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a b s t r a c t

Miller, Teng, Thurston, and Vavasis proved a geometric separator theorem which implies
that the k-nearest neighbor graph (k-NNG) of every set of n points in Rd has a balanced
vertex separator of size O(n1−1/dk1/d). Spielman and Teng then proved that the Fiedler
value — the second smallest eigenvalue of the Laplacian matrix — of the k-NNG of any n
points in Rd is O((k/n)2/d). In this paper, we extend these two results to nearest neighbor
graphs in a metric space with a finite doubling dimension and in a metric space that is
nearly-Euclidean. We prove that for every l > 0, if (X, dist) forms a metric space with
doubling dimension γ , then the k-NNG of every set P of n points in X has a vertex separator
of size O(k2l(64l + 8)2γ log2 LS log n +

n
l ), where L and S are, respectively, the maximum

and minimum distances between any two points in P . We show how to use the singular
value decomposition method to approximate a k-NNG in a nearly-Euclidean space by a
Euclidean k-NNG. This approximation enables us to obtain an upper bound on the Fiedler
value of k-NNGs in a nearly-Euclidean space.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Graph partitioning is an important combinatorial optimization problem that has been widely used in applications such
as parallel processing, VLSI design, and data mining. There are several versions of this problem. The simplest one is to divide
a graph into two equal-sized clusters in order to minimize the number of edges between these two clusters. In general,
we may want to divide a graph into multiple clusters and minimize some objective functions such as the total number of
inter-cluster edges or the maximum among the ratios defined by the number of edges leaving a cluster to the number of
vertices in that cluster [9,10]. Graph partitioning is an NP-hard problem if an optimal solution is desired [5]. Because of its
importance in practice, various partitioning heuristics and approximation algorithms have been designed and implemented.
The spectral method, which uses the eigenvectors of a matrix defined from the graph, is among the most popular ones used
in practice [1,13].
In this paper, we study the combinatorial and spectral properties of nearest neighbor graphs defined by points in

Euclidean-like metric spaces. We will give an upper bound on the separator size as well as an upper bound on the Fielder
value of these graphs. Our study is inspired by the following work on Euclidean nearest neighbor graphs. Miller et al [12]
proved that the k-nearest neighbor graph (k-NNG) of every set of n points in Rd has a vertex separator of size O(n1−1/dk1/d)
that 1/(d+2) splits the graph. Recall that for a parameter f : 0 < f < 1, a vertex separator that f -splits a graph is a subset of
its vertices whose removal divides the rest of the graph into at least two disconnected components such that no component
has size more than f · n. If f is a constant, independent of n, then we refer to the vertex separator that f -splits a graph as
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a balanced separator. Building on the technique of Miller et al, Spielman and Teng [17] proved that the Fiedler value — the
second smallest eigenvalue of the Laplacian matrix — of a k-NNG in Rd is at O((k/n)2/d).
We first consider the k-NNG for points in a metric space of a finite doubling dimension. This family of metric spaces

(see Section 2 for a formal definition) was introduced by Karger and Ruhl [8]. The motivation of their work is to extend
efficient nearest-neighbor-search data structures from Euclidean spaces to other growth-constrained metric spaces arising
in Internet applications.
As one of the main results of this paper, we prove that for every l > 0, if (X, dist) forms a metric space with doubling

dimension γ , then the k-NNG of every set P of n points in X has a balanced vertex separator of size O(k2l(64l+ 8)2γ log2 LS ·
log n+ n

l ), where L and S are, respectively, the maximum and minimum distances between any two points in X .
By choosing l = n1/(2γ+2)(k2 log2 LS · log n)

−1/(2γ+2), we prove that the k-nearest neighbor graph of every set of n points
in a metric space with doubling dimension γ has a vertex separator of size

O
(
n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n

)
.

