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Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological
invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection
between knot theory and topological phases of matter, which distinguishes them from other classes of topological
insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator
and report the first experimental observation of their topological properties, including nontrivial topological links
associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic
measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door
to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing
methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians.
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The interplay of topology and symmetry plays a
key role in the classification of quantum phases of
matter.[1−5] It gives rise to a notable periodic ta-
ble for topological insulators and superconductors for
free fermions.[3,4] The recently discovered Z2 topologi-
cal insulators[6−8] fit into this classification paradigm.
Topological insulators are insulating materials fea-
turing conducting surface states protected by time-
reversal symmetries.[1,2] Without any symmetry pro-
tection, multi-band Hamiltonians in 3D should only
exhibit topologically trivial phases according to the
periodic table.[3,4]

With broken time-reversal symmetry, Hopf
insulators[9] are intriguing three-dimensional (3D)
topological insulators that elude the standard clas-
sification paradigm of topological phases for free
fermions.[3,4] Recently, Moore, Ran and Wen[9] real-
ized that the two-band case is special because of the
existence of Hopf map, a topological map linking the
3D torus that represents the momentum space with
the 2D Bloch sphere that describes the state space of
a two-band Hamiltonian. Hence, the topological Hopf
insulators could exist for two-band Hamiltonians in
3D space, which lie outside of the standard classifi-
cation paradigm of topological phases. Implementa-
tion of Hopf insulators, however, poses a formidable
experimental challenge.[10,11] Recently, quantum sim-

ulation platforms have proven to be well suited for
the experimental study of 1D and 2D topological
insulators.[12−14] We extend this tool to study more
intricate 3D topological models that have not been
realized yet in any other experimental platform.

In this Letter, we implement Hopf insulator model
Hamiltonian in a solid-state quantum simulator and
report the first experimental observation of its topo-
logical properties, including the topological links asso-
ciated with the Hopf fibration and the integer-valued
topological invariant. Our quantum simulator is re-
alized with the nitrogen-vacancy (NV) center in a
diamond sample. The diamond NV center has re-
cently emerged as a promising experimental system
for realization of quantum computing, simulation, and
precision measurements.[15−19] The key observation
here is that the Hamiltonian for free fermions is di-
agonal in the momentum space, so there is no en-
tanglement between different momentum components
in its ground state. We can measure the quantum
states for each momentum component separately in
experiments,[12,20] and the properties of the whole sys-
tem can then be determined by collating individual
measurements. We measure the integer-valued topo-
logical invariant by a direct 3D integration over the
parametric momentum space.[20] Through quantum
state tomography, we experimentally demonstrate the
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Hopf fibration with nontrivial topological links, show-
ing clear signals of topological phase transitions for
the underlying Hamiltonian.

A general two-band Hamiltonian in the momentum
space can be written in the form

𝐻 =
∑︁
𝑘

Ψ †
𝑘𝐻𝑘Ψ𝑘 =

∑︁
𝑘

Ψ †
𝑘~Ω𝑢(𝑘) · 𝜎Ψ𝑘, (1)

where ~Ω denotes the energy unit, the dimension-
less coefficients 𝑢(𝑘) = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) represent cer-
tain functions of 3D momenta 𝑘 =(𝑘𝑥, 𝑘𝑦, 𝑘𝑧), Ψ𝑘 =
(𝑎𝑘↑, 𝑎𝑘↓)

T are fermionic annihilation operators with
pseudo-spin states |↑⟩ and |↓⟩ at momentum point 𝑘,
and 𝜎 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) are Pauli matrices. The (com-
posite) Hopf map is a projection from the momen-
tum space (the Brillouin zone) described by the 3D
torus T3 to the Bloch sphere S2 for the spin-1/2 state.
For the Hopf map, the pre-image of each point on
the sphere S2 corresponds to a closed loop in the
torus T3—all these loops are topologically linked to
each other, forming a nontrivial topological structure
called the Hopf fibration as shown in Fig. 1(a). Armed
with the Hopf map, Hopf insulators are character-
ized by an integer Z rather than a Z2 topological
invariant.[9,10] Several two-band model Hamiltonians
supporting Hopf insulators have been constructed in
Refs. [9,10] and all of them involve complicated spin-
orbital interactions. We consider a primitive model
with the coefficients 𝑢(𝑘) given by

