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Quantum computers can efficiently solve classically intractable 
problems, such as the factorization of a large number1 and the 
simulation of quantum many-body systems2,3. Universal quantum 
computation can be simplified by decomposing circuits into 
single- and two-qubit entangling gates4, but such decomposition 
is not necessarily efficient. It has been suggested that polynomial 
or exponential speedups can be obtained with global N-qubit (N 
greater than two) entangling gates5–9. Such global gates involve 
all-to-all connectivity, which emerges among trapped-ion qubits 
when using laser-driven collective motional modes10–14, and have 
been implemented for a single motional mode15,16. However, the 
single-mode approach is difficult to scale up because isolating single 
modes becomes challenging as the number of ions increases in a 
single crystal, and multi-mode schemes are scalable17,18 but limited 
to pairwise gates19–23. Here we propose and implement a scalable 
scheme for realizing global entangling gates on multiple 171Yb+ ion 
qubits by coupling to multiple motional modes through modulated 
laser fields. Because such global gates require decoupling multiple 
modes and balancing all pairwise coupling strengths during the 
gate, we develop a system with fully independent control capability 
on each ion14. To demonstrate the usefulness and flexibility of 
these global gates, we generate a Greenberger–Horne–Zeilinger 
state with up to four qubits using a single global operation. Our 
approach realizes global entangling gates as scalable building blocks 
for universal quantum computation, motivating future research in 
scalable global methods for quantum information processing.

A representative entangling gate with more than two qubits is the 
global entangling gate, which can generate entanglement among all 
involved qubits in a symmetric way. A global entangling gate acting on 
N qubits is defined as
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where all of the two-body couplings are driven simultaneously with 
strength Θ, and σx

j is the Pauli operator on the jth qubit. A global 
entangling gate applied to N qubits is equivalent to N(N −1)/2  
pairwise entangling gates9, which provides the possibility of simplify-
ing quantum circuits. For example, the N–1 pairwise entangling  
operations involved in the preparation of the N-qubit Greenberger–
Horne–Zeilinger (GHZ) state20,24 can be replaced by a single global 
entangling gate GEN(π/4), as shown in Fig. 1a. In fact, several  
theoretical works have already indicated that numerous quantum algo-
rithms and universal quantum simulations of various many-body 
systems would benefit from global entangling gates for the efficient 
construction of quantum circuits. In particular, a set of O(N) con-
trolled NOT gates in the quantum phase estimation algorithm9—as 
well as each O(N)–body interaction term that emerges in the simula-
tion of fermionic systems owing to the Jordan–Wigner transforma-
tion5,6, which requires O(N) pairwise gates—can be efficiently 
implemented by O(1) global gates. Moreover, because the global gate 
contains all of the pairwise couplings, we can flexibly apply it on any 

subset of the qubits involved by simply removing the couplings 
between certain qubits.

The global entangling gates demand fully connected couplings 
among all of the involved qubits, which naturally emerge in trapped-
ion systems. Ion qubits in a linear chain are entangled by coupling to 
the collective motional modes, typically through Raman laser beams, as 
shown in Fig. 1b. Raman beams with beat-note frequencies ω0 ± μ lead 
to a qubit-state-dependent force on each qubit site25. Here, μ, which has 
a value around the frequencies of the motional modes, is the detuning 
from the energy splitting of the qubit, ω0, as shown in Fig. 1c. The time 
evolution of the system at time τ can be written as18
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, , where am α( )m
† is the annihila-

tion (creation) operator of the mth mode, αj,m represents the displace-
ment of the mth motional mode of the jth ion (see Supplementary 
Information) and θj,j′(τ) is the coupling strength between the jth and 
jth qubits and has the form
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where ηj,m is the scaled Lamb–Dicke parameter, νm is the frequency of 
the mth motional mode, and Ωj(t) and φj(t) are the amplitude and the 
phase of the carrier Rabi frequency on the jth ion, respectively.