We also show that the maximum degree of these k-NNGs is at most O(k log(L/S)). Thus, our degree bound also implies
that the Fiedler value of the k-nearest neighbor graph of any n points in ametric space with doubling dimension γ is at most
O(k log (L/S)).
Key to our proof, we characterize the family of minors excluded by these nearest neighbor graphs: For any given depth

parameter t , we show that these graphs cannot contain minor of depth at most t and size O(ktγ log(L/S)). With this graph-
theoretic property, we can use the separator theorem of Plotkin, Rao, and Smith [14] to prove our separator bound.
For each k-NNG in a nearly-Euclidean space (see Section 4 for a formal definition), we can apply the singular value

decompositionmethod to find an approximate Euclidean k-NNG. This approximation enables us to obtain a better separator
and Fiedler value bound than those that can be derived from a doubling dimensional framework.
We organize our paper as follows. In Section 2, we introduce the notation and definitions which will be used in the

paper. In particular, we will introduce doubling dimensional spaces, nearest neighbor graphs, the Fiedler value of a graph,
and Singular Value Decomposition (SVD). We will prove the separator theorem for k-NNGs in a finite doubling dimensional
space in Section 3. For k-nearest neighbor graphs in nearly-Euclidean space, we bound their spectra in Section 4. Finally, we
conclude our work in Section 5.

2. Graphs and geometry

In this paper, we consider graphs that are geometrically defined. We first introduce some notation and definitions that
will be used later. Given a graph G = (V , E), we assume V is a set of points from a metric space.

2.1. Metric spaces and doubling dimension

Given a set X of points and a distance function distwhich is defined as dist: X × X −→ [0,∞), we call the pair (X, dist)
ametric space if it satisfies the following axioms.

• ∀x, y ∈ X , dist(x, y) = 0 iff x = y.
• ∀x, y ∈ X , dist(x, y) = dist(y, x).
• ∀x, y, z ∈ X , dist(x, y)+ dist(y, z) ≥ dist(x, z).

If (X, dist) only satisfies the last two axioms and dist(x, x) = 0 for all x ∈ X instead of the first axiom, we call it a
semimetric (or pseudometric).
There are various families ofmetric spaces, such as the Euclidean spaces and theHamming spaces, parameterized by their

dimensions. Although these two families of metric spaces are simpler andmore familiar to us, not all practical problems can
bemodeled as graphs in a Euclidean space or a Hamming space. The family of doubling dimensional spaces, which has fewer
constraints, was introduced by Karger and Ruhl [8]. This family has become useful in several research areas, including graph
partitioning and network routing. One objective of this paper is to study the structure properties of graphs in a metric space
with finite doubling dimension and design efficient algorithms for them.
Suppose that v ∈ X is a point and r is a positive real number. Let Br(v) denote the ball that contains all points in X whose

distances to v are at most r . The metric (X, dist) has a doubling dimension γ if any ball of radius r could be covered by
2γ balls of radius r2 . The two-dimensional Euclidean space could be considered as a special doubling dimension space with
γ = log2 7. Different from general Euclidean spaces, doubling dimensional spaces have no such definitions as volume and
parallelization. We will review some properties of doubling dimensional spaces in Section 3.

2.2. Nearest neighbor graphs

Let P = {p1, . . . , pn} be a set of n points in a metric space. For each pi ∈ P , let Nk(pi) be the set of k points closest to pi in
P (if there are ties, break them arbitrarily). Let R(pi) be the distance between pi and its k-th closest neighbor. Then, ∀pi, pj, if
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pi ∈ Nk(pj), then ‖pi − pj‖ ≤ R(pj). Suppose that BR(pi) is the ball centered at pi with radius R. We denote the ball centered
at pi with radius αR by αBR(pi). With BR(pi), we can define k-ply systems, k-nearest neighbor graphs and intersection graphs
in general metric spaces.

Definition 1. A k-Nearest Neighbor Graph (k-NNG) of a set of n vertices is an undirected graph with vertex set P =
{p1, . . . , pn} and edge set E = {(pi, pj): pi ∈ Nk(pj) or pj ∈ Nk(pi)}. We denote the k-Nearest Neighbor Graph of P as
Nk(P).

