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Abstract In most realtime applications such as 3D games,
in order to reduce the complexity of the scene being ren-
dered, objects are often made by simple and large primitives.
Thus, the phenomenon of edge highlighting, which would
require chamfering structures made by lots of small patches
at the seaming, is absent and is often faked by “highlights”
drawn on the texture. We proposed a realistic realtime ren-
dering procedure for highlighting chamfering structures, or
rounded edges, by considering specified edges as thin cylin-
ders and obtained the intensity via integration. We derived a
brief approximated formula generalized fromBlinn’s shadow
model, and used a precomputed integration table to accelerate
the render speed and reduce resources needed. The algorithm
is implemented with shader language, and can be considered
as a post-process on original result. Evaluation shows that
the effect on rendering speed is limited even for scenes with
large scale of vertices.
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1 Introduction

Photorealistic image synthesis is one of the most impor-
tant goals in Computer Graphics. While realistic images
can be generated using offline rendering algorithm such as
ray-tracing with detailed models and measured bidirectional
reflectance distribution function (BRDF), real-time render-
ing often has to sacrifice the detail of models and adopt
approximated algorithms and shading models. Although the
shading models [1–3] have been widely investigated and can
perform acceptable highlight effects on a smooth curve, an
important phenomenon, edge highlights, can not be gener-
ated properly using such models if no thin curved patch is
defined at the sharp seaming of adjacent surfaces.

In the field of online rendering, most models do not define
the chamfering structures on the edges in order to reduce the
amount of primitives emitted to the pipeline. Thus edge high-
lights can hardly be seen in realtime applications. However,
there is little work being proposed to generate even approx-
imate edge highlights.

Severalworks fromTakahashi’s group [4–6] has been con-
sidered edges as partial cylinder and obtain the precise visible
area and integration of intensity to generate accurate high-
lights. Although their works are still too slow to implement
and can hardly ported on GPU architecture, the idea of treat-
ing edges as cylinders can be further improved.

This paper presents an approximate algorithm imple-
mented using shader language, therefore supports realtime
rendering while producing acceptable edge highlights. The
input contains the original model and certain edges of it,
marked either manually or automatically. Such edges are
assumed as very thin partial cylinders with widths less than 1
pixel. Then a separated shader draws such edges using inte-
grated intensity calculated from our reflection formula. This
image is blended with the normally rendered scene with the
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alpha channel depending on the distance from edges to the
camera, to generate a final result.

Although we also consider edges as thin cylinders, a com-
pletely different method on computing intensity is used. And
we have made the following improvements comparing to
work from Tanaka et al. [6]:

– We used a two-step rendering method by assuming the
edge occupies each whole pixel it covers and then adjust
it according to controllable parameters. Therefore we do
not need to compute the exact occupied area as Tanaka
et al. [6] does, but renders more efficient and supports
potential visual effects.

– The process on vertices is discarded, because it reduces
the rendering speed while hardly noticeable.

– We adopt a precomputed integration table, so that the ren-
dering timedoes not dependon the highlight coefficient for
different materials. In traditional Blinn’s model, a higher
shinning coefficient often cost more time because of the
exponent operation.And for integration the formulawould
become much more complex and time-consuming.

– The algorithm is suitable for parallel rendering on GPU,
thusmakes realtime edge highlighting possible. This is the
biggest improvement we made.

In this paper, conventional offline methods on edge high-
lighting are reviewed in Sect. 2. Then Sect. 3 introduces the
detailed implementation and derivation. Section 4 presents
the performance and limitation of our algorithm. Finally, the
conclusion is shown in Sect. 5.

2 Related work

Edge highlighting is relatively easy to implemented for
offline rendering. The conventional method is to build the
chamfering structure using thin curved patches. Most CAD
softwares can automatically generating such structures [7].
However, in order to obtain smooth but edge highlighted
results, the size of patches has to be very small compared to
the entity of model, and therefore the complexity of model
increases, and most triangle facets of a model gathers along
its edges, which is a small area compared to the wholemodel.
This may cause floating error or degenerate cases unexpect-
edly.

