
Verifiable Multi-secret Sharing Schemes for Multiple
Threshold Access Structures

Christophe Tartary1,2, Josef Pieprzyk3, and Huaxiong Wang1,3

1 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

2 Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084
People’s Republic of China

3 Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing

Macquarie University
NSW 2109 Australia

{ctartary,josef}@ics.mq.edu.au
HXWang@ntu.edu.sg

Abstract. A multi-secret sharing scheme allows several secrets to be shared
amongst a group of participants. In 2005, Shao and Cao developed a verifiable
multi-secret sharing scheme where each participant’s share can be used several
times which reduces the number of interactions between the dealer and the group
members. In addition some secrets may require a higher security level than oth-
ers involving the need for different threshold values. Recently Chan and Chang
designed such a scheme but their construction only allows a single secret to be
shared per threshold value.

In this article we combine the previous two approaches to design a multiple
time verifiable multi-secret sharing scheme where several secrets can be shared
for each threshold value. Since the running time is an important factor for prac-
tical applications, we will provide a complexity comparison of our combined
approach with respect to the previous schemes.

Keywords: Secret Sharing Scheme, Threshold Access Structures, Share Verifia-
bility, Chinese Remainder Theorem, Keyed One-Way Functions.

1 Introduction

In 1979, Blakley and Shamir independently invented (t, n)-threshold secret sharing
schemes in order to facilitate the distributed storage of secret data in an unreliable envi-
ronment [1, 18]. Such a scheme enables an authority called dealer to distribute a secret
s as shares amongst n participants in such a way that any group of minimum size t can
recover s while no groups having at most t−1 members can get any information about s.

Sometimes, however, several secrets have to be shared simultaneously. A basic idea
consists of using a (t, n)-threshold scheme as many times as the number of secrets.
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This approach, however, is memory consuming. As noticed by Chien et al. [4], multi-
secret sharing schemes can be used to overcome this drawback. In such a construction,
multiple secrets are protected using the same amount of data usually needed to protect
a single secret. Multi-secret sharing schemes can be classified into two families: one-
time schemes and multiple time schemes [12]. One-time schemes imply the dealer must
redistribute new shares to every participant once some particular secrets have been re-
constructed. Such a redistribution process can be very costly both in time and resources,
in particular, when the group size n gets large as it may be the case in group-oriented
cryptography [6].

Several constructions of multiple time schemes have been achieved [4, 25]. Never-
theless they have the drawback that a dishonest dealer who distributes incorrect shares
or a malicious participant who submits an invalid share to the combiner prevents the se-
crets from being reconstructed. The idea of robust computational secret sharing schemes
was introduced by Krawczyk [14] to deal with this problem. Several such protocols
were developed. Harn designed a verifiable multi-secret sharing scheme [10] which
was extended by Lin and Wu [15]. In [3], Chang et al. recently improved that construc-
tion even further by providing resistance against cheating by malicious participants and
reducing the computational complexity with respect to [10, 15]. The security of that
scheme relies on the intractability of both factorization and discrete logarithm problem
modulo a composite number. In [25], another multi-secret sharing scheme was devel-
oped by Yang et al. As [4], its security is based on the existence of keyed one-way func-
tions introduced by Gong in [9]. Shao and Cao recently extended Yang et al.’s scheme
by providing the verification property and reducing the number of public values[19].

It may occur that the same group of n participants share several secrets related to dif-
ferent threshold values according to their importance. As an example, consider that an
army commander requests a strike to be executed and transmits the order to a group of
10 generals. One can imagine that any pair of officers can reconstruct the coordinates
of the target and then initialize the process by mobilizing the appropriate equipment
(plane, submarine, missile) but only subsets of 8 out of 10 generals can get access to the
bomb activation code and launch the strike. Recently Chan and Chang designed such
a construction [2] but it only allows a single secret to be shared per threshold value.

In this article, we propose a generalization of [2, 19] by introducing a Verifiable
Multi-Threshold Multi-secret Sharing Scheme (VMTMSS) where several secrets can
be shared per threshold value. The security of our multiple time scheme is guaranteed
as soon as keyed one-way functions and collision resistant one-way functions exist. In
the previous situation, our VMTMSS would enable any pair of generals to have access
to target location, launch time, type of weapon to be used while any subset of 8 out of
10 officers can recover the bomb code as well as the commander’s digital signature [20]
as the approval for the strike. This example also emphasizes the need for computational
efficiency. Therefore we will also provide an analysis of the computational cost of our
construction.