The implementation of global entangling gates would be straightfor-
ward if we could only drive the centre-of-mass (COM) mode either in 
the axial or in the radial direction10,15,16. The homogeneous ion–motion 
couplings of the COM modes, ηj,1 = ηCOM, make all of the coupling 
strengths uniform as
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by ensuring that αj,1(τ) = 0 at time τ with the conditions Ωj(t) = Ω 
and φj(t) = 0 for all of the ions. However, owing to the bunching  
of an increasing number of motional modes and their crosstalk  
when the number of ions increases, we have to dramatically slow  
down the gate speed to isolate the COM mode20. Otherwise, inev-
itably the rest of the modes are also driven. Either of these effects 
would decrease the gate fidelity, owing to the limited coherence time or  
undesired inhomogeneous couplings (see details in Methods), as 
shown in Fig. 1d. Moreover, the COM modes suffer from more severe 
electrical noise compared with other modes, and the heating rates 
increase with the number of ions26, which would further degrade the 
gate fidelity.

Owing to the lack of scalability of the single-mode approach, we 
explore the possibility of finding multi-mode schemes for a scalable 
global N-qubit entangling gate. To apply the global gate GEN(Θ) in 
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equation (1) using the time evolution of equation (2), we have to close 
all of the motional trajectories and balance all of the coupling strengths, 
which lead to the following constraints

τ =a ( ) 0 (5)j m,

θ τ Θ=′( ) (6)j j,

Considering a general situation with N qubits and M collective 
motional modes, there are N × M constraints from equation (5) and 
( )N

2
 from equation (6). Therefore, we have to satisfy a total number of 

N(N − 1)/2 + NM constraints. In principle, we can fulfil the constraints 
by independently modulating the amplitude Ωj(t) or the phase φj(t) of 
the Rabi frequency on each ion in a continuous or a discrete way. In the 
experimental implementation, we choose discrete phase modulation 
because we have high-precision controllability on the phase degree of 
freedom. We divide the total gate operation time into K segments with 
equal duration and independently modulate the phase on each ion in 
each segment, which provides N × K independent variables. Because 
of the nonlinearity of the constraints, it is challenging to find analytical 
solutions for the constraints of equations (5) and (6). Therefore, we 
construct an optimization problem to find numerical solutions. We 
minimize the objective function of ∑j,m|αj,m(τ)|2 according to the con-
straints of equation (6)21,27,28. We note that we also use amplitude shap-
ing at the beginning and the end of the operation to minimize 
fast-oscillating terms due to off-resonant coupling to the carrier tran-
sition29. Details about the constraints under discrete phase modulation 
and the construction of the optimization problem are provided 
in Supplementary Information. Moreover, we note that once we find 
the solution of the global N-qubit entangling gate, the entangling gate 

can be applied on any subset of qubits by simply setting Ωj = 0 for any 
qubit j outside the subset.

We experimentally implement the global entangling gates in a single 
linear chain of 171Yb+ ions, as shown in Fig. 1b. A single qubit is encoded 
in the hyperfine levels of the ground-state manifold 2S1/2, denoted as 
∣ ⟩ ∣ ⟩≡ = =F m0 0, 0F  and ∣ ⟩ ∣ ⟩≡ = =F m1 1, 0F  (where F and mF are 
the hyperfine and magnetic quantum numbers, respectively), with an 
energy gap of ω0 = 12.642821 GHz, as shown in Fig. 1c. The qubits are 
initialized to state ∣ ⟩0  by optical pumping and measured using state- 
dependent fluorescence detection30. The fluorescence is collected by an 
electron-multiplying charge-coupled device (EMCCD) to realize a 
site-resolved measurement. After ground-state cooling of the motional 
modes, coherent manipulations of the qubits are performed by Raman 
beams produced by a picosecond-pulse laser31. One of the Raman beams 
is broadened to cover all of the ions, whereas the other is divided into 
several paths that are tightly focused on each ion (referred to as ‘indi-
vidual beam’ hereafter). The cover-all beam and the individual beams 
intersect each other perpendicularly at the ion chain, and drive radial 
modes mainly along the x direction. Using a multi-channel acousto- 
optic modulator controlled by a multi-channel arbitrary waveform  
generator, we realize independent control of the individual beams on each 
ion, as illustrated in Fig. 1b, similarly to the setup of ref. 14. Additional 
information about the experimental setup is provided in Methods.

