no incentive to win after period t.
So buyer i’s best action is always to report 0 after getting the
item in period t, which results in 0 payment.

Thus, in order forM to be DIC,M must charge the win-
ner 0 at period t. Otherwise the above realization of F it′ be-
comes a counter-example. Since t is any period, it follows
thatM charges the winner 0 in every period. So any mecha-
nism that satisfies the two properties simultaneously must be
a trivial mechanism.
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[Bergemann and Välimäki, 2017] Dirk Bergemann and Ju-
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