This paper is organized as follows. In the next section we will recall the polynomial
interpolation problem as well as Garner’s algorithm since they will have an important
role in our construction. In Sect. 3, we will describe our multi-secret sharing scheme
and prove its soundness. In Sect. 4, we will analyze the computational complexity of
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our approach and compare it to the cost of the two constructions from [2, 19]. The last
section will summarize the benefits of our construction.

2 Preliminaries

In this part we recall two problems which will play an important role in proving the
soundness and efficiency of the scheme we describe in Sect. 3.

2.1 Interpolating Points

Assume that we are given λ points (x1, y1), . . . , (xλ, yλ) such that the xi’s are distinct
in a field K. The Lagrange interpolating polynomial Lλ(X) is the only polynomial of
degree at most λ − 1 passing through the previous λ points. Algorithm 4.6.1 from [8]

computes the λ coefficients of Lλ(X) using 5 (λ−1)2

2 field operations in K.
We now consider that we work over the finite field Z/pZ for some prime number

p. In this field an addition/subtraction requires O(log2 p) bit operations and a multi-
plication needs O(log2

2 p) bit operations. Using Algorithm 14.61 and Note 14.64 from
[16], an inversion can be performed in O(log2

2 p) bit operations as well. Therefore the
λ coefficients of Lλ(X) can be obtained using O(λ2 log2

2 p) bit operations.

2.2 Solving the Chinese Remainder Problem

We first recall the Chinese Remainder Theorem (CRT):

Theorem 1. Let m1, . . . , mλ be λ coprime integers and denote M their product. For
any λ-tuple of integers (v1, . . . , vλ), there exists a unique x in Z/MZ such that:

⎧
⎪⎨

⎪⎩

x ≡ v1 mod m1
...

...
x ≡ vλ mod mλ

Solving the Chinese remainder problem is reconstructing the unique x in Z/MZ once
v1, . . . , vλ and m1, . . . , mλ are given. This can be achieved thanks to Garner’s algo-
rithm [16]. Based on Note 14.74, its running time is O(λ log2

2 M) bit operations.

3 Our Multi-secret Sharing Scheme

We assume that we have n participants P1, . . . , Pn and � distinct threshold values
t1, . . . , t�. Consider we have � distinct prime numbers p1, . . . , p�. For each i in
{1, . . . , �} we denote Si 1, . . . , Si ki the ki secrets of the (ti, n)-threshold scheme. With-
out loss of generality we can assume that those ki secrets belong to Z/piZ. We first
introduce the following definition:

Definition 1. A function f : IR+ → IR+ is said to be negligible if:

∀α > 0 ∃ζ0 ∈ IR+ : ∀ζ > ζ0 f(ζ) < ζ−α

We have the following definition adapted from Definition 13.2 [20].
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Definition 2. A threshold multi-secret sharing scheme for threshold value t is a method
of sharing k secrets S1, . . . , Sk among a set of n participants {P1, . . . , Pn} in such a
way that the following properties are satisfied:
(i) (soundness) If at least t participants pool their shares together then they recover the
whole k secrets S1, . . . , Sk.
(ii) (secrecy) If at most t − 1 participants pool their shares together then they do not
recover the whole k secrets with non-negligible probability as a function of the secret’s
size.

The reader may notice that Definition 13.2 is related to perfect secrecy since it is there
assumed that the coalition of t− 1 participants does not know anything about the secret
value (i.e. all values are equally probable). This cannot be held here as several secrets
will be shared using the same polynomial. Nevertheless we will see that t − 1 partici-
pants cannot recover the whole k secrets with good probability. We can generalize the
previous definition as follows:

Definition 3. A multiple-threshold multi-secret sharing scheme for threshold values
t1, . . . , t� is a method of sharing k1 + · · · + k� secrets S1 1, . . . , S� k�

among a set of n
participants {P1, . . . , Pn} in such a way that the following properties are satisfied:
(i) (soundness) For each i ∈ {1, . . . , �}, if at least ti participants pool their shares to-
gether then they recover the whole ki secrets Si 1, . . . , Si ki .
(ii) (secrecy) For each i ∈ {1, . . . , �}, if at most ti − 1 participants pool their shares
together then they do not recover the whole ki secrets Si 1, . . . , Si ki with non-negligible
probability as a function of the secret’s size.