For modern computer games, coarse models are widely
used and artists draw shadows or highlights directly on their
textures. Such kind of fake highlighting can not reflect to the
movement or intensity of the light source, but is still useful
for static scene and non-important objects. Other techniques
like drawing edge lines with a lighter color [8] or detecting
edges online [9] exists but add extra constraints on the angle
of neighboring facets, which are also impractical.

Previous work [6] regards edges as partial cylinders and
tries to compute the exact area the edge occupies in one pixel
using Cross Scanline Algorithm. The result is theoretically
precise excluding floating errors brought by operations, but
needs a long time to do the scanning. In addition, the scan-
line based algorithm is not compatible for GPU’s highly par-
allel architecture thus hard to be converted to shader lan-
guage. On the other hand, since the result was done using
Blinn’s approximate model, it can not reflect the Bidirec-
tional Reflectance Distribution Function (BRDF) for differ-
ent materials. This indicates its incompatibility with offline
rendering techniques nowadays.

3 Image generation

We adopts the Blinn’s shadowmodel, of which the rendering
model is simplified into diffuse and specular parts, and both
of them are described by simple formulas, thus we can derive
the exact form of integration and evaluate the value without
doing actual integration on the GPU.

Previous works by Saito et al. [4] introduced precise cal-
culation on rounded edges using Blinn’s model and offline
rendering method. It mainly focused on the rendering of
rounded corners where multiple edges intersected together.
However, in realtime renderingwe choose to ignore such cor-
ners because our assumption of edge width ensures that each
corners occupied nomore than 1 pixel in the rendered image,
while their precise computations cost significantly larger than
the computations on edges. Also such calculations are hard
to efficiently implement in parallel framework.

On the other hand, our work considers edges as partial
cylinders and derives a very simple integrating form of the
intensity, which simply depends on the spanning angles and
the shinning factor. Then we use precomputed table to get
approximated value. Such methods can be efficiently per-
formed on modern GPUs using shader language.

It is convenient to represent chamfering edges as lines,
with two vectors per vertex recording the normals of its adja-
cent facets. Such a structure of primitive (line) is supported
byOpenGLandmostmodernGPUs.Weassume the structure
is tiny enough that each edge’s width is not larger than one
pixel. A separate shader is used to render the visible edges
of the scene on a transparency layer above the layer con-
taining original results. Specifically, in our experiment each
model is described as face primitives and line primitives. A
standard shader is applied to render faces only, while another
shader renders the visible lines, then a third shader blends the
two results with a computed weight. The first two fragment
shaders are run in parallel, with each enables basic multisam-
pling antialiasing [10].Our algorithmcan be described as two
steps: firstly we applied the formula for computing intensity
under the assumption that the width of edge is exactly 1, and
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then interpolate this result with the origin result, in which has
no highlighting, to get the final intensity. They are done by
the second and the third shader described above. Following
subsections describe how to derive the formula and how to
blend the separated edge-only result with the original ren-
dering.

3.1 Integration of specular reflection

Highlight effects are computed per pixel in the fragment
shader part using N1, N2, V light, V half [V half is the halfway
vector between camera (viewer) and V light, the light source],
thus the two normals for each endpoint of an edge are passed
through the vertex shader and then interpolated to restrict
the range of spanning normals at a certain pixel. By Blinn’s
model, the intensity of the reflected light can be represented
as:

Iout = (Rd(N · V light) + Rs(N · V half)n)Iin (1)

where Rd and Rs are reflectance coefficients for diffuse and
specular lights.

Calculating the intensity of diffuse part (N ·V light) is sim-
ply a special case of specular part (integration of (N ·V half)n)
with n = 1, thereforewe just describe how to efficiently eval-
uate the integration of specular reflection in this section.

