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Abstract

We explore various strategies for simulating large quantum circuits on a classical computer that has
access to a small quantum device. By representing the circuit as a tensor network, we can cut it into
smaller parts that can be executed independently by contracting each of the smaller tensor networks.
Assuming a partition with not too many edges between different parts can be found, we provide efficient
algorithms for simulating such circuits. While in general the simulation cost scales exponentially in the
total number of edges between different parts, the size of the quantum memory required scales only
linearly in the degree of each part.
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1 Introduction

While the first small-scale general purpose quantum computers are already available [IBM, BSL+16] and
can perform non-trivial tasks such as factoring small numbers [MNM+16], it remains a major experimental
challenge to scale these devices up to the point where classical simulation would no longer be feasible. This
is not only an important technological challenge but also a fundamental problem that could benefit from
theoretical insights. Precisely, we ask

How can we (efficiently) simulate large-scale quantum machines, with limited quantum resources,
such as small-scale (in time or space) quantum machines, and classical computational resources?

We hope that in addition to experimental advancement, a theoretical solution to this problem would help
bring large-scale quantum computation closer to reality. Several existing theoretical studies can be deemed
as efforts towards this end. The first one is circuit optimization. Devising efficient ways of compiling high-
level quantum algorithms down to actual quantum gates can provide significant savings in terms of quantum
memory and time. Another approach is devising hybrid quantum models that rely on classical resources,
such as classical post-processing or adaptive interaction with a classical machine (e.g., measurement-based
quantum computing). An extreme form of classical assistance is full classical simulation where the entire
computation is carried out on a classical computer.

We are inspired by [BSS16] which explores how an (n+ k)-qubit quantum computation can be simulated
on an n-qubit machine, with the remaining k qubits provided “virtually” through a classical simulation. We
propose an alternative approach to this problem based on tensor network formalism to describe quantum cir-
cuits. This leads naturally to a decomposition-combination strategy: we decompose the given large quantum
circuit into smaller pieces that can be simulated independently on a much smaller device; we then combine
the simulation results using classical post-processing.

1.1 Tensor network approach

It is natural to represent quantum circuits by tensor networks—graphs with vertices carrying small-order
tensors of quantum gates and edges referring to qubit wires and indicating which indices of the two adja-
cent tensors must be contracted. This alternative perspective of quantum circuits has been very fruitful for
discovering both new quantum [AAEL07, FKW02, FLW02, AJL09, AL10] and classical algorithms [Vid03,
Joz06, MS08] for simulating quantum circuits and many-body quantum systems [Vid04, SDV06, Vid08]. Ten-
sor network formalism also has close connections with matrix product states, measurement-based quantum
computation [GE07, GESPG07], and the study of multi-partite entanglement [PGVWC07, VMC08].

Tensor networks are also the natural mathematical object for studying the decomposition of large circuits,
since viewing a large circuit as a graph naturally leads to the idea of cutting it into smaller pieces, each of
which can be executed separately on a much smaller device. More importantly, tensor networks blend the
two core features of quantum circuits, the unitarity of the gates and the notion of the time (i.e., that gates
are applied in some order). In particular, there could be no particular temporal order in a tensor network.
Comparing to merely splitting the qubit space in [BSS16], decompositions on tensor networks in some sense
allow us to split both the space and the time in a much more flexible manner. The most non-trivial part of
such approach is piecing together the simulation results, which is our main technical contribution.

To illustrate the flexibility of the tensor network approach, let us elaborate on a particularly interesting
feature. While gates in a quantum circuit have a very rigid time-ordering, this in general is not a case
for the corresponding tensor network. Indeed, a tensor network is evaluated by contracting indices, which
can typically be done in many different ways (e.g., see the notion of “bubbling” introduced in [AL10]).
This feature is particularly striking when the quantum circuit is compiled using a specially chosen universal
gate set which does not require treating specific wires as inputs and specific wires as outputs, since any
combination results in a unitary gate (see Appendix A). In such case, the tensor network does not have a
specific temporal order and hence can be evaluated in a multitude of ways. Given the ability to apply gates
in parallel, some choices of the ordering can thus lead to shorter gate sequences than others. An example of
this phenomenon is illustrated in Fig. 1: while the original circuit might require executing the gates from left
to right, in the tensor network framework we can instead proceed from top to bottom and still maintain the
unitarity of each gate. While both execution orders would require the same amount of quantum memory,
executing the circuit from top to bottom clearly is more advantageous in terms of the required time.
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Figure 1: A qutrit tensor network on a 2D grid. Each white node is a random qutrit gate (order-2 tensor)
while each black node is the two-qutrit gate (order-4 tensor) Ω defined in Eq. (A.3) (see Appendix A).
Because of the properties of Ω, this circuit does not have a specific temporal order and thus can be simulated
in many different ways. In particular, executing it from top to bottom takes less time-steps than when
executing form left to right, since more two-qutrit gates can be executed in parallel.
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Figure 2: An illustration of our parameters. T = 3, represented in red. The undirected degrees of partitions
are: d(S1) = d(S3) = 1, d(S2) = 0 while directed degrees are: ~d(S1) = ~d(S2) = ~d(S3) = 2, which include also

the free edges (blue). If P = {S1, S2, S3}, the maximal directed degree ~d(P) is the maximum of ~d(Si) and

hence equals to 2. The maximal total degree d∗(P) is the maximum of ~d(Si) + d(Si) and hence equals to 3.

1.2 Simulation model

Informally, tensors are multilinear generalizations of vectors and matrices (they are order-1 and -2 tensors,
respectively). An order-k tensor A has k indices, so its entries Ai1,...,ik can be encoded as amplitudes of a
quantum state: |A〉 :=

∑
i1,...,ik∈{0,1}Ai1,...,ik |i1, . . . , ik〉 (called quantum encoding, see Definition 2.15). A

tensor network is a collection of tensors, together with a graph representing their connections. The value
of a tensor network is the tensor obtained by contracting all pairs of indices corresponding to edges. For
example, the probability of a quantum circuit with a given input to produce a given output is equal to the
value of the tensor network representing the circuit.

Tensor network of quantum circuits. More specifically, we consider quantum circuits consisting of
only 1-qubit and 2-qubit gates. We represent 1-qubit gates by nodes and 2-qubit gates by a pair of nodes,
connected by an undirected edge, and we use directed edges to represent the flow of information from one
gate to another (final output is free directed edge). All 1-qubit nodes have degree 2 and are assigned the
order-2 tensor describing the corresponding 1-qubit unitary. Following [BSS16], we decompose each 2-qubit
gate as

∑
α cαVα ⊗Wα, where cα > 0 and Vα and Wα are 1-qubit unitaries. We assign the order-3 tensors√

cαVα and
√
αWα to the two nodes representing the 2-qubit gate so that the index α corresponds to the

undirected edge between the two nodes. We refer to this as the tensor network of the quantum circuit (see
Definition 2.21). Our algorithms will be good at simulating circuits whose tensor networks can be broken
into sufficiently small pieces by cutting just a few edges.

All our simulation strategies are based on a partition of the vertices of the tensor network into several
disjoint parts S1, . . . , Sk and we proceed by simulating each Si separately. While each Si is also a tensor
network of its own, it has several loose edges that connect to other Sj , so we need to ensure that we can
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still perform the simulation even if it requires transmitting a qubit from Si to Sj (in case of a directed edge)
or applying a 2-qubit gate between Si and Sj (in case of an undirected edge). To quantify the number and

type of edges that have been cut, we introduce several notions of degree. We write ~d(Si) and d(Si) to denote
the number of directed and undirected edges from Si to any of the other parts (includes final output), and

we define d∗(Si) := ~d(Si) + d(Si). For a given partition, we denote by ~d and d∗ the corresponding maximal
degree (see Definition 2.11) of Si over all i ∈ {1, . . . , k}. Finally, another graph-theoretic quantity we require
is T , the total number of edges between all pairs of distinct parts Si and Sj . (see Fig. 2 as an example).

Simulation by small quantum computers. To model a small quantum device, we allow the following
steps of quantum computation: (1) initialize all n qubits to |0〉, (2) apply some n-qubit quantum circuit
C, (3) measure all qubits in the computational basis and get an n-bit string y, (4) compute f(y) where
f : {0, 1}n → [0, 1] is some classical poly-time function. We refer to algorithms of this form as QC (quantum-
classical) and parametrize them by (C, f). Note that all steps of a QC algorithm are well within the
capabilities of currently available devices, such as IBM’s 5-qubit computer [IBM]. As a slight extension, we
also consider a model that can recycle qubits. Namely, individual qubits can be measured also at intermediate
steps and afterwards initialized again to |0〉 so that more gates can be applied on the same qubit.

The simulator’s goal is to approximate the expectation E[f(y)] within some accuracy ε. Motivated by
currently available technology, our simulation model consists of a small quantum device assisted by a powerful
classical computer. We treat the quantum device (m qubits) as an oracle that can execute a given circuit
and output the random string obtained by measuring all qubits in the standard basis up to Q calls. If a
classical algorithm that has access to such device can approximate the expectation of the function computed
by the original circuit within error ε, we call it a (Q,m, ε)-simulator (see Definition 2.6, Definition 3.4).

1.3 Contributions

Let (C, f) be a QC algorithm that we need to simulate where C is an n-qubit quantum circuit. Assume we
are provided with a partition {S1, . . . , Sk} of the vertices of the tensor network corresponding to C into k

parts, and this partition has parameters T and ~d ≤ d∗ as defined above.

Theorem 1.1 (Informal). (C, f) has simulators with the following parameters:

• (2O(T )O( kε2 ), d∗, ε)-simulator (Theorem 3.3),

• (2O(T )O( kε2 ), ~d, ε)-simulator with recycling (Corollary 3.5).