𝑢𝑥 = 2 [sin 𝑘𝑥 sin 𝑘𝑧 + 𝐶(𝑘) sin 𝑘𝑦] ,

𝑢𝑦 = 2 [𝐶(𝑘) sin 𝑘𝑥 − sin 𝑘𝑦 sin 𝑘𝑧] ,

𝑢𝑧 = sin2 𝑘𝑥 + sin2 𝑘𝑦 − sin2 𝑘𝑧 − [𝐶(𝑘)]
2
,

(2)

where 𝐶(𝑘) ≡ cos 𝑘𝑥 + cos 𝑘𝑦 + cos 𝑘𝑧 + ℎ with ℎ
being a dimensionless parameter. This Hamiltonian
features two distinct topologically nontrivial phases
with the parameter |ℎ| < 1 and 1 < |ℎ| < 3,
respectively.[10] Implementation of the Hamiltonian
with cold atoms requires engineering of next-nearest-
neighbor spin-orbital couplings,[11] which is particu-
larly challenging for experiments.

Here, we experimentally implement this Hamil-
tonian and probe its topological properties with a
solid-state quantum simulator represented by a single
nitrogen-vacancy (NV) center in a diamond sample
at room temperature shown in Fig. 1(b). The Hamil-
tonian (1) is diagonal in the momentum space. To
probe its ground state property, we can measure the
quantum state for each momentum component sepa-
rately in experiments,[12,20] and the properties of the
whole system can then be determined by those indi-
vidual measurements on all momentum components.
For each momentum component 𝑘, the ground state
of 𝐻𝑘 corresponding to the lower band of the Hamilto-
nian (1) can be probed through an adiabatic passage

in a two-level system, which is realized through mi-
crowave manipulation of the spin levels |0⟩ and |−1⟩ of
a single NV center. The viability of such an adiabatic
procedure is guaranteed by the most salient feature of
a topological phase, the topological gap—as long as
the gap is maintained, topological properties are in-
sensitive to perturbations or stretching of the energy
bands.
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Fig. 1. Illustration of Hopf fibration and the experimen-
tal system. (a) Hopf fibration, where each point (distin-
guished by color) on the Bloch sphere in the right corner is
mapped to a closed loop in the 3D space by the Hopf map
and all loops are pairwise linked to each other (see Supple-
mentary Materials for the explicit form of the Hopf map
in our system). (b) A diamond nitrogen-vacancy center
with its defect spin used for the quantum simulation of the
Hopf insulator. (c) A solid-state immersion micro-lens is
fabricated on top of the diamond nitrogen-vacancy center
to increase its detection efficiency by optical readout. (d)
A typical path of adiabatic passage for the parameters in
the Hamiltonian. The example shown here is for adiabatic
preparation of the ground state of 𝐻𝑘 with the momen-
tum components (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)/2𝜋 = (0.4, 0.3, 0.5) and the
parameter ℎ = 2.

We use an NV center under a micro-fabricated
solid immersion lens (SIL) to implement the Hamilto-
nian 𝐻𝑘 for each momentum component 𝑘. The SIL
is used to enhance the data collection rate as we need
to scan over many different momentum components
to measure the topological properties of the Hamilto-
nian. By applying a microwave with phase 𝜙 to the
transition |0⟩ → |−1⟩, we realize the following Hamil-
tonian in the rotating frame

𝐻𝑢 = ~ |Ω | (𝜎𝑥 cos𝜙+ 𝜎𝑦 sin𝜙) + ~Δ𝜎𝑧, (3)