A verifiable multiple-threshold multi-secret sharing scheme (VMTMSS) is a multiple-
threshold multi-secret sharing scheme for which the validity of the share can be publicly
verifiable. Let us introduce the following definition from [9]:

Definition 4. A function f(·, ·) that maps a key and a second bit string of a fixed length
is a secure keyed one-way hash function if it satisfies the following five properties:

P1: Given k and x, it is easy to compute f(k, x).
P2: Given k and f(k, x), it is hard to compute x.
P3: Without knowledge of k, it is hard to compute f(k, x) for any x.
P4: Given k, it is hard to find two distinct values x and y such that f(k, x) = f(k, y).
P5: Given (possibly many) pairs (x, f(k, x)), it is hard to compute k.

Remark, however, this secure keyed one-way function is not equivalent to the two-
variable one-way function defined by He and Dawson in [11] contrary to what claimed
Chien et al. [4]. Indeed the collision resistance property P4 of the keyed one-way func-
tion is not a requirement for the functions created by He and Dawson (see Definition 1
in [11]).

We assume that we have � such functions f1, . . . , f� whose respective domains are
D1, . . . , D�. Without loss of generality we can assume that the prime numbers
p1, . . . , p� are chosen such that: ∀i ∈ {1, . . . , �} fi(Di) ⊂ Z/piZ. We also assume:
∀i ∈ {1, . . . , �} Di ⊂ Z/piZ × Z/piZ. We need to use a collision resistant hash func-
tion H [17]. As in [13], it will be used to check the validity of the shares.
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Our approach will consist of two steps. First we will treat each (ti, n)-threshold
scheme separately. We build a polynomial Fi(X) whose degree and coefficients will be
determined similarly to [25]. Second we will combine the � polynomials F1(X), . . . ,
F�(X) using the following result obtained by extending Corollary 3.2 from [2]:

Corollary 1. (Polynomial form of CRT) Let m1, . . . , mλ be λ coprime integers and
denote their product by M . For any λ-tuple of polynomials (A1(X), . . . , Aλ(X)) from
Z/m1Z[X ] × · · · × Z/mλZ[X ], there exists a unique polynomial A(X) in Z/MZ[X ]
such that:

⎧
⎪⎨

⎪⎩

A(X) ≡ A1(X) mod m1
...

...
A(X) ≡ Aλ(X) mod mλ

(1)

In addition: deg(A(X)) = max
i∈{1,...,λ}

(deg(Ai(X))).

Proof. In [2], Chan and Chang proved the existence of such a polynomial A(X). What
remains to demonstrate is its uniqueness and the value of its degree.

Let A(X) be a polynomial from Z/MZ[X ] solution of (1) and denote α its degree. The
ring isomorphism:

Z/MZ � Z/m1Z × · · · × Z/mλZ (2)

involves α = max
i∈{1,...,λ}

(deg(Ai(X))) since (2) implies an element μ is congruent to 0

in Z/MZ if and only if μ is congruent to 0 in each Z/miZ for i ∈ {1, . . . , λ}.

Let A(X) and Ã(X) be two solutions of (1). Since their degree is α, we can write them
as:

A(X) :=
α∑

i=0

ai X i and Ã(X) :=
α∑

i=0

ãi X i

where the ai’s and ãi’s are elements of Z/MZ. Since these polynomials are solutions
of (1) and due to (2), we deduce: ∀i ∈ {0, . . . , α} ai ≡ ãi mod M . 	


The previous proof involves that A(X) can be computed from A1(X), . . . , Aλ(X) us-
ing Garner’s algorithm α+1 times. We will now present the details of our construction.

3.1 Scheme Construction

Our construction consists of three algorithms: SetUp, ShareConstruction and SecretRe-
construction. The first two algorithms will be run by the dealer while the last one will
be executed by the combiner. As in [4, 19], SetUp will only be run once while Share-
Construction will be called each time new secrets are to be shared. The private elements
distributed to the n participants by the dealer when running SetUp will ensure that our
VMTMSS is a multiple time scheme.
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SetUp
Input: The group size n and � distinct prime numbers p1, . . . , p�.
1. For each i ∈ {1, . . . , �}, generate n distinct elements of Z/piZ denoted si 1, . . . , si n.
2. Use Garner’s algorithm as: ∀j ∈ {1, . . . , n} Sj := Garner(s1 j , . . . , s� j , p1, . . . , p�).
3. Distribute Sj to participant Pj over a secure channel for each j ∈ {1, . . . , n}.
Output: The n private values S1, . . . , Sn which will be used by the participants to check
the validity of their pseudo-shares.