Making additional assumptions about the partition of the tensor network and the classical post-processing
function f , we can improve the simulation parameters further. More specifically, let G∗ denote the graph
obtained by contracting each Si to a single node and denote the contraction complexity [MS08] of G∗ by
cc(G∗) (Definition 2.19). If we further assume that the function f has rank r (i.e., f can be expressed as a
sum of at most r product terms), then we get the following result:

Theorem 1.2 (Informal). (C, f) has a
(
poly(n+ L, r)2O(cc(G∗))O( 1

ε2 ), d∗, ε
)
-simulator for small enough ε,

where n is the number of qubits and L is the number of gates in the original circuit (Theorem 3.9).

We can readily apply these results to obtain important applications. In particular, we show the possibility
of simulating a general tensor network (rather than the one from any circuit) in Corollary 4.1/4.2 and of
simulating low-dimensional quantum circuits in Corollary 4.3/4.4 Finally, we also provide an alternative
approach that generalizes ideas from [BSS16] with comparable parameters, however, without keeping the
nice features of tensor networks.

Theorem 1.3 (Informal). (C, f) has a (2O(T+k)O( kε2 ), ~d+ 1, ε)-simulator (Theorem 5.3).

1.4 Techniques and related work

Our approach is inspired by previous applications of tensor networks in quantum information theory, and
in particular in quantum circuit simulation. For example, Arad and Landau [AL10] study the quantum
simulation of general tensor networks by implementing the contraction operation on a quantum computer,

4



while Markov and Shi [MS08] provide a general framework for classical simulation of quantum circuits
through tensor networks.

While the general idea of using tensor networks for simulating quantum circuits is central to our work, we
have a different perspective since we are specifically interested in simulation methods that can run on a small
quantum device, assisted by a powerful classical computer. From this perspective, the most relevant work to
ours is [BSS16], which shows how (n+ k)-qubit quantum circuits can be simulated on an n-qubit quantum
machine. For this purpose, [BSS16] considers both the quantum circuit model as well as a Pauli-based model
of computation. In contrast, our results are based on the tensor network formalism. Nevertheless, we provide
a strict generalization of the circuit-based results from [BSS16].

One of our main technical ideas is to encode tensors by pure quantum states, and to use Pauli mea-
surements and classical post-processing for tensor contractions. This allows us to combine several tensors
together, even if the corresponding quantum states are not physically present at the same time. Indeed, we
can separately prepare the quantum encoding of each piece of the tensor network. We use Pauli measurements
and classical post-processing to combine the results.

In the case where the simulation of one part of the system depends on the output of another part, we use
one half of a maximally entangled state the replace the unknown qubit. Effectively, this allows us to recover
the same simulation result for any possible input up to some parameter loss.

Finally, we also provide a direct generalization of the [BSS16] approach. One key new observation is to
use ancillary SWAP gates to make more flexible and powerful partitions, involving not only the qubit space
but also the temporal order.

1.5 Conclusions

Our ultimate goal is to provide a flexible platform for simulating large quantum circuits on small devices
based on the tensor network formalism. We expect that such framework would appeal both to theoreticians
as well as experimentalists and engineers, and we hope that it would become a foundation onto which other
features can be added to later on.

There are obviously many open questions of this work. One important question is how to find such
good partitions of tensor networks efficiently. Another one is to apply this framework to specific quantum
algorithms, such as Shor’s algorithm and phase estimation, for real-world implementation.

Organization

Our paper organizes as following structure: In Section 2, we introduce the definition of tensor network of
the quantum circuit and other necessary preliminaries for presenting our statements. In Section 3, we state
our main results of simulation based on tensor network formalism. Then, we discuss some applications such
as 2D circuits with low-connectivity in Section 4. Finally, we provide an alternative approach generalized
from [BSS16] in Section 5.

2 Preliminaries

In this section we describe the model of quantum computation and the notion of simulation we are interested
in. We also define concepts such as the graph and tensor network associated to a quantum circuit.

2.1 Useful lemmas

For convenience, we first provide some useful inequalities without proof.

Lemma 2.1 (Hoeffding’s inequality[Hoe63]). If X1, . . . , XL are independent real random variables satisfying
ai ≤ Xi ≤ bi and X̄ := (X1 + · · ·+XL)/L then

Pr
[∣∣X̄ − E[X̄]

∣∣ < ε
]
> 1− 2 exp

(
− 2L2ε2∑L

i=1(bi − ai)2

)
. (2.1)
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Figure 3: An algorithm in the QC model (see Definition 2.5). If the number of qubits is n then y ∈ {0, 1}n
and f : {0, 1}n → [0, 1] is a function that is evaluated on a classical computer.

Corollary 2.2. Suppose X1, . . . , XL are i.i.d. real random variables such that |Xi| ≤ a and define X̄ :=
(X1 + · · ·+XL)/L. If we set L := 4a2/ε2 then

Pr
[∣∣X̄ − E[X̄]

∣∣ < ε
]
> 1− 2 exp

(
−2Lε2

4a2

)
>

2

3
. (2.2)

2.2 Computational model: quantum-classical circuits

We begin by introducing the general notions of a quantum circuit and a quantum algorithm.

Definition 2.3 (Quantum gates and circuits). A k-qubit quantum gate is a unitary operator in U(2k). An n-
qubit quantum circuit is an ordered sequence of 1-qubit and 2-qubit quantum gates (along with a specification
on which qubit(s) each gate is applied) and thus implements a unitary operation in U(2n).

Definition 2.4 (Quantum algorithm). A quantum algorithm based on an n-qubit quantum circuit C consists
of the following steps:

1. initialize n qubits to |0n〉;

2. apply the quantum circuit C on |0n〉;

3. measure all qubits in the 0/1 basis and output the resulting n-bit string.

While any other intuitive notion of a quantum algorithm can be cast in the form described above, due to
practical considerations it is useful to explicitly include an extra classical post-processing step at the end of
the algorithm. Such step, for example, can turn the n-bit output string into a real number whose expectation
might be of interest (e.g., it could correspond to energy of some physical system). While such classical post-
processing can in principle be done on a quantum computer and thus might seem superfluous, it is useful to
single it out as a separate step that is performed classically since, in general, classical implementation should
be less costly. To make this distinction a bit more formal, we define the following quantum-classical (QC)
computational model.

Definition 2.5 (QC model). Algorithms in the QC model are denoted by (C, f), where C is an n-qubit
quantum circuit and f : {0, 1}n → [0, 1] is a classical polynomial-time function. The execution of a QC
algorithm (C, f) consists of:

1. running the quantum algorithm based on circuit C;

2. classically computing a real number f(y) from the n-bit output string y.

We denote by π(C, f) ∈ [0, 1] the expectation of f(y) over many runs of the algorithm.

An example of an algorithm in the QC model is illustrated in Fig. 3. It produces a classical description
of a real number in the bounded interval [0, 1] whose expectation π(C, f) will be our main interest.
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Q the number of times we can use the quantum device
n the number of qubits in the original circuit C
m the number of qubits available on the simulator (m ≤ n)
L the number of gates in the original circuit C (simulator can execute O(L) gates)
ε the desired accuracy of the simulation

Table 1: Simulator parameters used in Definition 2.6.

2.3 Simulator

Our goal is to execute computations of the type described above on a small quantum device assisted by
a much larger classical computer. In other words, we would like to simulate such computations using less
quantum memory but at the cost of more quantum time as well as more classical computation. To formalize
this notion, we introduce a fairly general class of simulators (for convenience, we summarize the relevant
parameters in Table 1). We do not explicitly specify what the input of a simulator is, but normally it is a
classical description of some quantum circuit C to be simulated, along with some extra advice1, such as how
to break up the circuit into smaller pieces.

Definition 2.6 (Simulator). Let (C, f) be a QC algorithm (see Definition 2.5) where C is an n-qubit quantum
circuit with L gates. Then a (Q,m, ε)-simulator of (C, f) is a classical poly(Q,n, L)-time algorithm that has
access to a quantum oracle. The oracle can be called at most Q times and, in each call, can execute any
O(L + m)-gate quantum algorithm on an m-qubit device (see Definition 2.4). Such simulator has accuracy
ε for simulating (C, f) if its output θ ∈ R satisfies:

Pr[|θ − π(C, f)| < ε] >
2

3
. (2.3)

Corollary 2.7. From Corollary 2.2, there is a trivial (O(1/ε2), n, ε)-simulator for any QC algorithm (C, f)
where C is an n-qubit quantum circuit with L gates. Indeed, we can simply execute O(1/ε2) runs of the
original algorithm (C, f) and then compute θ as the average of all results obtained.

Note that the parameter Q not only relates to the number of quantum queries but also to the classical
running time. The following corollary illustrates this.

Corollary 2.8. There is a trivial (2n, 0, ε)-simulator for any QC algorithm (C, f) where C is an n-qubit
quantum circuit with L gates. Simply represent the state and gates as a matrix and use matrix product to
simulate the circuit classically. The parameter 2n is because the classical running time is poly(2n, L, n).

A problem of central interest in our work is the trade-off between parameters Q and m. Namely, can
more repetitions (and classical post-processing) help with decreasing the amount of quantum memory m
used in the computation? Note that results above provide two extreme situations. We are thus interested in
intermediate cases when a non-trivial amount of quantum computation is still used and the overall runtime
is polynomial.

2.4 Quantum circuits as graphs

It is natural to represent the interactions between individual qubits of a quantum circuit by a graph. In fact,
such representation will be used—in one form or another—by all our simulation strategies.

To any quantum circuit we assign a graph obtained as follows. Its vertices correspond to quantum gates
(one vertex for a single-qubit gate and two vertices for a two-qubit gate) and its edges are of two types:
directed edges represent the flow of information from one gate to another while undirected edges represent
two-qubit gates (see Fig. 4 for an example). In general, we refer to graphs that have both types of edges as
mixed graphs. Below is a more formal definition of the mixed graph associated to a quantum circuit.