where |Ω | denotes the Rabi frequency of the mi-
crowave, and Δ is the frequency detuning of the spin
transition relative to the microwave frequency.
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Fig. 2. Measurement of the Hopf index using quan-
tum state tomography. (a) Real and imaginary parts of
the experimentally reconstructed density matrix elements.
This example shows the ground state density matrix 𝜌𝑘
at one particular momentum 𝑘 with (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)/2𝜋 =
(0.4, 0.2, 0.5). The hollow caps correspond to the ideal
density matrix elements predicted by theory. (b) State
fidelities 𝐹𝑘 measured through quantum state tomogra-
phy are shown for different 𝑘 with the values represented
by the color map. The upper and the lower panels have
the parameter ℎ = 0 and ℎ = 2, respectively. Each panel
contains 10 sub-figures where the momentum 𝑘𝑧/2𝜋 varies
from 0 to 0.9 with an equal spacing of 𝛿𝑘𝑧/2𝜋 = 0.1. The
horizontal and vertical axes of each subfigure denote, re-
spectively, 𝑘𝑥/2𝜋 and 𝑘𝑦/2𝜋, which vary from 0 to 0.9
with an equal spacing of 0.1. The average fidelity for the
10×10×10 measured momentum points is 99.1% (99.2%)
for the case of ℎ = 0 (ℎ = 2). (c) The Hopf index from
quantum state tomographic measurements with momen-
tum 𝑘 sampled over the 10×10×10 mesh. The number in
the bracket represents the standard deviation in the last
digit. The measured Hopf index is close to its ideal inte-
ger values for the corresponding topological phases. The
small differences are dominated by the discretization error
of the 3D momentum integration in computing topologi-
cal invariants. The scaling of the discretization error with
the number of sampling points is shown in Supplementary
Materials.

Comparing with the Hamiltonian (1), we have
Ω𝑢(𝑘) = (|Ω | cos𝜙, |Ω | sin𝜙,Δ). At the initial time,
we take |Ω | = 0 and prepare the spin in state |0⟩,
which is the ground state of 𝐻𝑢(𝑡 = 0). We then
adiabatically tune the microwave Rabi frequency |Ω |
with phase tan𝜙 = 𝑢𝑦(𝑘)/𝑢𝑥(𝑘) and the detuning Δ
so that for the final state we have 𝐻𝑢(𝑡) = 𝐻𝑘 in the
Hamiltonian (1) for a certain momentum component

𝑘. A typical adiabatic passage for the parameters is
shown in Fig. 1(d). By this adiabatic passage, we real-
ize the ground state of 𝐻𝑘, and through quantum state
tomography (QST) measurements, we retrieve its full
information. We scan all momentum components 𝑘
via the above preparation and detection method to
probe the properties of the full Hamiltonian (1).

To measure the topological properties of the
Hamiltonian (1), we use a topological invariant called
the Hopf index,[9,10] which is defined as

𝜒 = −
∫︁
BZ

𝐹 ·𝐴 𝑑3𝑘, (4)

where 𝐹 is the Berry curvature with 𝐹𝜇 =
(𝑖/2𝜋) 𝜖𝜇𝜈𝜏 (𝜕𝑘𝜈 ⟨Ψ𝑘|) (𝜕𝑘𝜏 |Ψ𝑘⟩), 𝜖𝜇𝜈𝜏 is the Levi–
Civita symbol with 𝜇, 𝜈, 𝜏 ∈ {𝑥, 𝑦, 𝑧}, |Ψ𝑘⟩ denotes
the ground state of the Hamiltonian 𝐻𝑘, 𝐴 is the as-
sociated Berry connection satisfying ∇×𝐴 = 𝐹 , and
the integration of 𝑘 is over the Brillouin zone (BZ).
Depending on the parameter ℎ, the Hopf index 𝜒 takes
the following values for the Hamiltonian (1):

𝜒 =

⎧⎪⎨⎪⎩
1, 1 < |ℎ| < 3,

−2, |ℎ| < 1,

0, |ℎ| > 3.

(5)

So the Hamiltonian 𝐻 supports two topological Hopf
insulator phases and one topologically trivial phase
with the phase boundaries at ℎ = ±1,±3.