Let BNk(P) = {BR(p1)(p1), . . . , BR(pn)(pn)} be the corresponding neighborhood system of Nk(P). The ply of BNk will be
discussed in Section 3, as well as the definition of neighborhood system.

2.3. Graph partitioning and vertex separators

A partition of a graph G = (V , E) is a division of its vertices. Wewill focus on two objectives motivated by the application
of graph partitioning in parallel processing. The first objective is to minimize the number of the edges cut by the partition.
The second objective is to balance the computational load, i.e., to limit the size of each cluster to within a tolerance. We call
Es, a subset of E, an edge separator of G, if the removal of Es from E creates two or more disconnected components of V . We
call Vs, a subset of V , a vertex separator of G, if the removal of Vs and all incident edges induces two or more disconnected
components of V .

2.4. Laplacian and the Fiedler Value

Suppose G = (V , E) is an undirected, connected graph. Then its adjacency matrix is A(G) = (aij)n×n, where

aij =
{
1 if (i, j) ∈ E
0 otherwise.

Let D(G) = (dij)n×n be a diagonal matrix where dii is the degree of the vertex vi in G. The Laplacian matrix of G is denoted
as L(G) = D(G)− A(G) = (lij)n×n. Hence

lij =

{
−1 if i 6= j and (i, j) ∈ E
0 if i 6= j and (i, j) /∈ E
degree(vi) if i = j.

Because L(G) is real, symmetric andpositive semi-definite, its eigenvalues are all non-negative and its smallest eigenvalue
is zero, with (1, . . . , 1)T being its corresponding eigenvector. Fiedler [6] studied the second smallest eigenvalue of graph
Laplacians in the context of connectivity. We call the second smallest eigenvalue of L(G) the Fiedler value and call the
corresponding eigenvector the Fiedler vector. Because G is connected, we know that the Fiedler value is non-zero and can be
expressed as follows.

λ2 = min
x⊥(1,...,1)T

xTL(G)x
xTx

= min
x⊥(1,...,1)T

∑
(i,j)∈E (xi − xj)

2∑n
i=1 x

2
i

.

Given E ′, a subset of E, the graph G′ = (V , E ′) is called an edge subgraph of G = (V , E). And we can get the following
property about edge subgraph.

Proposition 2. For any graph G, the Fiedler value of an edge subgraph of G is no more than the Fiedler value of G.

2.5. Singular value decomposition

To learn more about Laplacian matrix and its Fiedler value, we review a useful technique called singular value
decomposition (SVD).

Definition 3. A singular value decomposition of anm× nmatrix Awithm ≥ n is any factorization of the form

A = UDV T =
[
u1, u2, . . . , un

]
σ1

σ2
. . .

σn



vT1
vT2
...

vTn

 (1)

where U is anm×m orthogonal matrix, V is an n× n orthogonal matrix, and D is anm× n diagonal matrix.

In SVD, the quantity σi is called a singular value of A, and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Given a matrix A = (aij)m×n, recall that
the Frobenius norm (F norm) of A is defined as
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‖A‖F =

√√√√ m∑
i=1

n∑
j=1

aij2 =

√√√√ n∑
i=1

σ 2i

while the Euclidean norm (2-norm) of A is defined as

‖A‖2 = sup
x6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2

where x is an n-dimensional vector and ‖x‖2 = (xTx)
1
2 =

√
x21 + x

2
2 + · · · + x2n.

In 1907, Erhard Schmidt [16] introduced the infinite dimensional analogue of the singular value decomposition. Eckart
and Young [3,4] showed that if we replace the smallest m − s singular values with zeros in D, then the new multiplication
of UDV T is the least square approximation of rank s of the original matrix A.

Theorem 4 (Eckart–Young). Let the SVD of A be given by (1) with rank r = rank(A) ≤ p = min {m, n} and define

Ak = UkDkV Tk =
k∑
i=1

σiuivTi

then,

min
rank(B)≤k

‖A− B‖F = ‖A− Ak‖F =

√√√√ p∑
i=k+1

σ 2i

min
rank(B)≤k

‖A− B‖2 = ‖A− Ak‖2 = σk+1.