We have the following observation concerning [4, 19]. Each of the n participants Pi

receives a secret value si. The dealer chooses a random element r and evaluates the
pseudo-shares f(r, s1), . . . , f(r, sn) where f is the keyed one-way function used in
those schemes. He builds a polynomial h(X) whose k lowest degree coefficients rep-
resent the k secrets to be shared. Finally he publishes r, h(f(r, s1)), . . . , h(f(r, sn))
so that the combiner can verify the validity of shares. In order to ensure the multiple
time property of their construction, a new value r is generated each time a new set of k
secrets is to be shared. If r is chosen such that f(r, si0) is 0 then Pi0 can recover one of
the secrets as the constant term of the polynomial h(X) from the list of public elements
since: h(0) = h(f(r, si0)). Even if the probability of such an event is negligible when
the domain of f is large, it is still easy to deal with this problem by shifting each coef-
ficient of the polynomial h(X) by one position and setting up the new constant term as
a random element. This is at the cost of publishing an extra point to reconstruct h(X)
since its degree has increased by 1.

We will now introduce our algorithm ShareConstruction. We first introduce the follow-
ing notation:

∀i ∈ {1, . . . , �} δi :=
{

0 if ti ≥ ki

ki − ti otherwise

Notice that δi can be computed as soon as both ti and ki are known.

ShareConstruction
Input: The group size n, the prime numbers p1, . . . , p�, the threshold values t1, . . . , t�,
the number of secrets k1, . . . , k�, the corresponding secrets S1 1, . . . , S1 k1, . . . , S� 1, . . . ,
S� k�

, the functions f1, . . . , f�, the elements s1 1, . . . , s� n from SetUp and the collision
resistant hash function H .

1. For each i ∈ {1, . . . , �}, pick uniformly at random an element ri from Z/piZ. Use
Garner’s algorithm as: R := Garner(r1, . . . , r�, p1, . . . , p�).
2. Do the following:

2.1. Compute fi(ri, si j) for i ∈ {1, . . . , �} and j ∈ {1, . . . , n}.
2.2. Compute the hashes H(fi(ri, si j)) for i ∈ {1, . . . , �} and j ∈ {1, . . . , n} and
publish them as table TH.
2.3. Use Garner’s algorithm as: ∀j ∈ {1, . . . , n} Pj := Garner(f1(r1, s1 j), . . . ,
f�(r�, s� j), p1, . . . , p�).

3. For each i ∈ {1, . . . , �} do the following:
3.1. Pick uniformly at random an element Ci from Z/piZ.
3.2. If ti > ki then:
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Pick uniformly at random ui 1, . . . , ui δi from Z/piZ.

Build the polynomial: Fi(X) := Ci +
ki

Σ
j=1

Si j Xj +
ti−ki

Σ
j=1

ui j Xj+ki

Else

Build the polynomial: Fi(X) := Ci +
ki

Σ
j=1

Si j Xj

4. Denote D := max
i∈{1,...,�}

(deg(Fi(X))). For each i ∈ {1, . . . , �}, write Fi(X) as:

Fi(X) :=
D

Σ
j=0

Fi j Xj where: ∀j ∈ {deg(Fi(X)) + 1, . . . , D} Fi j = 0. Use Garner’s

algorithm as: ∀j ∈ {0, . . . , D} Fj := Garner(F1 j , . . . , F� j , p1, . . . , p�).

5. Build the polynomial F(X) as: F(X) :=
D

Σ
j=0

Fj Xj and compute F(P1), . . . , F(Pn).

6. Do the following:
6.1. For each i ∈ {1, . . . , �}, generate an element ai from Z/piZ distinct from
si 1, . . . , si n.
6.2. Use Garner’s algorithm as: A := Garner(f1(r1, a1), . . . , f�(r�, a�), p1, . . . , p�).
6.3. Compute F(A).

7. For each i ∈ {1, . . . , �} such that δi > 0 do the following:
7.1. Generate δi elements s′i 1, . . . , s

′
i δi

such that si 1, . . . , si n, ai, s
′
i 1, . . . , s

′
i δi

are
n + 1 + δi distinct elements of Z/piZ.
7.2. Compute fi(ri, s

′
i 1), . . . , fi(ri, s

′
i δi

).
7.3. Compute Fi(fi(ri, s

′
i 1)), . . . , Fi(fi(ri, s

′
i δi

)).
8. Publish the table T containing R, F(P1), . . . , F(Pn), (A, F(A)) as well as the
couples (fi(ri, s

′
i 1), Fi(fi(ri, s

′
i 1))), . . . , (fi(ri, s

′
i δi

), Fi(fi(ri, s
′
i δi

))) for each i such
that δi > 0.
Output: The table TH which will be used to verify the pseudo-shares and the table T
which will be used to reconstruct the secrets of our VMTMSS.