To test the performance of the global N-qubit entangling gate, we use 
the GEN(π/4) gate to generate an N-qubit GHZ state and then measure 
the state fidelity. Starting from the product state ∣ ⟩. . .0 0 , the GHZ state 
can be prepared by applying the global entangling gate, while additional 
single-qubit σx rotations by π/2 are needed if N is odd. After the state 
preparation, we obtain the state fidelity by measuring the population 
of the entangled state and the contrast of the parity oscillation32.  
We also use the fidelity of the GHZ state to test the most important 
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Fig. 1 | Global entangling gate and its experimental implementation. 
a, Efficient construction of a quantum circuit using a global gate. For 
the generation of the four-qubit GHZ state, we need one Hadamard gate 
(‘H’ gate in the figure) and three pairwise entangling gates, which can 
be replaced by a single global four-qubit entangling gate. The phase gate 
(‘S’ gate) at the end of the first circuit is used to compensate for the phase 
difference between two circuit outputs. b, Experimental setup used for the 
implementation of the global entangling gate. Each ion in the trap encodes 
a qubit with energy splitting of ω0, which is individually manipulated by 
Raman beams: a cover-all beam (blue) and an individual beam addressing 
a single ion (red). The individually addressed qubits are involved in the 

global entangling gate. c, Energy levels of 171Yb+. The Raman beams (with 
detuning Δ) introduce a qubit-state-dependent force on each ion, with 
multiple motional modes driven simultaneously at a driving frequency 
of μ. The patterns of the collective motional modes in the transverse 
direction and their relative frequencies ν in the spectrum are shown in 
the inset. d, Implementation of the global entangling gate. With a single 
rectangular pulse, we cannot achieve uniform coupling strengths θj,j′ on 
all of the qubit pairs owing to undesired inhomogeneous couplings (see 
also Methods). Instead, we can achieve uniform coupling by independently 
modulating the pulses on each ion.
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feature of the global entangling gate, that is, whether it can be applied 
on any subset of qubits that are addressed by individual laser beams 
without changing the modulation pattern.

As a first demonstration of the global entangling gate, we use three 
171Yb+ ions with the frequencies of the collective motional modes in 
the x direction {ν1, ν2, ν3} = 2π × {2.184, 2.127, 2.044} MHz. We choose 
the detuning μ between the last two modes to be 2π × 2.094 MHz. 
The total gate time is fixed at 80 μs and divided into six segments. The 
details of the phase modulation pattern and the ratio of the amplitude 
shaping of each ion to the centre one are shown in Fig. 2a. With these 
parameters, the constraints of equations (5) and (6) are fulfilled, as 
shown in Fig. 2b, c. We use this global three-qubit entangling gate to 
prepare the three-qubit GHZ state with a state fidelity of 95.2% ± 1.5% 
(all uncertainties are one standard deviation), as shown in Fig. 3a. 
Moreover, by turning off the individual beam on a qubit, we can remove 
the couplings between that qubit and other qubits, as shown in Fig. 3. 
In the three-qubit system, the global entangling gates on the subsets 
become pairwise gates on arbitrary qubit pairs, which are used to gen-
erate the two-qubit GHZ states with fidelities higher than 96.5% in the 
experiment, as shown in Fig. 3b, c.

For a further demonstration of the global entangling gate, we 
move to a four-qubit system with motional frequencies {ν1, ν2, ν3, 
ν4} = 2π × {2.186, 2.147, 2.091, 2.020} MHz. The larger system 
means more constraints, and more segments are required. To realize 
a global four-qubit entangling gate, we choose the detuning μ to be 
2π × 2.104 MHz and fix the total gate time at 120 μs, which is evenly 
divided into twelve segments. The pulse scheme is shown in Fig. 4a, b. 
The number of the constraints in equation (6) increases quadratically 
with the number of qubits and reaches six in the four-qubit case, as 
shown in Fig. 4c.

By applying the global four-qubit entangling gate to all of the qubits, 
we successfully generate a four-qubit GHZ state with a state fidelity 
of 93.4% ± 2.0%, as shown in Fig. 4d. Similarly, we can prepare a 
three-qubit GHZ state or a two-qubit GHZ state by only addressing 

arbitrary three or two qubits, respectively. Experimentally, we choose 
the qubit set (2, 3, 4) to prepare the three-qubit GHZ state and the qubit 
pair (1, 3) to prepare the two-qubit GHZ state, with state fidelities of 
94.2% ± 1.8% and 95.1% ± 1.6%, respectively, as shown in Fig. 4e, f.