Definition 2.9 (Graph of a quantum circuit). To any quantum circuit C we associate the following graph:

1For the purpose of this work, we are not concerned with the question of where this advice comes from. We simply assume
that it is provided by some oracle.
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Figure 4: An example of a quantum circuit and the associated graph (see Definition 2.9).

1. Let L(i) be the number of gates applied to the ith qubit in C. For the kth gate applied to the ith qubit,
we create a node ik, 1 ≤ k ≤ L(i) (in particular, for each two-qubit gate we create two nodes). For
convenience, for each input qubit i we also create a node i0.

2. For every pair of nodes (ik, ik+1), 0 ≤ k < L(i), connect them by a directed edge from ik to ik+1.

3. For every node iL(i), create a directed edge from it without ending node to represent the output.

4. For each pair of nodes (ik, jt) such that these two nodes correspond to the same two-qubit gate, connect
them by an undirected edge.

Let V be the set of all nodes and E the set of all edges (E includes both directed and undirected edges). Then
G = (V,E) is the (mixed) graph associated to quantum circuit C. Note that we create nodes for input qubits
and single-node-edges for output qubits.

Next, we introduce several quantities from graph theory that will later play important role in our results
on simulation complexity of quantum circuits.

Definition 2.10 (Directed and undirected degree). Let G = (V,E) be a mixed graph (such as one from

Definition 2.9). For any v ∈ V , we write ~d(v) and d(v), respectively, to denote the directed and undirected
degree of v, which corresponds to the number of directed (outgoing) and undirected edges of v. Similarly,

for any subset of vertices S ⊆ V , we write ~d(S) and d(S), respectively, to denote the number of directed
(outgoing) and undirected edges leaving the subset S.

These notions of degree can be easily extended to partitions of a graph. Recall that a partition of set V
is a collection of subsets S1, . . . , Sk ⊆ V such that S1 ∪ · · · ∪ Sk = V and Si ∩ Sj = ∅ for i 6= j.

Definition 2.11 (Maximal directed and total degree of a parition). Let G = (V,E) be a mixed graph and
P = {S1, . . . , Sk} a partition of its vertices V . The maximal directed degree and total degree of this partition
is, respectively,

~d(P) := max
1≤i≤k

~d(Si), (2.4)

d∗(P) := max
1≤i≤k

d(Si) + ~d(Si). (2.5)

Definition 2.12 (Number of edges of a partition). Let G = (V,E) be a mixed graph and P = {S1, . . . , Sk}
a partition of V . The number of edges of P, denoted by T (P), is the total number of edges (including
directed and undirected) between different subsets Si of P. Intuitively, T (P) characterizes the number of
quantum communications between different subsets. Attention here we do not count the single-node-edges
(output qubits).

2.5 Tensors and tensor networks

For the purpose of simulating quantum circuits, it is useful to add extra structure to the corresponding graph
by assigning a tensor to every vertex, resulting in a structure known as a tensor network. Intuitively, tensors
are multilinear generalizations of vectors and matrices—they are multidimensional arrays whose entries are
specified by several indices, each of which has a certain range.
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Figure 5: An illustration of tensor contraction (we contract index i2 of A with index j3 of B).

Definition 2.13 (Order-k tensor). An order-k tensor A is a k-dimensional array over C, with the entries
of A specified using k indices: Ai1,...,ik .

If there is no special request, we will usually take i1, . . . , ik ∈ {0, 1} so that an order-k tensor has 2k entries
in total.

Definition 2.14 (Norm of a tensor). The norm of a tensor Ai1,...,ik is denoted by |A|:

|A| :=
∑

i1,...,ik∈{0,1}

|Ai1,...,ik |
2
. (2.6)

If |A| = 1, we call A as a normalized tensor.

Definition 2.15 (Quantum encoding). It is convenient to represent a normalized order-k tensor A by a
pure quantum state on k qubits:

|A〉 :=
∑

i1,...,ik∈{0,1}

Ai1,...,ik |i1, . . . , ik〉. (2.7)

We call |A〉 as the quantum encoding of tensor A.

Just like vectors and matrices can be combined using matrix multiplication, tensors can be combined
using index contraction. If Ai1,...,ik and Bj1,...,jl are two tensors such that the ranges of indices i1 and j1
agree, we can contract these indices to obtain an order-(k + l − 2) tensor C whose entries are given by

Ci2,...,ik,j2,...,jl =
∑
i

Ai,i2,...,ikBi,i2,...,jl . (2.8)

A similar expression can be used to contract any other pair of indices ia and jb of the two tensors, where
a ∈ [k] and b ∈ [l]. Note that such operation has an intuitive graphical representation (see Fig. 5).

Given a collection of tensors, one can combine them into a tensor network by identifying pairs of indices
that must be contracted. Such a network is conveniently represented by a graph G = (V,E) with vertices
corresponding to tensors and edges corresponding to indices. To translate between graphs and tensors, we
implicitly establish a bijection between the indices of A(v) and the edges incident to v: every edge uv ∈ E
is identified with a pair of tensor indices—one from A(u) and one from A(v)—in a way so that each index
of A(v) is associated to a different edge incident to v.

Definition 2.16 (Abstract tensor network). Abstract tensor network is a pair (G,A) where G = (V,E) is
an undirected graph and A = {A(v) : v ∈ V } is a collection of tensors, one for every vertex of G, such that
the order of A(v) is equal to the degree d(v) of v.

Implicitly, an abstract tensor network also carries a function a : V × N → E such that a(v, i) ≡ ai(v)
corresponds to the i-th edge incident with vertex v ∈ V . We will also write

a(v) :=
(
a1(v), . . . , ad(v)(v)

)
⊆ E (2.9)

to denote an ordered list of all edges incident with v. Furthermore, we will write {0, 1}E to denote the
set of all functions E → {0, 1} that assign a label from {0, 1} to each element of E. For a given labelling
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s ∈ {0, 1}E , we will write se ∈ {0, 1} to denote the label of e ∈ E and, for any E′ ⊆ E, we will write
sE′ to denote the substring of s that contains the labels of those edges that belong to the subset E′. In
particular, for any v ∈ V , sa(v) denotes the substring of s that corresponds to a(v). In other words, the

string sa(v) ∈ {0, 1}
d(v)

describes what labels s assigns to those edges that are incident to v ∈ V .

Definition 2.17 (Value of an abstract tensor network). The value of an abstract tensor network (G,A)
is the squared absolute value of order-0 tensor obtained by contracting all edges of the network. It can be
conveniently expressed using the notation introduced above as follows:

T (G,A) :=

∣∣∣∣∣∣
∑

s∈{0,1}E

∏
v∈V

A(v)sa(v)

∣∣∣∣∣∣
2

. (2.10)

Remark: This definition is slightly different fomr [MS08] which has no squared absolute value. The
reason is because our tensor network represents a pure state while theirs represents a mixed state and thus
has twice as many indices.

The following somewhat more complicated definition corresponds to a scenario when the tensor network
in question either has some free edges or is a piece of a larger tensor network.

Definition 2.18 (Subtensor). Let (G,A) be an abstract tensor network where G = (V,E). For any subset
of nodes S ⊆ V , let A(S) denote the order-d(S) subtensor obtained by contracting all nodes in S where d(S)
is the degree of S (i.e., the number of edges connecting S and V \ S). More formally, we first partition the
set of all edges E into two disjoint subsets:

E1 := {uv ∈ E : u ∈ S, v ∈ V \ S}, (2.11)

E2 := {uv ∈ E : u ∈ S, v ∈ S}. (2.12)

Then, for any sE1
∈ {0, 1}E1 , the sE1

-entry of A(S) is given by

A(S)sE1
:=

∑
sE2
∈{0,1}E2

∏
v∈S

A(v)sa(v) , (2.13)

where s ∈ {0, 1}E1∪E2 denotes the string obtained by combining the two disjoint substrings sE1
and sE2

.

The complexity of computing the value of a tensor network is known as contraction complexity. Here we
quote its definition from [MS08]:

Definition 2.19 (Contraction complexity). Given an abstract tensor network (G,A) which has m edges and
an order of edges π = {π1, . . . , πm}. The contracting process runs as following: For ith turn, delete the edge
πi and contract two nodes connected by πi into one node if these two nodes are different. The complexity
of this order is defined by the maximal degree of nodes during contracting process. And the contraction
complexity of (G,A) defined by cc(G) is the minimal complexity among all orders.

Below we quote the main result from [MS08] without a proof.

Theorem 2.20 ([MS08]). Given an abstract tensor network (G,A) where G = (V,E), we can classically
compute the exact value of A(V ) in time poly(|V |2O(cc(G))).

Here we slightly modify the definition from [MS08] of a tensor network representing a quantum circuit.

Definition 2.21 (Tensor network of a quantum circuit). Given a quantum circuit C, let G = (V,E) be the
graph associated to C via Definition 2.9. Then the tensor network of quantum circuit C, denoted by (G,A),
is a tensor network that satisfies the following additional constraints:

1. To each directed outgoing edge from ik assign an index variable eik ∈ {0, 1}. To each undirected edge
corresponding to the ith two-qubit gate, assign an index variable αi ∈ {0, 15}.