Notice that (A, F(A)) is the extra point needed to overcome the problem from [19].
We also remark that any participant Pj can compute the pseudo-shares fi(ri, si j) from
the public value R and his secret element Sj since:

{
ri = R mod pi

si j = Sj mod pi

Using this information any participant can verify the validity of his pseudo-shares by
checking their � hashes from table TH. Similarly the combiner can check the validity
of any pseudo-share submitted during the secret reconstruction process using TH as
well. Notice, however, that the prime numbers p1, . . . , p� should be large enough in
order to prevent an exhaustive search to be performed by an adversary who would
compute H(ζ) (where ζ ∈ Z/piZ) until finding a match amongst the n elements
H(fi(ri, si 1)), . . . , H(fi(ri, si n)). Figure 1 represents the previous two algorithms.
The construction of polynomials F1(X), . . . , F�(X) and F(X) is depicted on Fig. 2.

We will now design SecretReconstruction which is run be combiner to recover the
secrets. We assume that Pj1 , . . . , Pjti

are the ti participants wishing to reconstruct the
ki secrets of the (ti, n)-threshold scheme.
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Moduli p1 · · · p�

s1 1 · · · s� 1

s1 n · · · s� n

Random
...

...

a1 · · · a�

s′
1 1 · · · s′

� 1

s′
1 n · · · s′

� n

Elements
...

...

r1 · · · r�

f1(r1, s1 1)
Pseudo

· · · f�(r�, s� 1)

f1(r1, s1 n)
Shares · · · f�(r�, s� n)

...
...

� �Garner

� �Garner

� �Garner

� �Garner

� �Garner

p1 × · · · × p�

S1

Sn

...

R

P1

Pn

...

� �F(X)

� �F(X)

F(P1)

F(Pn)

...

p1 × · · · × p�

f1(r1, a1) · · · f�(r�, a�) � �Garner A � �F(X) F(A)

f1(r1, s
′
1 1) · · · f�(r�, s

′
� 1)

f1(r1, s
′
1 δ1

) · · · f�(r�, s
′
� δ�

)

...
...

�

�
F1(X)

�

�
F�(X)

F1(f1(r1, s
′
1 1))· · ·F�(f�(r�, s

′
� 1))

F1(f1(r1, s
′
1 δ1))· · ·F�(f�(r�, s

′
� δ�

))

...
...

Extra Point

Additional

Couples

Of

Points

(δi > 0)

� �

Fig. 1. Representation of SetUp and ShareConstruction

SecretReconstruction
Input: The threshold value ti, the number of secrets ki, the prime numbers p1, . . . , p�,
the public table T as well as the pseudo-shares of the ti participants fi(ri, si j1), . . . ,
fi(ri, si jti

).
1. Compute xti+1 := A mod pi and yti+1 := F(A) mod pi. For each λ ∈ {1, . . . , ti},
compute yλ := F(Pjλ

) mod pi.
2. If δi = 0 then:

2.1. Reconstruct the Lagrange interpolating polynomial passing through the points
(fi(ri, si j1), y1), . . . , (fi(ri, si jti

), yti), (xti+1, yti+1).

2.2. Write the polynomial obtained as:
ti

Σ
j=0

μj Xj and return μ1, . . . , μki .

Else
2.3. Reconstruct the Lagrange interpolating polynomial passing through the points
(fi(ri, si j1), y1), . . . , (fi(ri, si jti

), yti),(xti+1, yti+1), (fi(ri, s
′
i 1),Fi(fi(ri, s

′
i 1))),

. . . , (fi(ri, s
′
i δi

), Fi(fi(ri, s
′
i δi

))).

2.4. Write the polynomial obtained as:
k i

Σ
j=0

μj Xj and return μ1, . . . , μki .

Output: The ki secrets μ1, . . . , μki of the (ti, n)-threshold scheme.
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Moduli

S1 1 · · · S1 k1

S� 1 · · · S� k�

p1

...
p�

...
...

F� max(t�,k�)

F1 0 · · · F1 max(t1,k1)

F� 0 · · ·

...
...

F1(X)
...

F�(X)

}

}

F� D

F1 0 · · · F1 D

F� 0 · · ·

...
...

FDF0 · · ·
︸ ︷︷ ︸

F(X)

p1

...
p�

p1 × · · · × p�

Garner Garner

Fig. 2. Construction of Polynomials by the Dealer

3.2 Security Analysis

In this section, we have to demonstrate that our VMTMSS verifies the properties from
Definition 3. In particular we have to argue that the table of hashes TH and the table
of extra points T do not leak too much information about the secrets. We have the
following result for our construction:

Theorem 2. The reconstruction algorithm SecretReconstruction is sound.