All of the results are corrected to remove detection errors 
(see Methods). The state fidelities of all of the prepared GHZ states 
are mainly limited by fluctuations of the tightly focused individual 
beams and optical-path jittering of the Raman beams (2%–4%). Other 
infidelity sources in the experiment include drifting of the motional 
frequencies (1%–2%) and crosstalk of the individual beams with nearby 
ions (about 1%).

We have presented the experimental realization of global entangling 
gates, which can increase the efficiency of quantum circuits, using a 
scalable approach and a trapped-ion platform. The duration of a single 
global gate is comparable to that of a single pairwise gate with the same 
total number of ions20. Therefore, we clearly observe benefits of the 
global gates in terms of total gate counts and duration. Moreover, we 
theoretically optimize the pulse schemes for five and six qubits, and 
we find that the required number of segments and the gate duration 
increase linearly with the number of qubits. As long as the solutions 
to the optimization problem can be determined, we could extend and 
apply the global entangling gate to a higher number of qubits. Pulse 
optimization with a large number of qubits is an NP-hard problem, 
but it could be assisted by a classical machine-learning technique. 
Furthermore, we can extend the global entangling gate to a general 
form with arbitrary coupling strengths of {θj,j′(τ) = Θj,j′}, which would 
further simplify quantum circuits for large-scale quantum computation 
and simulation9. During the preparation of this paper, we became aware 
of a related study about parallel pairwise entangling gates33.
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Fig. 2 | Experimental implementation of a global three-qubit entangling 
gate. a, Pulse scheme with phase and amplitude modulation. The phase 
φj is discretely modulated, as shown by the coloured lines. The specific 
values of the modulated phases are given in Methods. The amplitudes of 
the Rabi frequencies Ωj, shown by the black and grey curves, are shaped 
at the beginning (end) of the gate operation using a sin-squared profile 
with switching time equal to the duration of a single segment, τS. We note 
that the additional π-phase shift of the middle ion is treated as a negative 
sign for Ω. b, Accumulation of coupling strength θj,j′ over the evolution 
time. All of the coupling strengths increase to the desired value of π/4. 
c, Motional trajectories αj,m; the first qubit in phase space is shown as an 
example. Different colours correspond to the different segments in a.
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Fig. 3 | Experimental implementation and results of the global 
entangling gates in three-ion qubits. a–d, The left column shows the 
operation of the global entangling gate, which can generate entanglement 
of entire qubits (a) or any pair of qubits (b–d) by switching on the 
individual beams on the target ions without changing any modulated 
patterns. The right column shows the population (blue histogram) and 
the parity oscillation (red circles, experimental data; red curves, fitting 
results) of the generated GHZ state. The error bars indicate one standard 
deviation. a, Three-qubit GHZ state with a state fidelity of 95.2% ± 1.5%. 
b–d, Two-qubit GHZ states of qubit pairs (2, 3), (1, 3) and (1, 2), with 
fidelities of 96.7% ± 1.8%, 97.1% ± 1.9% and 96.5% ± 1.5%, respectively.

1 5  A U G U S T  2 0 1 9  |  V O L  5 7 2  |  N A T U RE   |  3 6 5



LetterRESEARCH

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1428-4.

Received: 15 January 2019; Accepted: 10 May 2019;  
Published online 24 July 2019.

	1.	 Shor, P. W. Polynomial-time algorithms for prime factorization and discrete 
logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

	2.	 Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 
467–488 (1982).

	3.	 Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
	4.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 

(Cambridge Univ. Press, 2010).
	5.	 Casanova, J., Mezzacapo, A., Lamata, L. & Solano, E. Quantum simulation  

of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, 
190502 (2012).

	6.	 Yung, M.-H. et al. From transistor to trapped-ion computers for quantum 
chemistry. Sci. Rep. 4, 3589 (2015).

	7.	 Ivanov, S. S., Ivanov, P. A. & Vitanov, N. V. Efficient construction of three- and 
four-qubit quantum gates by global entangling gates. Phys. Rev. A 91, 032311 
(2015).