2. To each node ik that corresponds to a one-qubit gate U ∈ U(2), assign an order-two tensor A(ik) whose
components are given by A(ik)eik−1

,eik
:= 〈eik |U |eik−1

〉.
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3. For each pair of nodes (ik, jt) that corresponds to a two-qubit gate U ∈ U(4) (the lth two-qubit gate),
assume U can be decomposed as follows:

U =

15∑
α=0

cαV
α ⊗Wα, (2.14)

where V α,Wα ∈ U(2), cα ≥ 0, and
∑
α c

2
α = 1 (e.g., one can choose V α,Wα as Pauli matrices and

multiple some phase factor into V α for guaranteeing cα ≥ 0). Then define order-three tensors

A(ik)eik−1
,eik ,αl

:=
√
cα〈eik |V αl |eik−1

〉, (2.15)

A(jt)ejt−1
,ejt ,αl

:=
√
cα〈ejt |Wαl |ejt−1〉. (2.16)

Remark: Here we split two-qubit gates into two nodes so that we have more flexibility in terms of
how we can partition the tensor network. However, our main approach does not make explicit use of the
decomposition in Eq. (2.14), whereas it plays a major role in [BSS16]. In Section 5 we provide an alternative
approach, based on ideas from [BSS16], that does make use of this decomposition.

If we contract the tensor network along with the direction of quantum circuit, the tensor we get will
relate with the quantum states in a instant. If we use an n-bit string y to represent the indices of the output,
it is easy to verify that:

A(V )y = 〈y|C|0n〉. (2.17)

where A(S)u represents the remainder tensor of A(S) when given part of the indices as u. Here A(V ) is an
n-order tensor. So when given y, it’s a 0-order tensor which indicates a complex number.

So the expected value output by (C, f) is

π(C, f) =
∑

y∈{0,1}n
|A(V )y|2f(y). (2.18)

2.6 An illustration of the relevant parameters

For convenience, we illustrate some of the parameters which are frequently used in the statements of our
results. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C. Let P = {S1, S2, . . . , Sk} be a
partition of the nodes of G. Denote by T the total number of edges of P (see Definition 2.10). Assume P has

maximal directed degree ~d and maximal total degree d∗ (see Definition 2.11). Fig. 2 provides an example.

3 Main results

In this section, we derive our main results: Theorem 3.3, Theorem 3.9.
In Section 3.1, we deduce the theorem about simulating based on partition of tensor networks. The

general idea is to cut the tensor network into small pieces and simulate each piece by a small quantum
machine. Then, if the number of edges which connect different pieces is not too large, we can collect the
results of all pieces and output the correct value after classical post-processing. Lemma 3.1 provides an
approach to combine the small pieces by measuring the quantum encoding of tensors with Pauli matrix
measurement. Then Lemma 3.2 tells how to get the quantum encoding of each pieces if the crossing edges
connect them are only directed. The central technology used in Lemma 3.2 is inputting one qubit of the
maximally entangled state to simulate the unknown state which comes from other pieces. By moving the
undirected edge and its related two nodes into new pieces, we can transfer the crossing undirected edge into
directed edges. This induces Theorem 3.3, which states that (C, f) has a (2O(T )O( kε2 ), d∗, ε)-simulator (See
parameters from Section 2.6, following is the same so will be omitted). If recycling is permitted in simulating,
we can save up the qubits which pay for each undirected edge to get Corollary 3.5, which claims that (C, f)

has a (2O(T )O( kε2 ), ~d, ε)-simulator with recycling.
In Section 3.2, we consider the situation if f can be expressed as a sum of r product terms. It permits

us to approximately tomography the tensor of small pieces because f is decomposed to be embedded into
each piece instead of overall computing. Then the approach based on contracting complexity for combining
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tensors can be used to replace the approach in Lemma 3.1. The Lemma 3.8 help bound the error during
contracting process, by utilizing the property that any contracting tensor element is not too large because
the tensor relates to some part of circuit. So finally we can conclude Theorem 3.9: (C, f) has a (poly(n +
L, r)2O(cc(G∗))O( 1

ε2 ), d∗, ε)-simulator for small ε. Here cc(G∗) denotes the contracting complexity of graph
G∗ which comes from contracting each piece into a single node, and C is a n-qubit circuit with L gates.

3.1 Simulation based on a partition of the tensor network

First, we introduce a lemma to tell how to combine the information of each piece for computing the value of
the whole tensor network. The idea is remarkably simple, we only need to measure each qubit of quantum
encoding of each piece in some Pauli matrix basis, and then multiply the results together.

Lemma 3.1. Let (G,A) be an abstract tensor network where G = (V,E) and assume each A(v) is a
normalized tensor (see Definition 2.14). Given one copy of quantum encoding |A(v)〉 for each v ∈ V ,
there exists a quantum algorithm that outputs a real random variable ζ such that E[ζ] = T (G,A) and
ζ ∈ [−2|E|, 2|E|]. The algorithm measures each qubit independently and uses poly(|V |+ |E|) time of classical
post-processing.

Proof. We first describe an algorithm to produce ζ and then prove its correctness. Let us denote by I,X, Y, Z
the Pauli matrices. Denote by x(e), y(e) the two qubits which correspond to edge e in two nodes connected
by e. First, for each edge e ∈ E, pick a uniformly random Pauli matrix σe. Then perform a measurement
σe for two input qubits x(e), y(e) respectively. Assume the output of Pauli measurement of each input qubit
x is tx. Finally, output

ζ =
∏
e∈E

2tx(e)ty(e) · (−1)σe=Y . (3.1)

It is easy to verify that ζ ∈ [−2m, 2m] because tx ∈ {−1, 1}, so it only remains to prove that E[ζ] = T (G,A).
Recall from Definition 2.17 that the value of the tensor network (G,A) is given by:

T (G,A) =

∣∣∣∣∣∣
∑

s∈{0,1}E

∏
v∈V

A(v)sa(v)

∣∣∣∣∣∣
2

. (3.2)

Since A(v)sa(v) = 〈sa(v)|A(v)〉 where |A(v)〉 is the quantum encoding of A(v), see Definition 2.15, we can
write:

∏
v∈V

A(v)sa(v) =
∏
v∈V
〈sa(v)|A(v)〉 =

(⊗
e∈E
〈se, se|

)(⊗
v∈V
|A(v)〉

)
=: 〈s, s|A〉, (3.3)

where |s, s〉 and |A〉 are both 2|E|-qubit states, with the qubits arranged appropriately so that each edge
uv ∈ E is aligned with the corresponding vertices u, v ∈ V . More specifically, |s, s〉 is a standard basis vector

that repeats each bit of s ∈ {0, 1}E twice, with the bit corresponding to edge uv ∈ E appearing both at
vertex u and vertex v. The state |A〉 is a tensor product of all |A(v)〉, so it conveniently encodes the whole
tensor network in a single state.

Note that
∑
s∈{0,1}E |s, s〉 = |Φ〉⊗|E| where |Φ〉 := |0, 0〉+|1, 1〉 is the (unnormalized) maximally entangled

state. If we let Φ := |Φ〉〈Φ|, we can re-express the value of the tensor network as follows:

T (G,A) =
∑

s,t∈{0,1}E
〈A|s, s〉〈t, t|A〉 = 〈A|

 ∑
s,t∈{0,1}E

|s, s〉〈t, t|

|A〉 = 〈A|Φ⊗|E||A〉. (3.4)

If {I,X, Y, Z} ≡ {σI , σX , σY , σZ} denote the Pauli matrices then

Φ =
1

2
(I ⊗ I +X ⊗X − Y ⊗ Y + Z ⊗ Z) =

1

2

∑
j∈{I,X,Y,Z}

(−1)j=Y σj ⊗ σj , (3.5)
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T = O(log(n))

U1

U2

...
...

...
...

n/2

n/2

Figure 6: Here is an example of Lemma 3.2. We can use a n
2 + O(log(n))-qubit machine to simulate this

circuit.

where (−1)j=Y = −1 if j = Y and 1 otherwise. Observe that1

2

∑
j∈{I,X,Y,Z}

(−1)j=Y σj ⊗ σj

⊗|E| =
1

4|E|

∑
p∈{I,X,Y,Z}E

(−1)|p|Y
⊗
e∈E

2(σpe ⊗ σpe) (3.6)

where |p|Y denotes the number of Y ’s in the string p. Note that
⊗

e∈E(σpe ⊗ σpe) =
⊗

v∈V σpa(v) where

σpS :=
⊗

e∈S σpe for any S ⊆ E and p ∈ {I,X, Y, Z}S . Putting everything together,

T (G,A) =
1

4|E|

∑
p∈{I,X,Y,Z}E

(−1)|p|Y 2|E|
∏
v∈V
〈A(v)|σpa(v) |A(v)〉. (3.7)

Since 〈A(v)|σpa(v) |A(v)〉 = E[
∏
e∈a(v) te], we get the desired result.

There are two types of communication between different quantum circuit pieces based on the type of
crossing edges. The first one is directed edge, which transmits some qubits from one subset to another.
The second one is undirected edge, which represents the crossing gates applied to two parts together. In
some sense, they are interchangeable (for example, we can use SWAP gate and ancilla to represent qubit
transmitting). But this changing may introduce additional cost instead of free. Here we consider the directed
edge type preferentially.

The lemma following tells the way to get the quantum encoding (see Definition 2.15) of each piece if
there are only directed edges between different pieces. The central obstacle to simulate the piece of quantum
circuit is lacking knowledge of inputing qubits come from other subsets. We find a neat way to solve it,
which only needs to input a pair of maximally entangled state. Then we apply Lemma 3.1 to combine the
information.