Proof. We have to demonstrate that, for any value i in {1, . . . , �}, the elements output
by SecretReconstruction are the ki secrets of the (ti, n)-threshold scheme whatever the
family of ti participants is.

Let i be any element of {1, . . . , �}. Consider Pj1 , . . . , Pjti
a family of ti participants.

Due to Steps 2, 4 and 5 of ShareConstruction2, we have the following result:

∀i ∈ {1, . . . , �} ∀λ ∈ {1, . . . , ti} Fi(fi(ri, si jλ
)) = F(Pjλ

) mod pi

Due to Property P4 of fi, Step 1 of SetUp and Step 6.1 of ShareConstruction, the el-
ements fi(ri, si j1), . . . , fi(ri, si jti

), fi(ri, ai) are distinct with overwhelming proba-
bility. Since fi(ri, ai) = A mod pi = xti+1, the ti + 1 points (fi(ri, si j1), y1), . . . ,
(fi(ri, si jti

), yti), (xti+1, yti+1) have different abscissas in Z/piZ. We have two cases
to consider:

First Case: δi = 0. We can interpolate the previous ti + 1 points as in Sect. 2.1 and
denote Lti+1(X) the corresponding Lagrange polynomial obtained at Step 2.1 of Se-
cretReconstruction. It should be noticed that the polynomial Fi(X) defined at Step 3.2
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of ShareConstruction passes through the same points and has degree at most ti (it is
exactly ti if the highest degree coefficient is different from 0). Due to the uniqueness of
such a polynomial (see Sect. 2.1) we get: Lti+1(X) = Fi(X). Thus the ki coefficients
returned at Step 2.2 of SecretReconstruction are the ki secrets of the (ti, n)-threshold
scheme: Si 1, . . . , Si ki .

Second Case: δi > 0. Using table T , we obtain δi additional points:
(fi(ri, s

′
i 1), Fi(fi(ri, s

′
i 1))), . . . , (fi(ri, s

′
i δi

), Fi(fi(ri, s
′
i δi

))). This leads to a total of
ti + 1 + δi = ki + 1 points have different abscissas. We can interpolate those ki + 1
points as in Sect. 2.1 and denote Lki+1(X) the corresponding Lagrange polynomial
obtained at Step 2.3 of SecretReconstruction. As Fi(X) passes through the same points
and has degree at most ki (it is exactly ki if the secret Si ki is different from 0) we get:
Lki+1(X) = Fi(X). Thus the ki coefficients returned at Step 2.4 of SecretReconstruc-
tion are the ki secrets of the (ti, n)-threshold scheme: Si 1, . . . , Si ki . 	


Theorem 3. Our VMTMSS achieves secrecy.

Proof. Let i be any integer in {1, . . . , �}. Assume that ti − 1 participants pool their
pseudo-shares together and use public knowledge from tables T and TH. The partici-
pants are denoted Pj1 , . . . , Pjti−1 . Since H is a collision resistant hash function, H is a
one-way function. Therefore with overwhelming probability, the only information the
colluders learn from table TH is the pseudo-shares of the non-colluding members are
different from theirs. Nevertheless this fact was already known to each of the n par-
ticipants due to Step 1 of SetUp, property P4 and (2). So table TH does not give any
extra-information to the colluders with overwhelming probability. We have two cases
to consider.

First Case: δi = 0. The colluders have to determine the ti + 1 coefficients of Fi(X)
(Step 3.2 of ShareConstruction). Using the same technique as in the proof of Theorem 2,
they can obtain ti points Fi(X) goes through from their pseudo-shares and the point
(A, F(A)) from T . Consider the set:

E := {(fi(ri, si j), Fi(fi(ri, si j))) : j /∈ {j1, . . . , jti−1}}

The elements of E represent the points owned by the non-colluding members. It should
be noticed that the n values Fi(fi(ri, si 1)), . . . , Fi(fi(ri, si n)) are known to each
group participant since they can be obtained by reductions modulo pi from elements
F(P1), . . . , F(Pn) contained in T . We will see that the probability the colluders can
construct an element of E is negligible as a function of the length of pi.