To measure the Hopf index 𝜒, we use the dis-
cretization scheme in Ref. [20], which provides a gen-
eral method to probe the topological invariants in any
spatial dimension based on QST in the momentum
space. As shown in the Supplementary Materials,
the Hopf index 𝜒 quickly converges to its ideal value
through mesh sampling over the momentum space.
We sample (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) into a mesh of 10 × 10 × 10
points with equal spacing and for each 𝐻𝑘, we per-
form QST to measure its ground state density ma-
trix. A typical reconstructed density matrix is shown
in Fig. 2(a). At each momentum 𝑘, we compare the
experimentally reconstructed density matrix 𝜌𝑘 with
the ideal ground state |Ψ𝑘⟩ and calculate the state
fidelity 𝐹𝑘 = ⟨Ψ𝑘| 𝜌𝑘 |Ψ𝑘⟩. The measured fidelities
for different momenta 𝑘 are shown in Fig. 2(b). We
have achieved a high average fidelity of 99.2% in our
experiment. A large fraction of the 0.8% infidelity is
actually from the statistical error associated with a fi-
nite number of photon-counts in the spin detection,
which contributes to about 0.6% infidelity (see the
Supplementary Materials and Methods section). From
the measured data, we find the Hopf index shown in
Fig. 2(c) for two different phases with ℎ = 0, 2. The
measured nonzero values of the Hopf index, close to
the ideal integer numbers, provide an unambiguous
experimental signature for the underlying topological
structure of the Hopf insulator phase.
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Fig. 3. An intuitive indicator of intrinsic 3D topological
insulator. (a) The ground-state spin configurations of the
Hamiltonian 𝐻𝑘 for ℎ = 2 are mapped onto the Bloch
sphere, where 𝑘 is scanned over a 2D cross section with
𝑘𝑧 = 0. The stars show the experimental data and the
yellow cover identifies the theoretical region from all the
momentum points in this cross section. The partial cover-
ing of the Bloch sphere indicates that the Chern number
for this layer is zero. We have verified with our experimen-
tal data that Chern numbers vanish for all 2D cross sec-
tions along different directions, so layered 2D topological
(quantum Hall) insulators are not present in our system.
(b) The ground-state spin configurations with 𝑘 scanned
over all 3D momentum points are mapped onto the Bloch
sphere. The Bloch sphere is fully covered, which is consis-
tent with the characteristic of an intrinsic 3D topological
insulator.

Different from stacking layers of 2D quantum Hall
insulators, the Hopf insulator is an intrinsic 3D topo-
logical insulator, where the Chern numbers character-
izing 2D topological insulators are zero for all 2D mo-
mentum layers.[9,10] To demonstrate this intuitively,
in Fig. 3(a) we take a layer in the momentum space
(e.g., with 𝑘𝑧 = 0) and map all the measured spin
states at different 𝑘𝑥 and 𝑘𝑦 to the Bloch sphere. The
Chern number will be zero if these states cannot fully
cover the Bloch sphere, which is the case in Fig. 3(a).
We have also computed the Chern numbers explicitly
using our measured data along different 2D momen-
tum layers [20] and checked that they are all identically
zero. On the other hand, if we map the spin states at
all 3D momentum points to the Bloch sphere, they
fully cover the sphere as shown in Fig. 3(b). This pro-
vides an intuitive indicator that the Hopf insulator is
an intrinsic 3D topological insulator.

In the Hopf insulator, the momentum-space spin
texture forms a representation of the sought-after
knotted structure known as the Hopfion.[21] Distinct
from 2D Skyrmion spin configurations where swirling
orientations are a salient feature [22], a 3D Hopfion
exhibits a nontrivial twisting. In Fig. 4(a), we show a
cross section of the measured spin texture along the
𝑘𝑧 = 0 layer, which provides a glimpse of the 3D twist-
ing of the Hopfion (see the Supplementary Materials
for the full 3D spin texture). If we fix a spin orien-
tation on the Bloch sphere and trace its pre-image in
the momentum space T3, a closed loop will be formed.
For the Hopf insulator phase, the loops corresponding
to different points (spin states) on the Bloch sphere
are always topologically linked to each other (see Hopf