Lemma 3.2. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C. Let P = {S1, S2, . . . , Sk}
be a partition of the nodes of G such that each two nodes corresponding to the same 2-qubit gate belong
to the same subset. If P has maximal directed degree ~d := ~d(P) (see Definition 2.11) and T edges (see

Definition 2.10), then there is a (2O(T )O( kε2 ), ~d, ε)-simulator of (C, f). (see Fig. 6 as an example)

Proof. For any subset Si and its related tensor A(Si), denote by xi the set of indices of incoming edges, by yi
the set of indices of outgoing edges to other subsets, and by ui the set of indices of outgoing edges to the final
outputs. Consider some inputs of |0〉 represented as nodes in Si, the overall input-output transformation
can be denoted as a unitary tranformation U . Then by definition of tensor,

A(Si)xi,yi,ui := 〈yiui|U |0xi〉. (3.8)

Denote by |xi| the number of incoming edges of Si. It’s easy to see that A(Si)

2|xi|/2
is a normalized tensor

because ∑
xi,yi,ui

|A(Si)xi,yi,ui |2 =
∑

xi∈{0,1}|xi|

∑
yi,ui

|〈yiui|U |0xi〉|2 =
∑

xi∈{0,1}|xi|
1 = 2|xi|. (3.9)
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If instead we input one qubit of the maximally entangled state 1√
2
(|00〉+ |11〉) to each incoming edge of

U , we get the following pure state as the quantum encoding of tensor A(Si)

2|xi|/2
:

|A(Si)〉 :=
1

2|xi|/2

∑
xi

|xi〉U |0xi〉 =
1

2|xi|/2

∑
xi,yi,ui

A(Si)xi,yi,ui |xi〉|yiui〉. (3.10)

Our algorithm works as follows: first, implement the quantum encoding |A(Si)〉 of each tensor of Si by

running a (~d(Si) + |xi|)-qubit circuit. Then measure the final output qubits ui in the computational basis
and transfer |A(Si)〉 to |A(Si)〉ui . Assume the probability of getting outcome ui is Pr(ui), so

|A(Si)〉ui =
1

2|xi|
√

Pr(ui)

∑
xi,yi

A(Si)xi,yi,ui |xiyi〉. (3.11)

Now |A(Si)〉ui is the quantum encoding for normalized form of the remainder tensor A(Si) when given
ui. By applying Lemma 3.1 to the set of |A(Si)〉ui whose induced tensor network has k nodes and T edges.
We get a random variable ζ ∈ [−2T , 2T ] such that

E[ζ] =

∣∣∣∣∣∑
x,y

∏
i

A(Si)xi,yi,ui√
Pr(ui)2|xi|/2

∣∣∣∣∣
2

. (3.12)

where x = (x1, . . . , xk) and y = (y1, . . . , yk) represent the whole graph’s indices related to incoming edges
and outgoing edges to other subsets, respectively. Finally, we output a new random variable χ := 2T ζ ·
f(u1, u2, ..., uk).

Let us now verify that π(C, f) = E[χ] (recall that
∑k
i=1|xi| = T ):

E[χ] =
∑

u1,...,uk

2T Pr(u1) · · ·Pr(uk)f(u1, . . . , uk)

∣∣∣∣∣∑
x,y

∏
i

A(Si)xi,yi,ui√
Pr(ui)2|xi|/2

∣∣∣∣∣
2

(3.13)

=
∑

u1,...,uk

f(u1, . . . , uk)

∣∣∣∣∣∑
x,y

∏
i

A(Si)xi,yi,ui

∣∣∣∣∣
2

(3.14)

=
∑

u1,...,uk

f(u1, . . . , uk)|A(V )u1,...,uk |
2

(3.15)

= π(C, f). (3.16)

Also, we have χ ∈ [−22T , 22T ] because ζ ∈ [−2T , 2T ]. Hence, by Corollary 2.2, we can repeat this process
for 2O(T )/O(ε2) times to approximate π(C, f) with high probability.

In each round, we need to select a setting of Pauli measurements uniformly at random for all crossing
edges. Then call the oracle k times. In the ith time, input a (~d(Si) + |xi|)-qubit quantum circuit of Si, with
an additional one-qubit gate putting on each qubit before measurement to make sure Pauli measurements
are transformed to the computational basis measurement. Note that for each incoming edge of Si, we input
two qubits of 1√

2
(|00〉+ |11〉). For the first qubit, we just put a U and measure in the 0/1 basis. Because

(U ⊗ I)
1√
2

(|00〉+ |11〉) = (I ⊗ UT)
1√
2

(|00〉+ |11〉). (3.17)

We can simulate the first qubit classically: to guess the result of 0/1 and then put UT to the second qubit
according to the result. Hence we only need one qubit input for each incoming edge which means that this
is at most ~d-qubit quantum circuit.

In total, we need to call the oracle 2O(T )O( kε2 ) times, each time run a ~d-qubit quantum circuit with at

most O(L+ ~d) gates. This results in a (2O(T )O( kε2 ), ~d, ε)-simulator for (C, f).

To tackle the undirected edges, we replace them by directed edge based on introducing some small subsets
of the graph, which gives us the following theorem.
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Theorem 3.3. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C. Let P = {S1, S2, . . . , Sk}
be a partition of the nodes of G (without any further restrictions as in Lemma 3.2). If P has maximal total
degree d∗ (see Definition 2.11) and T edges, then there is a (2O(T )O( kε2 ), d∗, ε)-simulator of (C, f).

Proof. Compared to Lemma 3.2, we now have some undirected edges between different subsets. For each
two-qubit gate corresponding to nodes ik, jt which belong to different subsets, we add a new subset S′

consisting of only ik, jt and remove them from the original subset. Then, there are only directed edges
between different subsets again. Because this modification turns one undirected edge into four directed
edges crossing the subsets, the total number of crossing edges still remains O(T ).

Each new subset that consists of only two nodes we can simulate by classical processing when call the
quantum oracle. And ~d(Si) now becomes ~d(Si) + d(Si) because of adding one directed outgoing edge when
removing one undirected edge. Then, we can apply Lemma 3.2 which finishes the proof.

Attention that for removing each undireted edge, related subset will add one outgoing edge and one
incoming edge. Acutally, because these two edges has no correlation, we can recycle this qubit by measuring
it in the outgoing edge and then input the same qubit into the corresponding incoming edge. The recycling
approach is a standard approach to optimize the number of qubits needed for a circuit [PWD16] [PP00].
Here we introduce the definition of the recycle-simulator.

Definition 3.4 (Simulator with recycling). Let (C, f) be a QC algorithm (see Definition 2.5) where C is
an n-qubit quantum circuit with L gates. Then a (Q,m, ε)-simulator with recycling of (C, f) is a classical
poly(Q,n, L)-time algorithm that has access to a quantum oracle for at most Q calls.

For each call, the quantum oracle has initially |0m〉 resources and run O(L + m) steps. Each step, we
can apply a one-qubit or two-qubit gate to some qubits, or measure some qubit in 0/1 basis and recycle it as
a new initial qubit |0〉. Finally, the quantum oracle would output the results of all measurement. The cost of
a call would be the number of steps it needed.

Such simulator has accuracy ε for simulating (C, f) if its output θ ∈ R satisfies:

Pr[|θ − π(C, f)| < ε] >
2

3
. (3.18)

Then, there is a stronger version of Theorem 3.3 if we permit recycle approach.

Corollary 3.5. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C. Let P = {S1, S2, . . . , Sk}
be a partition of the nodes of G. If P has maximal directed degree ~d and T edges, then (C, f) has a

(2O(T )O( kε2 ), ~d, ε)-simulator with recycling.

Proof. For each subset which adds an incoming edge and an outgoing edge because of removing some node
from it, we can recycle the qubit as the input of the incoming edge after measuring the qubit of the outgoing
edge. That means, ~d(Si) would remain. So there is a (2O(T )O( kε2 ), ~d, ε)-recycle-simulator of (C, f).

Remark: Compare to Lemma 3.2, it implies that increasing number of crossing undirected edges would
not increase the number of qubits we need, but exponentially increase the number of calls (increase the
number of edges T of P).

3.2 Improvement assuming a decomposition of the classical function

After getting Corollary 3.5, an immediate thought is to limit the scale of piece to log(n) then find some
results of classical simulating of quantum circuit.

Corollary 3.6. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C where C is an n-
qubit quantum circuit with L gates. Let P = {S1, S2, . . . , Sk} be a partition of the nodes of G. If P has

maximal directed degree ~d = O(log(n)) and T edges, there exists a (2O(T )O( 1
ε2 ), 0, ε)-simulator of (C, f), i.e.,

a classical simulator.

Proof. Because ~d = O(log(n)), we can simulate the quantum oracle of the simulator classically within time
poly(L, n). So it’s equivalent to removing quantum oracle. And then we can remove factor k from 2O(T )O( kε2 )

because here it only relates to the classical running time poly(2O(T )O(1/ε2), n, L).
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An interesting comparison is to Markov and Shi [MS08] which related to the contracting complexity of
the tensor network:

Theorem 3.7 ([MS08]). Let (C, f) be a QC algorithm and (G,A) be the tensor network of C. Assume the
contracting complexity of G is cc(G). By using post-selection and apply Theorem 2.20, C can be classically
produced within poly(2O(cc(G))Ln) time where L is the number of gates in C, n is the number of qubits of
C. Then, by Corollary 2.7, there is a (2O(cc(G))O( 1

ε2 ), 0, ε)-simulator of (C, f).

Remark: Because if each node ofG has constant degree, contrating complexity cc(G) = O(treewidth(G)),
the result above is also often represented by treewidth instead of contracting complexity.

For classical simulation, our result shows some deficiency because contrating complexity is usually smaller
than the number of edges of a graph. But with ansistance of small quantum computer, our results may show
progress because the number of crossing edges decreases when the scale of subests grows.

In addition, if the classical function f of a QC model (C, f) satisfies some low-rank decomposition
property, we can improve our results with exponential growth of contracting complexity instead of the total
number of edges. The basic idea is to get the classical approximate description of each tensor of piece instead
of the quantum encoding, then contract them together from some optimal contracting order [MS08]. Here
we fisrt introduce a lemma about error analysis of approximate tensor contraction.