The specular intensity is calculated by:

Is =
∫
A
Rs(N · V half)n IindS (2)

where A represents the area of the pixel (which is projected
into a 1× 1 square in the camera’s view). Assuming that the
view point and light sources are both far from this area, we
can ignore the variation of Rs, V half , Iin comparing to the
variation of N . So the intensity can be represented by:

Is = RsC IinC

∫
A
(N · V half

C )ndS

where RsC, V half
C , IinC are the parameters for an arbitrary

point C within A. Remember that for the diffuse part we
can also use V light

C to ignore the change of V light. As we can
consider A as a partial cylinder, the integration becomes:

Is = RsC IinC

∫
HL

(N · V half
C )ndh

where L is the path (arc) shown in Fig. 1, and HL the pro-
jection of the arc on the direction (denoted as P) perpen-
dicular to the orientation of camera and the axis (hence we
can do a cross product to obtain P). We can not simply use∫
L(N · V half

C )ndl, as the segments on the arc may contribute
differently when projected into the camera. By assumption
we force HL = 1 and the projected height of the cylinder

Fig. 1 Terminology for rendering a pixel. Note that we calculate the
intensity of the orange square along the edge, instead of the yellow one

is also 1, in order to keep the project surface area equals to
1 square pixel. Also we are ignoring the change of cylin-
der width because normally the edge of a model would be
much longer than 1 pixel, especially for coarsemodels,which
means that the height of the whole cylinder is much longer
than its radius, hence the change of width in one pixel is
negligible. We strongly suggest readers to check Fig. 1 to
understand all terminologies proposed.

However, we can transform this form into the integration
along the arc L , by noticing that dh is actually a projection
of dl on P . Hence the integration becomes:

Is = RsC IinC

∫
L
(N · V half

C )n(cos σl · dl)

where σl is the angle between P and the tangential direction
at the point where dl is located.

Since N is always in the planar spanned by N1, N2, we
can simply consider the projection of V half

C on this planar
when calculating N · V half

C , meaning that the integration can
be transformed into the following form:

Is = RsC IinC

∫
L
cos σl(N · V half

Cproj)
ndl (3)

Nowwe are going to reorganize the formula under a spec-
ified coordinate system (ex , ey, ez), as Fig. 2 shows: ex is
parallel to V half

Cproj. ez is parallel to N1 × N2. ey = ez × ex .

N ·V half
Cproj can be written as ‖V half

Cproj‖ cos θ . And cos σl can
be derived by considering it a dot product between P and the
tangential direction. P is a constant vector during this inte-
gration and can be represented by coefficients (Px , Py, Pz).
And the tangential is (− sin θ, cos θ, 0), since L is a circular
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Fig. 2 Integration in polar coordinate system

arc. Hence we have:

cos σl = −Px sin θ + Py cos θ (4)

Also, we have dl = rdθ and since we are assuming the
projected length of L is 1, which is equivalent to assume that
the projected distance between the two endpoints of L is 1.
Therefore, we have |r N1 · P − r N2 · P| = 1, meaning that
r = 1

|P(N1−N2)| . Therefore, the final form of integration is:

Is = RsC IinC‖V half
Cproj‖n

|P(N1 − N2)|
∫ θ2

θ1

(cos θ)n(Py cos θ − Px sin θ)dθ

= G1

∫ θ2

θ1

(cos θ)n+1dθ − G2

∫ θ2

θ1

(cos θ)n sin θdθ

(5)

where we use G1 and G2 to denote coefficients.
The second part of the formula can be computed easily:

G2

∫ θ2

θ1

(cos θ)n(− sin θdθ) = G2

∫ θ2

θ1

(cos θ)nd cos θ

= G2

∫ cos θ2

cos θ1

xndx

= G2

n + 1
[(cos θ2)

n+1 − (cos θ1)
n+1]

And the first part is obtained via a pre-computed table storing
the value of F(ϕ, n) = ∫ ϕ

0 (cos θ)ndθ (It is passed as a texture
to the fragment shader). Therefore, the whole integration can
be computed efficiently. In our experiment, this table has
1, 024 × 128 entries, for ϕ ∈ [0, π/2] and n ∈ [1, 128],
while it is still possible to use a larger table for more precise
results.