fibration in Fig. 1(a)). In order to measure these topo-
logical links, we experimentally fix three spin states on
the Bloch sphere and scan the momentum 𝑘 so that
the ground state of 𝐻𝑘 is along these spin directions.
In Fig. 4(b), we show the pre-images in the momen-
tum space for the spin states 𝑆 = (1, 0, 0), (0, 1, 0),
and (0, 0,−1) on the Bloch sphere with the parameter
ℎ = 2.9. Clearly, these pre-images each form a closed
loop and they are pairwise linked with a linking num-
ber exactly equal to the Hopf index 𝜒. When we cross
the topological phase transition point (at ℎ = 3) and
enter the topologically trivial phase (with ℎ = 3.1),
the corresponding pre-images are shown in Fig. 4(c)—
they are no longer linked. Hence the Hopf links ob-
served here provide a direct and intuitive characteri-
zation of topological properties of the Hopf insulator.
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Fig. 4. The Hopfion spin texture and topological links
characterizing the Hopf insulator. (a) A 2D cross section
of the Hopfion is shown for the 𝑘𝑧 = 0 layer and ℎ = 2.
The Hopfion represents the knotted 3D spin texture of the
Hopf insulator. The arrows in the plane depict the 𝑥–𝑦 di-
rection of the Bloch vectors and the color labels the magni-
tude of its 𝑧 component. (b) Topological links between the
pre-images in the momentum space from three spin states
on the Bloch sphere, 𝑆 = (1, 0, 0), (0, 1, 0), and (0, 0,−1).
The parameter ℎ = 2.9, which determines the topological
phase with the Hopf index 𝜒 = 1. The linking number
between any pair of pre-image loops is equal to the Hopf
index for this phase. The solid arrows show the experimen-
tally measured spin orientations 𝑆exp, which are in close
proximity to the transparent arrows corresponding to the
ideal theoretical directions 𝑆th. Solid lines are preimage
curves from theoretical calculations. We find the average
deviation |𝑆exp − 𝑆th| ≈ 0.082, 0.076, 0.063 for the blue,
red and green curves. (c) When we cross the topological
phase transition point at ℎ = 3 and move to ℎ = 3.1,
the pre-image loops become unlinked, which implies that
our system is in the trivial phase at ℎ = 3.1. We have
|𝑆exp − 𝑆th| ≈ 0.082, 0.071 for the blue and red curves.
The preimage loop for the spin state (0, 0,−1) shrinks and
vanishes at ℎ = 3.1 because none of the ground state of
𝐻𝑘 could reach the Bloch vector (0, 0,−1). This is an-
other indication that the system is in the trivial phase at
ℎ = 3.1, since the ground-state spin orientations do not
fully cover the Bloch sphere.
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Our experimental probe of Hopf insulators in a
solid state quantum simulator represents the first ex-
perimental observation of 3D topological insulators
with integer-valued topological invariants and it paves
the way for study of complicated topological mod-
els using the powerful quantum simulation toolbox
[12,23−25]. The framework directly carries over to other
types of topological models that are predicted to exist
in the periodic table [3,4,26] but have not yet been ob-
served in any experiments. The observation of Hopf
links in our experiment reveals the nontrivial topolog-
ical structure of the Hopf fibration, and similar tech-
niques can be employed to study higher index Hopf
insulators [10] that can host a range of complex knots
and links [11]. This raises the possibility for experi-
mental exploration of the intimate connection between
topological insulators and mathematical knot theory.
Based on measurement of momentum space correla-
tions, our first detection of an integer-valued topologi-
cal invariant in 3D complements well with other meth-
ods for measuring topological invariants in 1D[14,27]

and 2D[12,13,28−30] systems. The demonstrated detec-
tion scheme is general and applicable to probe of dif-
ferent topological insulators in any spatial dimension
predicted by the periodic table.

Author contributions: L.M.D. conceived the exper-
iment and supervised the project. S.T,W. and D.L.D.
performed theoretical analysis. X.X.Y., L.H., F.W.,
W.Q.L., X.W., C.H.Z., H.L.Z., X.Y.C. carried out the
experiment. L.M.D., S.T.W. and X.X.Y. wrote the
manuscript.
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MATERIALS AND METHODS

Experimental setup

We illuminate the diamond Nitrogen-Vacancy (NV) center and collect its fluorescence

with a home-built confocal microscope with a 1.49 NA objective (Olympus 60X, under oil

immersion). A 532 nm diode laser (Coherent Sapphire), controlled by an acoustic-optical

modulator (AOM,ISOMET 1250C) under double pass configuration, is used to initialize and

detect the electron spin. Microwave from a signal generator (Keysight N5181B) is mixed

with an arbitrary waveform generator (AWG, Tek AWG70002A) by an IQ mixer (Marki

IQ 1545LMP) for phase and amplitude control. A waveguide with impedance matching is

deposited onto the cover glass to deliver the microwave. The sample is mounted on the

cover glass, which is then mounted on a closed-loop piezo (Physik Instrument P-611.3) with

sub-micron resolution.