Lemma 3.8. Let (G,A) be an abstract tensor network where G = (V,E). Denote |V | = n. Index all
nodes from 1 to n. Assume that for any subset S of nodes of G, the tensor A(S) obtained by contracting
nodes in S into one node has all entry with absolute value at most one, i.e., |A(S)i| ≤ 1 for any S ⊆ V

and i ∈ {0, 1}d(S)
. Let B be another tensor network that is entry-wise ε-close to A, i.e., for all v ∈ V and

i ∈ {0, 1}d(v)
,

|A(v)i −B(v)i| ≤ ε. (3.19)

If ε ≤ 1
n2−10d where d denotes the maximal degree of nodes in G, then

|A(V )−B(V )| ≤ n24dε. (3.20)

Proof. We denote the bias tensor network e(v)i = B(v)i −A(v)i, so |e(v)i| ≤ ε. Then we have

|B(V )−A(V )| (3.21)

=

∣∣∣∣∣∣
∑

s∈{0,1}E

∏
v∈V

(
A(v)sa(v) + e(v)sa(v)

)
−

∑
s∈{0,1}E

∏
v∈V

A(v)sa(v)

∣∣∣∣∣∣ (3.22)

(3.23)

Now, we could assign each node v with tensor A(v) or e(v). If we enumerate the set S which is assigned by
A(v), then

|B(V )−A(V )| ≤

∣∣∣∣∣∣
∑

S⊆V,S 6=V

∑
s∈{0,1}E

(∏
v∈S

A(v)sa(v) ·
∏

v∈V−S
e(v)sa(v)

)∣∣∣∣∣∣ (3.24)

(3.25)

Contract nodes in S as a whole, denote E′(S) = E − {(u, v) ∈ E|u ∈ S, v ∈ S}, then

|B(V )−A(V )| ≤
∑

S⊆V,S 6=V

∑
s∈{0,1}E′(S)

(∣∣A(S)sa(S)

∣∣ · ∣∣∣∣∣ ∏
v∈V−S

e(v)sa(v)

∣∣∣∣∣
)

(3.26)

≤
∑

S⊆V,S 6=V

∑
s∈{0,1}E′(S)

∣∣∣∣∣ ∏
v∈V−S

e(v)sa(v)

∣∣∣∣∣ |A(S)i| ≤ 1 (3.27)

≤
∑

S⊆V,S 6=Φ

∑
s∈{0,1}E′(S)

ε|V−S| (3.28)
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Because |E′(S)| ≤ d · |V − S|, where d is the maximal degree, then

|B(V )−A(V )| ≤
∑

S⊆V,S 6=V

2d|V−S|ε|V−S| ≤
n∑
k=1

(
n

k

)
(2dε)k ≤

n∑
k=1

(n2dε)k

k!
. (3.29)

Because n2dε ≤ 1, there is

|B(V )−A(V )| ≤
n∑
k=1

(n2dε)k

2k−1
≤

n∑
k=1

(n2dε)

2k−1
≤ 2(n2dε) ≤ n2d+1ε ≤ n24dε. (3.30)

Following we give the formal description of the theorem. The key step is to get the classical information
of each tensor of piece based on the condition that f can be decomposed. This can be done by generating
mutiple copy of quantum encoding and then measure them. The obstacle before is that we cannot implement
post-selection for output results so that we cannot get multiple copy of the quantum encoding when given
output results.

Theorem 3.9. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C where G = (V,E).
Given a partition P = {S1, S2, . . . , Sk} of nodes V . Assume P has the maximal total degree d∗. Denote an
induced graph G∗ which induced from contracting each Si to one node and removing the final output edges.
Denote by cc(G∗) as the contracting complexity of G∗ (see Definition 2.19).

If Si has li edges for final outputs, i.e., l1 + · · · + lk = n, let ui ∈ {0, 1}li denote their indices. If the
classical polynomial function f can be decomposed in the following form:

f(u1, u2, . . . , uk) =

r∑
i=1

f i1(u1)f i2(u2) · · · f ik(uk) (3.31)

where f ij : {0, 1}li → [0, 1] is also classical polynomial function for all j ∈ [k] and i ∈ [r], there is a(
poly(n+ L, r)2O(cc(G∗))O( 1

ε2

)
, d∗, ε)-simulator of (C, f) if ε ≤ 2−O(cc(G∗))r.

Proof. For simplification, we firstly compute f1
1 (u1)f1

2 (u2) · · · f1
k (uk). Rewrite it as following form (without

ambiguity, we rewrite f1 to f ):

f(u1, . . . , uk) = f1(u1)f2(u2) . . . fk(uk). (3.32)

And similarly, we remove undirected edges like in Theorem 3.3. Because new subsets are added, assume
the number of party now is K (add Si for i > k). It’s natural to generalize (u1, . . . , uk) to (u1, . . . , uK) such
that ∀i > k, ui = Φ. And also, we suppose fi(ui) = 1 for i > k. Hence

f(u1, . . . , uk) = f1(u1)f2(u2) . . . fK(uK). (3.33)

Assume we get the quantum encoding |A(Si)〉ui for any i ∈ [K] after running the quantum circuit for
each part and measure the final output qubits to get ui. Then from the quantum encoding, we can get the
value of the tensor netowrk (G′,A′) they induces, which has T ′ edges and K nodes. From Eq. (3.7), there is

T (G′,A′) (3.34)

=
1

4|T ′|

∑
p∈{I,X,Y,Z}T ′

(−1)|p|Y 2|T
′|
∏
j∈[K]

〈A(Sj)uj |σpa(Sj) |A(Sj)uj 〉. (3.35)

=
∑

p∈{I,X,Y,Z}T ′

1

2|T ′|

∏
j∈[K]

i|pa(Sj)|Y 〈A(Sj)ui |σpa(Sj) |A(Sj)uj 〉 (3.36)

(3.37)

where i =
√
−1.
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From Eq. (3.13), we know

π(C, f) (3.38)

=
∑
u

2|T
′|f(u1, . . . , uK) Pr(u1) . . .Pr(uK)T (G′,A′) (3.39)

=
∑
u

2|T
′|f(u1, . . . , uK) Pr(u1) . . .Pr(uK)

 ∑
p∈{I,X,Y,Z}T ′

1

2|T ′|

∏
j∈[K]

i|pa(Sj)|Y 〈A(Sj)ui |σpa(Sj) |A(Sj)uj 〉


(3.40)

=
∑

p∈{I,X,Y,Z}T ′

∏
j∈[K]

∑
uj

Pr(uj)i
|pa(Sj)|Y 〈A(Sj)ui |σpa(Sj) |A(Sj)uj 〉f(uj). (3.41)

So we denote a set of new tensor B = {B(Si)} on the graph G′ such that

B(Sj)pa(Sj) (3.42)

=
∑
uj

Pr(uj)i
|pa(Sj)|Y 〈A(Sj)ui |σpa(Sj) |A(Sj)uj 〉f(uj) (3.43)

= Euj i
|pa(Sj)|Y 〈A(Sj)ui |σpa(Sj) |A(Sj)uj 〉f(uj). (3.44)

where the indices of edge comes from {I,X, Y, Z}. Then, we rewrite π(C, f),

π(C, f) =
∑

p∈{I,X,Y,Z}T ′

∏
j∈[K]

B(Sj)pa(Sj) = B(V ′). (3.45)

Hence we can compute π(C, f) by contracting (G′,B).
Assume in G′, the degree of Sj is at most d. For each element B(Sj)pa(Sj) , attention that it’s the

expectation of some complex number which has norm 1 and comes from the experiment that measures
the quantum encoding of A(Sj). Assume we do M experiments for each element’s real part and image part

respectively to get tensor set B′. Then, for fix B(Sj)pa(Sj) , from the Lemma 2.1, with probability 1−4e−
Mε2

8 ,

|Re(B(Sj)pa(Sj) −B
′(Sj)pa(Sj))| ≤

ε

2
, | Im(B(Sj)pa(Sj) −B

′(Sj)pa(Sj))| ≤
ε

2
. (3.46)

So that
|B(Sj)pa(Sj) −B

′(Sj)pa(Sj) | ≤ ε. (3.47)

Then, with 2M4dK times experiments in total, with prob (1− 4e−
Mε2

8 )4dk, for any B(Sj)pa(Sj) , there is

|B(Sj)pa(Sj) −B
′(Sj)pa(Sj) | ≤ ε.

Also we know, for contracting any subset S of B, there is

B(S)pa(S)
= EuS i|pa(S)|Y 〈A(S)uS |σpa(S)

|A(S)uS 〉f(uS). (3.48)

Hence |B(S)pa(S)
| ≤ 1.

Let ε ≤ 2−10d 1
K , M = 100Kdrε2 .

Now, we can apply Lemma 3.8, within 2O(cc(G′))K time, to output the value of B′(V ) such that

|B′(V )− B(V )| = |B′(V )− π(C, f)| ≤ K24dε. (3.49)

Let µ = K24dεr, then µ ≤ 2−6dr. We enumerate 1 ≤ i ≤ r to compute each decomposition function of
f . Then with probability

(1− 4e−
Mε2

8 )4dKr ≥ 1− 4d+1Kre−
Mε2

8 ≥ 1− 22d+2Kre−Mε2/8 ≥ 1− e−Mε2/8+2d+2+lnK+ln r ≥ 2

3
, (3.50)
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the final output has error r ·K24dε = µ.
And the times we need to call oracle is the number of experiments:

2M4dKr = 2O(d)O(1/µ2) poly(K, r). (3.51)

d is the number of max degree in G′, so will be not large than cc(G′). And K is the number of parties,
should be O(n + L). Compare to G∗ which not remove undirected edges, cc(G′) ≤ O(cc(G∗)), because we
can firstly contract new subsets to old subsets and increase the degree of original subsets at most constant
multiple. So the number of calls should be less than

poly(n+ L, r)2O(cc(G∗))O

(
1

µ2

)
. (3.52)

So finally, there is a (poly(n+ L, r)2O(cc(G∗))O( 1
ε2 ), d∗, µ)-simulator of (C, f) if µ ≤ 2−O(cc(G∗))r.

Similarly, we can use the approach of recycle to decrease the number of qubit we need for oracle.