Due to Property P4 of the function fi the colluders know, with overwhelming probabil-
ity, that the abscissas of the elements of E belong to:

fi(Di) \
{
fi(ri, si j1), . . . , fi(ri, si jti−1), A mod pi

}

We would like to draw the reader’s attention to the following point. Once Fi(fi(ri, si μ))
is given, there may be more than one value x such that Fi(x) = Fi(fi(ri, si μ)). In the
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worst case we can have up to n − ti + 1 such values for x which happens when all the
ordinates of the elements of E are equal. Thus:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ n + 1
|fi(Di)| − n

Second Case: δi > 0. The colluders have to determine the ki +1 coefficients of Fi(X)
(Step 3.2 of ShareConstruction). As before, they can obtain ti + δi points Fi(X) goes
through from their pseudo-shares and the δi + 1 points from T . As previously we get:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ n + 1
|fi(Di)| − ki

Without loss of generality, we can assume that the range of fi represents a non-
negligible part of Z/piZ. At the same time, we can consider that the group size n and
ki is small in comparison to pi so that there exists Ci, independent from pi, such that,
in both cases, we have:

Prob((x, Fi(fi(ri, si μ))) ∈ E, x is built by the colluders) ≤ Ci

pi

Therefore it is sufficient to pick the smallest of the � primes to be 80 bits long to ensure
computational secrecy for our scheme. �

4 Complexity Survey

As claimed in Sect. 1, the computational and storage costs represent key factors to take
into account when implementing a protocol as a part of a commercial application. In
this part we study the cost of our construction and compare it to the schemes from
[2, 19]. In this section we denote M the product of the � prime numbers p1, . . . , p�. We
assume that picking random elements from the sets Z/p1Z, . . . , Z/p�Z has a negligible
computational cost.

4.1 Cost of Our Construction

Computational Cost at the Dealer. Based on Sect. 2.2, SetUp can be executed in
O(n � log2

2 M) bit operations.
ShareConstruction performs n + D + 3 calls to Garner’s algorithm which results in

O((n+D) � log2
2 M) bit operations. In addition there are n+1 polynomial evaluations

over Z/MZ. Using Horner’s rule each of them can be done via D additions and D multi-
plications in Z/MZ. Based on Sect. 2.1, this represents a total of O(n D log2

2 M) bit op-
erations. There are also δi polynomial evaluations over Z/piZ. If we
denote Δ := max

i∈{1,...,�}
δi then the δ1 + · · · + δ� polynomial evaluations cost

O

(

ΔD log2
2

(

max
i∈{1,...,�}

pi

))

bit operations. Since each prime number pi is less than
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M , the total cost of ShareConstruction is O([D (� + n + Δ) + n �] log2
2 M) bit opera-

tions. Furthermore the collision resistant hash function H is run n � times while each
keyed one-way function fi is run n + δi times.

Computational Cost at the Combiner. Notice that the cost of SecretReconstruction
depends on the threshold value ti. We have ti + 2 reductions modulo pi of elements
Z/MZ. This can be done using Euclid’s divisions in O(ti (log2 M log pi)) bit opera-
tions. In addition an interpolating polynomial passing through ti +1+ δi points is to be
build over Z/piZ. We know from Sect. 2.1 this can be achieved in O((ti + δi)

2 log2
2 pi)

bit operation. Since pi ≤ M , we deduce that SecretReconstruction runs in
O((ti + δi)

2 log2 M log2 pi) bit operations.

Storage of Public Elements. Denote size(x) the number of bits used to represent the

natural integer x. We have size(x) = log2 x� + 1. We define ρ :=
�

Σ
i=1

δi size(pi) and

ρ′ :=
�

Σ
i=1

size(pi). We also denote H the bitsize of a digest produced by the collision

resistant hash function. First, storing TH requires n � H bits. Second, T contains n + 3
elements from Z/MZ and 2 δi elements from Z/piZ for each i ∈ {1, . . . , �}. Thus the
size of T is (n + 3) size(M) + 2 ρ bits. As a consequence the size of public elements
represents a total of n (� H+ size(M))+3 size(M)+2 ρ bits. Notice, however, that the
sender must buffer all the elements s1 1, . . . , s� n from Step 1 of SetUp which represents
n ρ′ bits.

4.2 Efficiency Comparison

The parameters of the schemes are depicted in Table 1. Notice that the construction by
Chan and Chang does not allow flexibility in the number of secrets to be shared. Indeed
when we iterate that construction λ times (with the same threshold values) then the total
number of secrets has to be λ �. Therefore we restrict our comparison to the scheme by
Shao and Cao as it enables to choose the number of secrets per threshold independently
from the total number of thresholds. Remark that our construction can be seen as exten-
sion of Chan and Chang’s approach providing flexibility. To have an accurate survey, we
assume that Shao and Cao’s construction is iterated � times (one iteration per family of
ki secrets). The results of our comparison are summarized in Table 2.