The sample is a type IIa single crystal diamond synthesized by chemical vapor deposition

(Element Six). It is irradiated by 10MeV electron beam with dosage 1014 cm−2 and annealed

at 800◦C in vacuum for two hours. Solid immersion lens with 10µm radius is fabricated

on the sample by a focused ion beam. We get about 2.5 × 105 counts per second in the

† These authors contributed equally to this work.
∗ Corresponding author. Email: lmduan@umich.edu
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single-photon detector with a signal-to-noise ratio 21: 1 through collection by a single mode

fiber. A magnetic field of strength 510G from a permanent magnet is applied along the NV

axis of the sample to polarize the nuclear spins through spin flip-flop via the excited-state

level anti-crossing [1].

Adiabatic passage and data collection

The final Hamiltonian Hk = ~Ωu(k) · σ at a particular momentum point k is first

normalized to max{Ω
√
u2x + u2y,Ωuz} = 2π × 20.83MHz. For each adiabatic passage, we

start from ux = uy = 0, Ωuz = −2π × 20.83MHz under the initial state |0〉, which is the

ground state of the initial Hamiltonian. We first linearly ramp up
√
u2x + u2y to the maximum

Rabi frequency 2π× 20.83MHz, then linearly ramp uz to the corresponding final value, and

linearly ramp down ux and uy to the final u(k) before taking measurements. Each linear

ramp takes 500 ns, with the total time of 1.5µs for the microwave control. In order to get

high-fidelity data, the AWG works at 8 GHz sampling rate.

At each momentum point k, the initialization, adiabatic passage, and measurements are

repeated 1.25×106 times, collecting about 9.3×104 photons. For each round, the fluorescence

of the final state from the adiabatic passage is compared with the fluorescence under the |0〉

state, where the latter is used for normalization. Experimental density matrices are obtained

by state tomography through the maximal likelihood estimation. The fidelity of each density

matrix is calculated by comparing it with the ideal state, and the fidelities from all the

measured momentum points are distributed with median 99.59% (99.7%-95.51% with 95%

confidence interval) and mean 99.2%. A large contribution to the infidelity is actually from

the statistical error associated with a finite number of photon counts. From the numerical

simulation, we find that even with a perfectly prepared quantum state, the statistical error

alone with the same number of photon counts as we collected in experiments will give a

fidelity distribution with median 99.88% (100%-97.26% with 95% confidence interval) and

mean 99.4%. So the fidelity of the prepared state by the process of adiabatic passage is high

due to the existence of a significant energy gap for the topological phase.
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MEASURING THE HOPF INVARIANT AND THEORETICAL SCALING

In this section, we present more details on our methods to extract the Hopf index from

experimental data. We also theoretically extrapolate the data to larger grid sizes. The

central idea is to use tomographic methods to measure the topological invariant. This

follows primarily from Ref. [2, 3]. We outline the essential procedure here for completeness.

The Hopf invariant is defined in Eq. (4) in the main text. In the experiment, we simulate

the ground state of the Hopf Hamiltonian by adiabatically ramping from the |0〉 state (ground

state of the Hopf Hamiltonian at k = (0, 0, 0)) to other discrete momentum points kJ. We

can subsequently perform state tomography to map out the ground state manifold |ψ(kJ)〉.

However, to calculate the Berry curvature from the states involves taking the derivatives ∂kν,τ
(finite difference in our discrete data). This will lead to problems due to the gauge (phase)

ambiguities of the wavefunction |ψ(kJ)〉 → eiϕ(kJ)|ψ(kJ)〉, where eiϕ(kJ) is an arbitrary phase

that can vary with kJ and is not experimentally observable. In cases where the Chern

number is nonzero, gauge obstruction, in particular, forbids a well-defined global smooth

Berry connection. To circumvent this difficulty, we use a discretized version of the Berry

curvature defined as [2, 4]

Fµ(kJ) ≡ i

2π
εµντ lnUν(kJ)Uτ (kJ+ν̂), (S.1)

where the U(1)-link is Uν(kJ) ≡ 〈ψ(kJ)|ψ(kJ+ν̂)〉/|〈ψ(kJ)|ψ(kJ+ν̂)〉| with ν̂ = x̂, ŷ, ẑ, a unit

vector in the corresponding direction. Here, the local gauge ambiguity cancels out.