	8.	 Martinez, E. A., Monz, T., Nigg, D., Schindler, P. & Blatt, R. Compiling  
quantum algorithms for architectures with multi-qubit gates. New J. Phys. 18, 
063029 (2016).

	9.	 Maslov, D. & Nam, Y. Use of global interactions in efficient quantum circuit 
constructions. New J. Phys. 20, 033018 (2018).

	10.	 Kim, K. et al. Entanglement and tunable spin–spin couplings between trapped 
ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

	11.	 Britton, J. W. et al. Engineered two-dimensional Ising interactions in a 
trapped-ion quantum simulator with hundreds of spins. Nature 484,  
489–492 (2012).

	12.	 Senko, C. et al. Coherent imaging spectroscopy of a quantum many-body spin 
system. Science 345, 430–433 (2014).

	13.	 Jurcevic, P. et al. Spectroscopy of interacting quasiparticles in trapped ions. 
Phys. Rev. Lett. 115, 100501 (2015).

	14.	 Debnath, S. et al. Demonstration of a small programmable quantum computer 
with atomic qubits. Nature 536, 63–66 (2016).

	15.	 Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 
106, 130506 (2011).

	16.	 Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. 
Science 334, 57–61 (2011).

	17.	 García-Ripoll, J. J., Zoller, P. & Cirac, J. I. Coherent control of trapped ions using 
off-resonant lasers. Phys. Rev. A 71, 062309 (2005).

	18.	 Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with 
transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

	19.	 Steane, A. M., Imreh, G., Home, J. P. & Leibfried, D. Pulsed force sequences  
for fast phase-insensitive quantum gates in trapped ions. New J. Phys. 16,  
053049 (2014).

	20.	 Choi, T. et al. Optimal quantum control of multimode couplings between 
trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112,  
190502 (2014).

	21.	 Leung, P. H. et al. Robust 2-qubit gates in a linear ion crystal using a frequency-
modulated driving force. Phys. Rev. Lett. 120, 020501 (2018).

	22.	 Milne, A. R. et al. Phase-modulated entangling gates robust against static and 
time-varying errors. Preprint at https://arxiv.org/abs/1808.10462 (2018).

	23.	 Schäfer, V. M. et al. Fast quantum logic gates with trapped-ion qubits. Nature 
555, 75–78 (2018).

	24.	 Kaufmann, H. et al. Scalable creation of long-lived multipartite entanglement. 
Phys. Rev. Lett. 119, 150503 (2017).

	25.	 Haljan, P. C., Brickman, K.-A., Deslauriers, L., Lee, P. J. & Monroe, C. Spin-
dependent forces on trapped ions for phase-stable quantum gates and 
entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005).

	26.	 Lechner, R. et al. Electromagnetically-induced-transparency ground-state 
cooling of long ion strings. Phys. Rev. A 93, 053401 (2016).

	27.	 Webb, A. E. et al. Resilient entangling gates for trapped ions. Phys. Rev. Lett. 121, 
180501 (2018).

	28.	 Shapira, Y., Shaniv, R., Manovitz, T., Akerman, N. & Ozeri, R. Robust 
entanglement gates for trapped-ion qubits. Phys. Rev. Lett. 121, 180502 (2018).

	29.	 Roos, C. F. Ion trap quantum gates with amplitude-modulated laser beams.  
New J. Phys. 10, 013002 (2008).

	30.	 Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine 
qubit. Phys. Rev. A 76, 052314 (2007).

	31.	 Hayes, D. et al. Entanglement of atomic qubits using an optical frequency 
comb. Phys. Rev. Lett. 104, 140501 (2010).

a

0 20 40 60 80 100 120

0.5

0.0

0.1

0.2

0.3

0.4

P
op

ul
at

io
n

1.0

–1.0

–0.6

–0.2

0.2

0.6

P
ar

ity

0.5

0.0

0.1

0.2

0.3

0.4

P
op

ul
at

io
n

1.0

–1.0

–0.6

–0.2

0.2

0.6

P
ar

ity

0.5

0.0

0.1

0.2

0.3

0.4

P
op

ul
at

io
n

1.0

–1.0

–0.6

–0.2

0.2

0.6

P
ar

ity

–0.5 –0.3 –0.1 0.1 0.3 0.5

Rotation axis (π)