The approximation error that is introduced by the tabu-
lation can be bounded as follows. For a fixed integer n, the

linear interpolation when doing texture mapping is actually
a piecewise linear interpolation. Therefore from Lagrange
interpolation formula the error is:

ε(x) = (x − xi )(x − xi+1)|F ′′
n (ξ)|

2
≤ h2

8
|F ′′

n (ξ)|

where xi = π/2
1023 i for i ∈ {0, . . . , 1023}. And h = π/2

1023 is
the interval between every pair of xi and xi+1. Since:

F ′′
n (x) = (

(cos θ)n
)′ = −n cos xn−1 sin x

we can obtain the maximum value by using mathematical
software and the final error bound is about 2.0 × 10−6 for
our table, which is small enough for common application.

3.2 Blending with original image

By using the method stated above to render the edges, we
can obtain a separated image with only visible chamfering
edges drawn on it. Such edges are all in 1-pixel width and
therefore we can not simply over-draw the result on nor-
mally rendered scene, otherwise highlight edges far away
from the view point will be overemphasized to have the same
effect as near ones. Note that in Eq. 3 the intensity is propor-
tional to the edge’s radius re, whose maximum value could
not exceed rmax = 1

|P(N1−N2)| , or else the projected width
would be larger than 1. For models with predefined radius on
each edge, this can be an indicator to determine whether our
method is sufficient or other technique may be needed to ren-
der over-thick edges. For radius not exceeding the threshold,
we can get the actual intensity brought by chamfering edges
by multiplying re/rmax. Note that if re < rmax, we also need
the intensity from the flat primitive to get the actual intensity
from the certain pixel.

Therefore, the new image is chosen to be blended with the
original image using its alpha channel, which is also a basic
feature that most display cards support. The weight in the
alpha channel is computed by the edge’s actual width and the
distance between it and the viewpoint. It can be considered as
the “viewed width” appears in the rendering, and for realistic
renderingwe should have thisweight proportional to the view
angle spanned by the structure. Hence the following formula
is chosen in our experiment:

W (x, y) =
{

K ·re
d(x,y)rmax

, if pixel (x, y) is drawn as edge e;
0, if pixel (x, y) is not on any edge.

where W denotes the weight stored in the alpha channel
and W (x, y) represents the weight for pixel (x, y); re is
the predefined radius of that edge (typically we should set
re ∈ [0, 1]); d(x, y) means the distance between the view-
point and the structure, which can be obtained directly. Note
that re could be stored for each line, per vertex or be con-
sidered as a constant, depending on the manufacturer of the
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Fig. 3 Consecutive screen shots for a simple cube, edge highlighted (150 dpi, 8 nodes, 12 faces, 12 edges)

Fig. 4 aComparison for rendering with (right) and without (left) edge highlighting (150 dpi, 83,702 nodes, 22,716 faces, 18,790 edges). bGripper:
13,695 nodes, 5,259 faces, 2,036 edges; motor: 25,666 nodes, 8,858 faces, 5,424 edges (128 dpi)

model. For common storing formats such as OBJ or PLY,
custom properties can be easily embedded into each primi-
tive, so that our models can be handled via existed IO engines
easily. K is an adjustable parameter to control the blending
performance. Normally K should be set as the focal length
of the camera (possibly the distance between the barycenter
of the model and the viewpoint), so that the predefined width
means exactly the weight of the shinning colors for lines at
the focal plane. But the control of K allows model viewers to
enhance the edge highlighting effect or remove such edges,
without modifying the model or the rendering pipeline. This

could be useful when designers are facing a practical soft-
ware with little access to its core. For pixels that are not on
any chamfering structure, theirweights are 0 to keep identical
with the origin image. The final image is blended as:

I (x, y) = W (x, y)Is(x, y) + (1 − W (x, y))Iorigin(x, y)

where Is is the image rendered using only the chamfering
structures and Iorigin is the original image without such struc-
tures. In our implementation W are stored at the alpha chan-
nel of the buffer, and such a color blending procedure is
standard for all modern graphic cards.
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Fig. 4 continued
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Rendering chamfering structures of sharp edges 1517

Fig. 5 Screen shots for the same block without edge highlighting (middle), with chamfered structure (right) and edge highlighted by our proposed
algorithm (left). Note that for edges whose width >1 our algorithm may offer limited yet plausible result (150 dpi)

Since the extent of edge emphasis highly depends on the
computation of W , different methods considering materials
or visual effects may be adopted to achieve various purposes
such as edge enhancement or wireframe extraction.