This tomographic method offers a number of advantages [2]. First, it is generally ap-

plicable to any spatial dimension and to all topological invariants that can be expressed

as some variant of an integral over Berry curvature (connection). Second, the topological

invariants can be extracted from the states alone, without referencing to the Hamiltonian.

Third, this method is highly robust to experimental imperfections and, in particular, finite

discretizations.

In the experiment, we perform state tomography at various momentum points kJ. Dis-

crete Berry curvature is then computed using Eq. (S.1). Berry connection Aµ(kJ) can be

obtained by Fourier transforming the equation∇×A = F with the Coulomb gauge∇·A = 0.

Finally, we attain the value of the Hopf invariant χ by a discrete sum over all momentum
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points. As we notice from the main text, a grid size of 10 × 10 × 10 is already capable

of producing highly accurate estimation of the quantized topological invariant (with error

≤ 5%).

In Fig. S1, we present theoretical scalings to larger grid sizes. We can see that the

discretization error reduces when N increases. The deviation from the quantized value

drops to around 10−2 for N = 20 for h = 0 and h = 2. The theoretical calculations for

h = 0.5 and h = 1.5 are also shown. They are closer to the topological phase transition

point h = 1, resulting in a more pronounced finite size effect. It is apparent, however, for all

cases the finite-grid estimation approaches the correct quantized value as N becomes larger.

The topological property is robust to perturbations and changes in parameters as long as

the topological gap is maintained.

THREE DIMENSIONAL HOPF SPIN TEXTURE

A two-dimentional (2D) slice of the spin texture is presented in the main text. Here,

we include the full 3D spin texture from experimental data for both h = 2 (Fig. S2) and

h = 0 (Fig. S3). Since the Hopf insulator is an intrinsic 3D topological insulator, complete

information can be captured only by the 3D spin texture. For h = 0, we have a higher (mag-

nitude) topological index χ = −2, so the spin texture is considerably more complex than

that for h = 2. Physically, a nonzero Hopf index guarantees the spin texture can never be

untwisted to be a trivial one (e.g. all point to the same direction), unless one crosses a topo-

logical phase transition. Remarkably, the Hopf spin texture is a representation of the long

sought-after Hopfions, which are 3D topological solitions with widespread applications [3].

HOPF FIBRATION & STEREOGRAPHIC COORDINATES

For simplicity and clarity, we did not use stereographic coordinates to represent the

experimental data in the main text. The data were depicted in {kx, ky, kz} ∈ [0, 2π) without

gluing the boundaries. It does not matter for the particular spin preimage contours we

measured because they form closed loops without crossing the boundaries (i.e., kx,y,z = 0 or

2π). However, it may not be the case for other spin preimages, especially for higher Hopf

index. When that happens, we have to visualize it properly on the torus T3; however, knots
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and links on the torus are difficult to see. Instead, we can map them to R3 for visualization.

Indeed, our Hamiltonian mapping from the Brillouin zone T3 to the Bloch sphere S2 can be

decomposed to two maps [3]

T3 g−→ S3 f−→ S2. (S.2)

The map g is

η↑(k) = sin kx − i sin ky,

η↓(k) = sin kz − i(cos kx + cos ky + cos kz + h), (S.3)

where (kx, ky, kz) lives on T3 and (η1, η2, η3, η4) = (Re[η↑], Im[η↑],Re[η↓], Im[η↓]) are points

on S3 (up to a trivial normalization). The map f is the Hopf map

ux + iuy = 2η↑η̄↓, uz = (|η↑|2 − |η↓|2), (S.4)

and the composition of the two maps produces the Hamiltonian written in the main text,

Hk/~Ω = f ◦ g(k) = u(k) · σ. Therefore, the knots and links can be visualized in R3 from

the stereographic coordinates of S3, for example, defined as

(x, y, z) =
1

1 + η4
(η1, η2, η3), (S.5)

where (x, y, z) are points of R3. In Fig. 1A of the main text, the Hopf fibration is drawn

under the Hopf map f . For a fixed point on the Bloch sphere S2, the preimage (fiber) of

the point forms a closed loop in S3, which is then visualized in R3 via the stereographic

coordinates. To relate the schematic to our physical system, the preimage of a fixed spin

orientation measurement (on the Bloch sphere) lives in the momentum space T3, which can

then be mapped to S3 via the map g and subsequently R3 via the stereographic coordinates.