0.25

0.125

0

π/4

b

c

d

e

f

0.5

–0.5

0.5

–0.5

1.0

–0.7

0.0

1,
4

(
2 

   
  )

m
ax

1.0

–0.7

0.0

Ω
Ω

Ω
Ω

Ω
Ω

2,
3

(
2 

   
  )

m
ax

1 2 3 4

1 2 3 4

1 2 3 4

t (μs)

τs

τs

1,
 

4 
(π

)
2,

 
3 

(π
)

j,j
′ (
π)

1,2, 3,4 (π)

1,3, 2,4 (π)

1,4

2,3

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

Fig. 4 | Experimental implementation and results of the global 
entangling gate in a four-ion system. a, b, Pulse scheme with phase and 
amplitude modulation. Using the symmetry of the system, we set the 
modulation patterns to be the same for the outer two qubits, (1, 4), and the 
inner two qubits, (2, 3). The additional π phase shift of each outer ion is 
treated as a negative sign for the amplitude Ω. The values of the modulated 
phases and the motional trajectories under this pulse scheme are given 
in Methods. c, Accumulation of coupling strengths θj,j′ for all of the qubit 
pairs. The coupling strengths converge to the desired value of π/4 at the 

end of the gate. d–f, GHZ states prepared by the global entangling gates. 
By addressing an arbitrary subset of qubits—for example, (1, 2, 3, 4), 
(2, 3, 4) and (1, 3)—we can apply the entangling gate on the subset. The 
frequency of the parity oscillation, which is proportional to the number 
of addressed qubits, reveals that the prepared state is the GHZ state. Error 
bars indicate one standard deviation. The state fidelities of the prepared 
four-, three- and two-qubit GHZ states reach 93.4% ± 2.0%, 94.2% ± 1.8% 
and 95.1% ± 1.6%, respectively.
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Methods
Comparison of the single-mode and multimode approaches. We compare the 
single-mode and multimode approaches by numerically calculating the fidelities of 
GHZ states prepared using these two methods. In the model we only consider the 
effect of the COM mode and the second mode on a global gate with a radial trap fre-
quency of 2π × 2.18 MHz and an axial trap frequency varying from 2π × 0.5 MHz 
(for three ions) to 2π × 0.32 MHz (for six ions). These values are consistent with 
the average experimental spacing of nearby ions of around 4.7 μm. It is difficult to 
perform a suitable quantum gate with a single axial COM mode at such low axial 
trap frequencies, owing to high heating rates and poor ground-state cooling, as the 
gate fidelity would be severely degraded with increasing number of ions. Therefore, 
we only consider the radial COM mode for the single-mode method.

For the radial COM mode method, we assume that bichromatic fields with 
detuning μ and time-independent Rabi frequency Ω are applied to all of the ion 
qubits. To close the trajectories of both modes simultaneously, we let δ2/δ1 be an 
integer r, where δm = νm − μ. Under these assumptions, we can simplify equa-
tion (3) to the following form
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where Δν =  |ν1 − ν2| is the frequency difference of the two modes. The  
gate duration is τ = 2π|δ1|−1 = 2π|r − 1|(∆ν)−1. An inhomogeneous ηj,2  
would imbalance the coupling strengths, as shown in Fig. 1d, for example. We 
numerically evaluate the fidelities of the created GHZ states by calculating 

θ σ σ= | ... | π/ − ∑ | ... |< ′ ′
′iFid 0 0 GE ( 4)exp[ ] 0 0j j j j,

2
N x

j
x
j† . The results are summa-

rized in Extended Data Fig. 1. As shown in the figure, to achieve a certain value of 
state fidelity, the minimal gate duration increases as N2.4 with increasing number 
of ions. We note that we do not include other modes in the simulation, as the 
inclusion of all modes would lead to further decrease of the fidelity. By contrast, 
in our multimode approach, we consider the effects of all of the modes. The gate 
duration increases almost linearly with the number of ions, with unity representing 
the theoretical fidelity. A shorter gate duration than that of the single-mode 
approach would suppress the infidelities resulting from the limited coherence time, 
Raman scattering, motional heating and so on.
Experimental setup. In the experiment the single ion chain is held in a blade trap, 
in the geometry shown in Extended Data Fig. 2. The average spacing of nearby ions 
is around 4.7 μm. The Raman beams are produced by a picosecond-pulse laser with 