Corollary 3.10. Given the condition of Theorem 3.9. Assume P has maximal directed degree ~d, there is a
(poly(n+ L, r)2O(cc(G∗))O( 1

ε2 ), ~d, ε)-recycle-simulator of (C, f) if ε ≤ 2−O(cc(G∗))r.

Then, we can limit the scale to log(n) to get the following classical simulation results.

Corollary 3.11. Given the condition of Corollary 3.10. If ~d ≤ O(log(n)), there is a classical simulator for
(C, f) which has parameters (poly(n+ L, r)2O(cc(G∗))O( 1

ε2 ), 0, ε) if ε ≤ 2−O(cc(G∗))r.

So if r = poly(L + n), this result partially implies Theorem 3.7. An open question is whether or not
we can remove the limitation of low-rank decomposition of f . It seems that we need some power of post-
selection to achieve this. But we have to mention that low-rank decomposition function has already covered
many interesting classes people are interested. For example, compute the probability of outputing 1 of some
qubits.

4 Applications

Following we give two possible applications of our results and approaches.
First one is about evaluating an abstract tensor network. We generalize the conclusion of Section 3

into more general tensor network instead of only quantum circuits. Corollary 4.1 provides a framework to
evaluate the value of tensor network with free edges if we can obtain the quantum encoding of small pieces
from some oracle, which coming from the generalization of Lemma 3.2 by replacing the quantum gate by
general tensor. Corollary 4.2 is slight different from Corollary 4.1 by removing free edges of overall network,
which can be regarded as a generalization of Theorem 3.9 where f is low-rank decomposed to be embedded
into each piece.

Second application is about an n-qubit 2D circuit where n = x · y arranged in x rows and y columns.
Assume this circuit has low connectivity between rows and relaxing constraints of applying gates to neigh-
bor between columns. By partitioning each row into one party, it’s natural to apply Corollary 3.5 and
Corollary 3.10 (when f is low-rank decomposed) to the 2D circuit. Then we can get Corollary 4.3 and
Corollary 4.4, respectively, which both claim y qubits is enough to simulate the whole one.

4.1 Evaluating an abstract tensor network

Evaluating abstract tensor networks is an important problem in several different fields, including statistical
physics and machine learning. An interesting question is thus whether a small quantum device can help with
this task. Based on our results, we provide two general approaches for computing the value of an abstract
tensor network on a small device.

The first one comes from a generalization of Lemma 3.2, which replaces quantum gates by general tensors.
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Corollary 4.1. Given an abstract tensor network (G,A) whose graph G = (V,E) has n free edges indexed
by u (recall that G has only undirected edges), and given a classical function f : {0, 1}n → [0, 1], denote the
value of (G,A) as

T (G,A) :=
∑
u

|A(V )u|2 · f(u). (4.1)

Let P = {S1, S2, . . . , Sk} be a partition of V . Denote by T the number of edges of P, which excludes the
free edges. Assume a d-qubit quantum machine can produce the quantum encoding |A(Si)〉 for the tensor
A(Si)
|A(Si)| in time L.

Then in time k2O(T )O
(∏

i |A(Si)|2L
ε2

)
and using a d-qubit and L-gate quantum oracle, we can output a

random number ζ such that

E[|ζ − T (G,A)| < ε] >
2

3
. (4.2)

If G has no free edges, we can generalize the results from Theorem 3.9.

Corollary 4.2. Given an abstract tensor network (G,A) and a partition P = {S1, . . . , Sk} of its nodes,

assume that, for each of the tensors A(Si)
|A(Si)| , a d-qubit quantum machine can produce its quantum encoding

|A(Si)〉 in time L. Denote by G∗ the graph induced by P. Then, with assistance of a d-qubit and L-gate

quantum oracle, we can output a random number ζ in time k2O(cc(G∗))O
(∏

i |A(Si)|2L
ε2

)
, such that

E[|ζ − T (G,A)| < ε] >
2

3
. (4.3)

The approach of Arad and Landau [AL10] can be regarded as a way to get the quantum encoding of a
general tensor by using a so-called bubbling process. Their approach may require a large number of ancillas,
comparable to the number of nodes for each party at worst, and experience the difficulty of exponential
growth related to the tensor norm. Theorems 3.3 and 3.9 can be regarded as an application of the general
framework to a special case: the quantum circuit case. By utilizing the properties of quantum circuits
themselves, we can decrease the number of qubits needed to get the quantum encoding, while keeping the
norm of the system small. An interesting question is to find other applications of tensor networks to apply
these two types of general simulation frameworks.

4.2 2D circuits with low connectivity

Low-dimensional quantum circuits have been studied for a long time. Jozsa [Joz06] has shown that a 1-D
circuit with log(n) depth can be simulated classically. However, general approaches for simulating 2D circuits
are not known. Here we apply our results to 2D circuits under the constraint that their connectivity is low
along one of the dimensions.

Firstly, we apply our Corollary 3.5 to the 2D version.

Corollary 4.3. Let (C, f) be a QC algorithm which has n = x·y qubits indexed by (i, j) where i ∈ [x], j ∈ [y],
i.e., arranged in x rows and y columns. Assume that for any two-qubit gate applied to (i1, j1), (i2, j2),
we have |i1 − i2| ≤ 1. Assume the number of gates which cross different rows is T . Then (C, f) has a(
2O(T )O( xε2 ), y, ε

)
-simulator with recycling.

For example, if x = y and T = log(x), we can use a
√
n-qubit machine to simulate the n-qubit 2D circuit

in polynomial time.
If f has a low-rank decomposition, we can apply Corollary 3.10 to this circuit and get following result.

Corollary 4.4. Let (C, f) be a QC algorithm that satisfies the conditions in Corollary 4.3 where C has L
gates. Assume for any i ∈ [x− 1], the number of gates which connect the ith and the (i+ 1)th row is at most
T ′. Denote the indices of the lth output qubit by ul. Assume f can be decomposed as follows:

f(u1, . . . , uk) =

r∑
i=1

f i1(u1)f i2(u2) · · · f ik(uk). (4.4)

Then (C, f) has a
(

poly(x+ L, r)2O(T ′)O( xε2 ), y, ε
)

-simulator with recycling if ε ≤ 2−O(T ′)r.
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|0〉

|0〉

|0〉

...
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...
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H Ss H
x

Ux

z

y

Figure 7: Procedure for simulating the real and imaginary parts of 〈0n|U†0 |y〉〈y|U1|0n〉, where U0 and U1 are
two n-qubit quantum circuits and y ∈ {0, 1}n is a random string obtained by measuring the last n qubits
in the computational basis. It uses the following single-qubit gates: H :=

(
1 1
1 −1

)
/
√

2 and S :=
(

1 0
0 i

)
. We

denote this circuit by Cs(U0, U1) where s ∈ {0, 1} (with 0 ≡ Re and 1 ≡ Im).

Proof. Note that after contracting each row to one node, the circuit becomes a 1-D circuit. The degree of
each node is at most T ′, which implies the contraction complexity is at most O(T ′).

If r = poly(x+ L), x = y, T ′ = log(x), we can simulate this 2D circuit on a
√
n-qubit quantum machine.

Finally, if instead of qubits we have qutrits and each two-qutrit gate is the special gate Ω defined in
Appendix A, we can improve the simulation even further. Namely, instead of taking time O(y) to prepare
the quantum encoding of the tensor corresponding to each row of the network, we could instead apply all
O(y) two-qubit gates in parallel and prepare the encoding in constant quantum time.

These results show that a small quantum machine can provide help for 2D circuits with low connectivity
along one dimension. An interesting open question is whether can we find more circuit classes which can
be essentially simulated by small quantum machines. Furthermore, one may characterize the hierarchy of
different circuit classes by the minimal quantum resources they need.

5 An alternative approach based on [BSS16]

In this section, we will introduce Theorem 5.3: an alternative proof for slightly different version of Corol-
lary 3.5, based on cutting gates in the quantum circuit instead of thinking it as cutting edge in a tensor
network. It provides some advantage in the perceptual intuition and removing the requirement of recycle,
but lacking the ability to generalize like tensor network.

The idea can be regarded as a generalization of the approach in [BSS16], which is based on the decom-
position of quantum gates. Compare to [BSS16], it improves in two aspects. Firstly transfer the payoff on
qubits to the payoff on the number of entangled gates, which makes the limitation of costant-qubit party to
arbitary large. It is an important progress which makes the partition more flexible. On the other aspect, we
permit the small amount of qubit transformation between different party instead of just cutting gate. This
makes the cutting solution involve not only qubit space but also evolution of time.

Lemma 5.1 is a lemma which was originally shown in [BSS16]. We slightly change the approach to make
it more unify and easy to generalize. Lemma 5.2 tackles with crossing gates connect to different pieces:
isolates each piece based on gate decomposition and computes each piece by Lemma 5.1. Then Theorem 5.3
generalizes Lemma 5.2 to cover directed edges, with replacing directed edges by SWAP gates and ancillas.