4 Performance and discussion

We used Panda3D [10] to organize the rendered scene and
shaders. And we enabled the default anti-aliasing to get a
smoother outcome. Specifically, we activate anti-aliasing for
outputs from the standard shader and our edge-only shader,
and then two images are blended using a weighting image
W ′, anti-aliased from the weighting image W obtained in
Sect. 3.2.

Figure 3 shows serial screen shots captured two times per
second. The input model is a cube with no chamfering struc-
ture on its edges. Using our method the edge highlighting
can be easily noticed thus more realistic. Related videos with
30 fps are also available1 and we highly suggest readers to
watch them, as the printed version cannot reflect the motion
of highlights.

Figure 4 shows several models rendered with and with-
out highlighting at the same orientation. Highlight edges
are automatically added by iterating the whole model and
add line primitives on every edge. The printed figures are

1 DropBox folder: https://db.tt/bOASPvpT.

0

0.5

1

1.5

2

2.5

printer motor house gripper cube

our method no shader auto shader

Fig. 6 Average rendering time (in millisecond) per frame by different
shaders

in 128 or 150 dots-per-inch (dpi), which are approximately
the same as typical computer screens. The program is run on
an nVIDIA GTX 650 Ti graphic card and Fig. 6 compares
the average rendering time per frame (i.e. inverse of fram-
erate) in three cases: without highlighting, with Panda3D’s
default autoShader, and with our edge highlighting shader.
AutoShader is a basic shader providing shadow map, high-
light on faces, and anti-aliasing properties.

Note that the time spent for the printer and the motor
are much longer than others. The reason of this may be
the huge amount of edges such models have, making the
render of our shinning-edge-buffer slower. If a pixel is not
on an edge we can simply discard the fragment shader to
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speed up rendering. This is often profitable because gener-
ally most pixels are on faces instead of edges, but for those
models its benefit decreases. However, for most cases the
time of our algorithm is comparable to those of autoShader.
In addition, since modern monitors can only function under
constant framerate at around 60–75 Hz (13–17 ms), our
algorithm actually add little burden to the overall rendering
pipeline.

However, our method has its limitation at the same time.
Our method assumes the chamfering structures has width
of at most 1 pixel, thus the fragment shader can be applied
directly for drawing the lines.Chamfering structures too large
or close enough to the viewpoint can not be properly ren-
dered. Figure 5 compares the output of our algorithm on
coarse model with model that has small chamfering patches
on the edge. Note that for upper case, we cannot properly
render the closet edge with width larger than 1, although
the overall performance of its highlights is plausible. And
for small blocks their result are similar, which shows the
correctness of our method. Under such a situation, proper
patches are still needed to render the obvious structures. This
can be efficiently detected though, by comparing the actual
width with rmax (introduced in Sect. 3.2) for certain pixels,
at the very beginning of the shader’s rendering procedure to
avoid unnecessary computation or memory reading (Fig. 6).
In DirectX11 [11], for instance, we can customize the Hull
Shader so that if rmax exceeds 1 in certain line primitive,
the Tessellator is invoked to generate small patches on the
seaming.

5 Conclusion

We present a realtime method for rendering small chamfer-
ing structures automatically. Such amethod reduces the com-
plexity of input models while maintaining edge highlighting
phenomenon, which is often ignored in real-time rendering.
We show that such an approximate method can produce sim-
ilar visual effects as adding detailed structure on models,
while still in an efficient rendering speed. This can be used
to improve performance on applications like computer games
that require high speed rendering.

This is the first step for rendering edge highlighting real-
timely, and our future works will focus on larger chamfering
structureswithwidthmore than 1 pixel, or highlighting under
other shadow models.
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