a centre wavelength of 377 nm and a repetition rate of about 76 MHz. The ion flu-
orescence is collected by an objective lens from the top re-entry viewport and then 
imaged with the EMCCD. The average detection fidelity is 96% for a single ion. The 
measured population of state, denoted as Pmeas = {p0…0, ..., p1..1}, where pi is the 
probability of state ∣ ⟩i , is calibrated to remove detection errors using the method 
described in ref. 34, which has been applied to many other experimental demonstra-
tions12,35. The matrix of the detection errors (M) is determined experimentally and 
can be used to reconstruct the real population of the state, Preal = M–1Pmeas. However, 
to avoid non-physical results, we utilize the maximum-likelihood method to esti-
mate the real population by minimizing the 2-norm ||Pmeas – MPreal||2.
Experimental parameters. Here we present the details of the experimental pulse 
schemes for the global three- and four-qubit entangling gates. The maximal 
amplitudes of the Rabi frequencies are given using the theoretical Lamb–Dicke 
parameters

η
λ ν

=
πb ħ

M
2 2

2
(8)j m j m

m
, ,

Yb

where bj,m is the element of the normal-mode transformation matrix for ion j  
and motional mode m (ref. 36), λ is the centre wavelength of the Raman laser, ħ  
is the reduced Planck constant and MYb is the mass of the 171Yb+ ion. For  
the COM mode, we have typically η ≈ . / N0 08  for any j in our setup, where N 
is the number of ions. The values of the modulated phases and amplitudes of the 
Rabi frequencies obtained from the optimization are shown in Extended Data 
Tables 1, 2.

In Fig. 2c we show the trajectories of the motional modes in the phase space for 
the three-qubit situation. In Extended Data Fig. 3, we show the motion trajectories 
of αj,m(t) for the four-qubit case.

Data availability
All relevant data are available from the corresponding authors upon request.
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Extended Data Fig. 1 | Comparison between gate durations of single- 
and multi-mode approaches. For the given trap frequencies, the gate 
duration τ of the single-mode approach grows faster than linearly 
(τ ≈ N2.4) to maintain the fidelity F when the number of ions, N, increases. 
The gate duration of the multi-mode approach grows near linearly, with a 
theoretical fidelity of unity. The vertical axis is on a logarithmic scale.
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Extended Data Fig. 2 | Side view of the experimental ion-trap system. 
The figure shows the structure of the blade trap. The radiofrequency 
potential is applied to the RF electrodes and the direct-current (DC) 
electrodes are connected to the direct-current potential. A static magnetic 
field of B ≈ 6 × 10−4 T is applied along the direction shown in the figure. 
The cover-all beam goes through the side viewport and is focused at the 
ion-chain position into an elliptical Gaussian beam, with waists of about 
30 μm along the ion chain and about 5 μm in the perpendicular direction. 
The individual beams go through the bottom re-entry viewport and have 
a focused radius of about 1 μm at the ion position. The average laser 
power is around 120 mW for the cover-all beam and around 1 mW for 
each individual beam. The effective wave vector Δk of the two Raman 
beams is almost in the x direction, and the beams are polarized linearly, 
perpendicular to each other.
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Extended Data Fig. 3 | Motional trajectories in phase space for the global four-qubit entangling gate. Because we apply different modulated-phase 
patterns to the qubits (1, 4) and (2, 3), the shapes of the motional trajectories in a–d and e–h are different.
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Extended Data Table 1 | Pulse scheme for the global three-qubit 
entangling gate

Here, Ω j
max refers to the maximal amplitude of the Rabi frequency on the jth qubit during pulse 

shaping and φj,k refers to the value of the modulated phase on the jth qubit in the kth segment.
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Extended Data Table 2 | Pulse scheme for the global four-qubit 
entangling gate

The definitions of Ω j
max and φj,k are as in Extended Data Table 1.
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