Lemma 5.1 ([BSS16]). Given two n-qubit circuits that implement U0, U1 ∈ U(2n), there exists an (n+ 1)-
qubit quantum algorithm that outputs a pair of random variables (ζ, Y ) such that for any n-bit string y,

E[ζ|Y = y] · Pr(Y = y) ≡ 〈0|U+
0 |y〉〈y|U1|0〉. (5.1)

Proof. For s ∈ {0, 1}, let Cs(U0, U1) denote the circuit shown in Fig. 7. We pick s ∈ {0, 1} uniformly at
random and execute Cs(U0, U1). We denote the measurement outcomes obtained at the end of the circuit
by y ∈ {0, 1}n and z ∈ {0, 1}, see Fig. 7. Let ζ be the following function of s and z:

ζ(s, z) := 2is(−1)s+z. (5.2)
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Hence the algorithm produces two random variables: ζ and Y := y.
Let us analyze the expectation of (ζ, Y ). It is easy to verify that the quantum state produced by

Cs(U0, U1) before the final measurement is

|φs〉 =
1

2
(|0〉 (U0 + isU1) |0〉+ |1〉 (U0 − isU1) |0〉) . (5.3)

Therefore,

E(ζ|Y = y) · Pr(Y = y) (5.4)

=
∑

s,z∈{0,1}

Pr(s, z, y)ζ(s, z) (5.5)

=
1

2

(
2|〈0y|φ0〉|2 − 2|〈1y|φ0〉|2 − 2i|〈0y|φ1〉|2 + 2i|〈1y|φ1〉|2

)
(5.6)

=
1

4

(
〈0|(U†0 + U†1 )|y〉〈y|(U0 + U1)|0〉 − 〈0|(U†0 − U

†
1 )|y〉〈y|(U0 − U1)|0〉

)
(5.7)

− 1

4
i
(
〈0|(U†0 − iU

†
1 )|y〉〈y|(U0 + iU1)|0〉 − 〈0|(U†0 + iU†1 )|y〉〈y|(U0 − iU1)|0〉

)
(5.8)

= Re(〈0|U†0 |y〉〈y|U1|0〉) + Im(〈0|U†0 |y〉〈y|U1|0〉) (5.9)

= 〈0|U†0 |y〉〈y|U1|0〉. (5.10)

Then, we introduce the gate decomposition approach of multi-party. The idea is to fix decomposition
parameters and apply Lemma 5.1 to each party, then combine them together. The reason it can improve
the results of [BSS16] is because it measures the results of each party instead of enumerating all results of
one party.

Lemma 5.2. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C where G = (V,E). Let
P = {S1, S2, . . . , Sk} be a partition of nodes V such that there are only undirected edges connecting different

subsets. If P has degree d := ~d(P) (which in this case is just the maximum number of final outputs of some
partition) and T edges, then there is a (2O(T+k)O( kε2 ), d+ 1, ε)-simulator of (C, f).

Proof. Because each crossing two-qubits gate Ui is decomposed as following form (see Eq. (2.14)):

Ui =

15∑
αi=0

cαiVαi ⊗Wαi , (5.11)

We can decompose the whole circuit C into linear combination of tensor of k parties:

C =
∑

α={α1,α2,...,αT }

cαV
1
α ⊗ V 2

α ...⊗ V kα (5.12)

Each V iα is an unitary matrix which correspondings to Si and applies to quantum system not larger than m.
Because there is only undirected edge between different subsets, all T edges represent cutting of two-qubit
gates.

And then we rewrite π(C, f):

π(C, f)

=
∑

y∈{0,1}n+m

〈0n+m|C†|y〉〈y|C|0n+m〉f(y)

=
∑

y1,...,yk

〈0n|
∑
α

c∗αV
1†
α ⊗ ...⊗ V k†α |y1〉〈y1| ⊗ ...⊗ |yk〉〈yk|

∑
β

cβV
1
β ⊗ ...⊗ V kβ |0n〉f(y1, ..., yk)

=
∑
α,β

c∗αcβ
∑
y1,..yk

〈0|V 1†
α |y1〉〈y1|Vβ |0〉 · ... · 〈0|V k†α |yk〉〈yk|V kβ |0〉f(y1, ..., yk).

(5.13)
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Recall that cαi ≥ 0,
∑
αi
c2αi = 1, so cα =

∏
i cαi also satisfy cα ≥ 0,

∑
α c

2
α = 1. Denote

S =
∑
α

cα. (5.14)

Then

π(C, f) =
∑
α,β

cα
S

cβ
S

∑
y1,...,yk

〈0|V 1†
α |y1〉〈y1|Vβ |0〉 · ... · 〈0|V k†α |yk〉〈yk|V kβ |0〉 · S2 · f(y1, ..., yk). (5.15)

Our algorithm works as following: firstly randomly pick α, β with probability cα
S ,

cβ
S . Then by applying

Lemma 5.1, we constrcut k circuits where ith circuit given input V iα, V
i
β outputs random varible (ζi, yi).

Finally output the random variable σ as following:

σ = Re(

k∏
i=1

ζi · f(y1, ..., yk) · S2). (5.16)

Now we prove that E[σ] = π(C, f).

E[σ]

=Re

∑
α,β

cα
S

cβ
S

∑
ζi,yi

(
k∏
i=1

Pr(ζi, yi) · ζi

)
· f(y1, ..., yk) · S2


=Re

∑
α,β

cα
S

cβ
S

∑
yi

 k∏
i=1

∑
ζi

Pr(ζi, yi) · ζi

 · f(y1, ..., yk) · S2


=Re

∑
α,β

cα
S

cβ
S

∑
yi

(
k∏
i=1

〈0|V i†α |yi〉〈yi|V iβ |0〉

)
· f(y1, ..., yk) · S2


=Re(π(C, f))

=π(C, f).

(5.17)

Also, it’s easy to see that σ is bounded:

|σ| ≤ 2kS2 ≤ 2k+4T . (5.18)

where
∑16T

α=1 c
2
α = 1 induce

∑
α cα = S ≤ 4T .

By Corollary 2.2, the number of experiments we need to achieve ε error is 2O(k+T )O(1/ε2). Each
experiment, we need call k times quantum oracle, to run a d + 1 quantum circuit. Then, there is a
(2O(k+T )O( kε2 ), d+ 1, ε)-simulator of (C, f).

Now we apply Lemma 5.2 to prove a slightly weak version of Corollary 3.5. The slight difference is that
we use the d+1-qubit non-recycle simulator to replace exactly d-qubit recycle simulator, with paying 2O(k+T )

cost in quantum calls instead of 2O(T ).

Theorem 5.3. Let (C, f) be a QC algorithm and (G,A) be the tensor network of C where G = (V,E). Let

P = {S1, S2, . . . , Sk} be a partition of nodes V . If P has degree d := ~d(P) and T edges, then there is a
(2O(T+k)O( kε2 ), d+ 1, ε)-simulator of (C, f).

Proof. Our approach is to replace the directed edge (qubit transmitting) between subests by SWAP gate.
For each directed edge connect from subset Si to Sj , we add an ancilla qubit in Sj and then replace the edge
by a SWAP gate. The new tensor network is equivalent to original one.

Finishing the process, the total number of crossing edges is still T , and each subset Si now have ~d(Si)
qubits to run because of adding ancilla qubits. By lemma 5.2, there is a (2O(T+k)O( kε2 ), d + 1, ε)-simulator
of (C, f).
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The (unnormalized) form of the state in question is as follows:

|Ω〉 :=

2∑
i,j=0

|i〉|j〉|i+ j〉|i+ 2j〉, (A.1)

where the arithmetic on indices is performed modulo 3. This means that |Ω〉 is maximally entangled across
any bipartition of the four qutrits into two groups of two. Equivalently, if any two qutrits are measured in
the standard basis, the state of the other two can be uniquely recovered from the measurement outcomes.
Indeed, if we identify the two variables by vectors in Z2

3 via i ≡ (1, 0) and j ≡ (0, 1), this is equivalent to
saying that any pair of rows of 

1 0
0 1
1 1
1 2

 (A.2)

are linearly independent over Z3, which one can easily check.
One way of exploiting the properties of the state |Ω〉 is by considering any of the six possible matrices

obtained by turning any two of the kets in Eq. (A.1) into bras. For example, consider the following 9 × 9
matrix:

Ω :=

2∑
i,j=0

|i+ j〉|i+ 2j〉〈i|〈j|. (A.3)

It is not hard to convince oneself that this is a permutation matrix (indeed, from i and j one can uniquely
determine i+ j and i+ 2j and vice versa), hence we can treat Ω as a two-qutrit unitary gate.

As a quantum gate, Ω has the important property of being entangling, i.e., it can produce an entangled
state out of two product states. This is most easily seen from the following example:

Ω

(
|0〉+ |1〉+ |2〉√

3
⊗ |0〉

)
=
|00〉+ |11〉+ |22〉√

3
. (A.4)

From this observation and [BB02, BDD+02] we can conclude that Ω is universal.

Claim A.1. The two-qutrit gate Ω together with all single-qutrit gates is universal for quantum computation.

This means that without loss of generality we can consider quantum circuits based only on the gate set
{Ω} ∪U(3). This has interesting consequences for quantum circuit simulation. Since any two indices of the
4-tensor Ω can be considered as inputs and the other two as outputs, there is much more freedom in terms of
the order in which we can contract a tensor network or execute a quantum circuit that we want to simulate.
We provide an example to illustrate this in more detail.

Example A.2. Assume the rectangle of the 2D grid circuit shown in Fig. 1 has height x and width y. Then
the total number of tensors is O(xy) and the total number of free edges is O(x + y). Since each free edge
is either an input or output (and the number of inputs and outputs has to be the same) the total amount of
memory required to implement this circuit is O(x + y), irrespectively of which edges we consider as inputs
and hence irrespectively also of the order in which we implement the gates.

Note that for the purpose of preparing a quantum encoding of the reduced tensor, which is obtained by
contracting all edges, we can choose the inputs and outputs arbitrarily. However, it is clear that considering
the left-ward pointing edges as inputs and the right-ward pointing ones as outputs, the number of time-steps
necessary for implementing the circuit is O(y). However, if we instead consider the upward pointing edges
as inputs and the downward pointing ones as outputs, the number of time-steps is O(x). Note that in this
case we would be implementing O(y) two-qutrit gates in parallel at each time-step, as opposed to O(x).

The important point is that if x� y, it is much more advantageous to evaluate the tensor network from
top to bottom rather than from left to right. Note that we have this freedom only thanks to the properties
of the gate Ω. In particular, if we do not work in the tensor network framework but rather directly with the
circuit, we cannot take advantage of this effect.
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