The Hopf map from S3 → S2 can be modified to the generalized Hopf map [5] where a

variety of knot and link structures can be revealed from Hopf insulators [3]. We emphasize

that the change of coordinates is only for the purpose of easy visualization. The nontrivial

link induced by the nonzero Hopf invariant cannot be unlinked, in either R3, S3 or T3 since

the maps between them are all continuous.
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FINITE RESOLUTION & ε-NEIGHBORHOOD OF SPIN ORIENTATIONS

To reveal the nontrivial Hopf fibration and linking structures of the spin preimage loops, in

the main text, we took experimental data on the theoretically known contours. We observed

that the experimentally measured spin orientations agree well with the theory (with fidelity

F & 99% and |Sexp − Sth| . 0.08). The nontrivial links as well as the topological phase

transition were readily detected from experimental data. In situations where the theoretical

contours are unknown, one has to measure the spin orientations at discrete momentum data

grids and deduce the preimage loops with a prescribed tolerance threshold. In this case, we

can define an ε-neighborhood of the desired spin orientation, Sth, as [3]

Nε(Sth) = {Sexp(k) : |Sexp(k)− Sth| ≤ ε}. (S.6)

The choice of ε depends on the actual experimental data; it should be chosen large enough

to contain sufficient data points and small enough to display a clear loop structure. This

scheme is also applicable to the case when we are presented with a 3D spin texture data and

aim to ascertain whether it exhibits nontrivial knot or loop structures.

To show the method works well with limited experimental data resolution and is reason-

ably robust to the choice of ε, here we use our experimental data on the 10× 10× 10 grid to

map out the nontrivial loops at h = 2. Fig. S4 shows the results with ε = 0.3 and ε = 0.35

respectively. With larger tolerance, it is evident that more experimental data points are

included. Being a topological property, the nontrivial loop structure is reasonably robust to

the choice of ε. Imposing the theoretical curves as guides to the eye, the nontrivial link is dis-

cernible with experimental data. We remark that the discrepancies are predominantly due

to the coarse discretization. With more experimental data on a finer grid, e.g. a 20×20×20

grid, the preimage loops and the nontrivial links should be clearly visible even without the

theoretical curve; they are also expected to be highly robust to small perturbations such

as experimental errors, change in Hamiltonian parameters, and the choice of the tolerance

threshold.
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FIG. S1. Theoretical scaling of the deviation of the Hopf index χN from the ideal value χ∞. The
grid size is N ×N ×N . Experiments are performed at N = 10. The apparently smaller deviation
in the case of h = 0.5, 1.5 for N ≤ 15 is likely to be coincidental.
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FIG. S2. Each layer of measured spin textures for kz = 0, 0.1, 0.2, · · ·, 0.9× 2π and h = 2. For each
subfigure, kx/2π and ky/2π vary from 0 to 0.9 with an equal spacing of 0.1. At each momentum
point kJ, the state can be represented on the Bloch sphere. The arrows in the plane depict the x-y
direction of the Bloch vector and the color labels the magnitude of the z component of the Bloch
vector. This 3D spin texture represents a Hopfion with a Hopf invariant χ = 1.
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FIG. S3. Each layer of measured spin textures for kz = 0, 0.1, 0.2, · · ·, 0.9 × 2π and h = 0. Spin
representations and color scheme are the same as in Fig. S2. This 3D spin texture represents a
Hopfion with a Hopf invariant χ = −2.
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FIG. S4. Preimage contours using the experimental data on the 10 × 10 × 10 grid for h = 2.
Stars are experimental data on the discrete grid satisfying the condition |Sexp − Sth| ≤ ε, where
Sth = (−1,−1, 0)/

√
2 or (1, 1, 0)/

√
2 for the blue and red data respectively. Solid arrows show

experimentally measured spin orientations, Sexp. Transparent arrows show theoretical directions,
Sth, imposed on the experimental grids. Solid lines are theoretical preimage curves. (A) ε = 0.3.
(B) ε = 0.35.
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