The reader can notice that ρ′ is slightly larger than size(M) so, a priori, our tech-
nique does not provide any significant size benefit from � iterations of Shao and Cao’s
construction. As noticed in [2], however, the latter approach requires each participant
to keep multiple shares which can create a share management problem. In our construc-

Table 1. Parameters of the Three VMTMSS

Our Scheme Chan-Chang’s Scheme [2] Shao-Cao’s Scheme [19]
Thresholds � � 1

Secrets per Threshold ki 1 k

Size Private Values size(M) bits size(p) bits size(p) bits
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Table 2. Computational Complexity of the Three VMTMSS

Our Scheme Shao-Cao’s Scheme [19]
Size Private Values size(M) bits ρ′ bits

Set-up n � random elements n � random elements
Phase

n calls to Garner
Share δi pol. eval. in each Z/piZ n + δi pol. eval. in each Z/piZ

Creation n + 1 pol. eval. in Z/MZ

Process
n � calls to H max(ti, ki) exp. in each Z/piZ

n + δi calls to each fi n calls to each fi

n + D + 3 calls to Garner
Pseudo-Share 1 call to H max(ti, ki) exp. in each Z/piZ

Validity max(ti, ki) exp. in Z/pi−1
2 Z

Verification max(ti, ki) mult. in Z/piZ

Secret 1 polynomial reconstruction 1 polynomial reconstruction
Recovery

ti + 2 reductions modulo pi

Storage Public n (�H + size(M)) + 3 size(M) + 2 ρ (n + 1) ρ′ + 2 ρ +
�

Σ
i=1

ti size(pi)

Elements bits bits
Storage Sender n ρ′ bits n ρ′ bits

tion, each participant holds a single ”master” share which can be used to recreate the
share for each (ti, n)-scheme. We now have two points to consider.

First, the pseudo-share verification process from [19] is expensive. Indeed verifying
a single pseudo-share roughly costs 2 max(ti, ki) exponentiations in Z/piZ. Even if
each of them can be performed in O(log3

2 pi) bit operations using the fast exponentia-
tion. algorithm [17], the coefficient max(ti, ki) is prohibitive for large thresholds ti. In
addition, when the communication channel is under attack of malicious users flooding
the combiner with incorrect values, the coefficient max(ti, ki) may result in success-
ful denial-of-service attacks as the computational resources needed to identify correct
shares amongst forgeries become too large. This problem does not happen with our
construction as only a single hash as to be computed to validate/discard a share. Notice
that each participant first needs to perform 2 reductions modulo pi and 1 call to fi to
construct his pseudo-share from his secret value and the public element R. However
this is at the cost of running 2 n + D + 3 times Garner’s algorithm at the dealer during
the set-up and share construction phases.

Second, our pseudo-share verification process requires n� hashes to be published
as table TH. If we use SHA-256 as collision resistant hash function then TH is rep-
resented over 256 n � bits. On the other hand, the construction by Shao and Cao is
secure provided that the discrete logarithm problem over each Z/piZ is intractable. For
achieve security, it is suggested to use 1024-bit moduli or larger [16]. If we assume
that the different thresholds are roughly equal to the same value t then the coefficient
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�

Σ
i=1

ti size(pi) is approximately 1024 � t bits. Therefore the storage of our public ele-

ments less expensive as soon as t ≥ n
4 , i.e. the construction by Shao and Cao provides

better space efficiency only for small threshold values.

5 Conclusion

In this paper, we generalized the approaches from [2, 19] by designing a multiple time
verifiable secret sharing scheme allowing several secrets to be shared per threshold
value. As in [19], our construction allows any number of secrets to be shared per thresh-
old value. In addition, we showed that our pseudo-share verification process was much
faster than in [19] while the storage requirements were smaller. We would like to point
three facts. First, we assumed that the threshold values were different (see Sect. 3). Nev-
ertheless our techniques could also be employed if some threshold ti is used τi times
provided that different primes pi 1, . . . , pi τi are used respectively. Second, the security
of our scheme is based on the random oracle model for the collision resistant hash func-
tion H . Most hash functions used in practice are considered heuristically collision resis-
tant. Recently several such functions were successfully attacked [21, 22, 23, 24, 26]. In
order to maintain the security of our protocol, we suggest to use a hash function whose
security has be proved to be linked to a computationally difficult problem such as Very
Smooth Hash [5] or Gibson’s discrete logarithm-based hash function [7]. Nevertheless
this may result into larger digests or increased running time. Finally the main drawback
of our construction is that we are only able to deal with threshold schemes and our
approaches cannot be directly generalized to non-threshold access structures.
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