Hence we can use the lower-rankmatrix Ak to approximate the original matrix A and Eckart–Young Theorem guarantees
that this approximation is the best possible. For more properties of SVD, please refer to [2] and [7].

3. A separator theorem for doubling dimensional spaces

In this section, we prove the following separator theorem.

Theorem 5. For every l > 0, if P is a set of n points in a metric space with doubling dimension γ , then the k-NNG of P has a vertex
separator of size O(k2l(64l + 8)2γ log2 LS · log n +

n
l ), where L and S are, respectively, the maximum and minimum distances

between any two points in P.

We start with the following useful lemma. It can be used to obtain a degree bound for k-NNGs in a finite doubling
dimensional metric space.

Lemma 6. Every ball of radius r in a metric space with doubling dimension γ contains at most 2γ disjoint balls of radius r2 .

Proof. By the definition of doubling dimension,we see that for any ball B of radius r there exist 2γ balls of radius r2 which can
cover B completely, assuming that those balls are C1, C2, . . . , C2γ . Suppose that B1, B2, . . . , Bk are k disjoint balls of radius
r
2 in B, and their corresponding centers are v1, v2, . . . , vk. Hence ∀ i, j ∈ {1, . . . , k} and i 6= j, we have Bi ∩ Bj = ∅, i.e.,
‖vi − vj‖ > r .
Because the radius of every Ci is r2 , according to the triangle inequality, the distance between any two points in ball Ci is

no more than r . Thus, each Ci cannot cover more than one point in {v1, v2, . . . , vk}. Because C1, C2, . . . , C2γ could cover B,
they must cover v1, v2, . . . , vk as well. Hence we know that k ≤ 2γ . �

Similarly, we have the following corollary.

Corollary 7. Every ball of radius r in a metric space with doubling dimension γ contains at most 2dteγ disjoint balls of radius r2t
for any t ≥ 1.

3.1. Shallow minors

Definition 8. A minor of a graph G is a graph obtained from G by a series of edge contractions and edge deletions.

The key to our analysis is to show that k-NNGs in a finite doubling dimensional metric space exclude certain type of
minors.

Definition 9. Let P = {p1, . . . , pn} be points in a metric space, then a k-ply neighborhood system for P is a set of closed
balls, B = {B1, . . . , Bn}, such that Bi is centered at pi and no point p in the metric space is contained in the interior of more
than k balls from B.
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(a) The first class. (b) The second class.
Fig. 1. The shrinking and moving for two classes.

Definition 10. Given a setΩ , and another set S which is a family of non-empty subsets ofΩ , the corresponding intersection
graph has a vertex for each subset, and a connecting edge whenever two subsets intersect. Specifically, for a k-ply
neighborhood systemΓ = {B1, B2, . . . , Bn}, the intersection graph ofΓ is the undirected graphwith verticesV = {1, . . . , n}
and edges E = {(i, j) : Bi ∩ Bj 6= ∅}.

Teng [18] showed that for each ball in a k-ply neighborhood system in a Euclidean space, there cannot be too many balls
of large radius intersecting the ball. We can get a similar result for graphs in doubling dimensional spaces. Here we consider
the doubling dimensional spaces with the following property.

Definition 11. Ametric doubling dimensional space (X, dist) has segment property if for each pair of points x, y ∈ X , there
exists a continuous curve γ = γ (t) connecting x and y such that dist(γ (t), γ (s)) = |t − s| for all t and s.

More details about the segment property can be found in [15]. Next we will prove that for any ball of radius r , there
cannot exist too many balls of radius at least βr that intersect it.

Lemma 12. Suppose that {B1, . . . , Bn} is a k-ply neighborhood system in a metric space with doubling dimension γ . For each
ball B with radius r, for all constant β > 0, we have

|{i : Bi ∩ B 6= φ and ri ≥ βr}| ≤ (k+ 1)
(
4(1+ 3β/2)

β

)γ
where ri is the radius of Bi.

Proof. Let p be the center of B, and let B′ = (1+ β)B. Suppose that t balls with radius at least βr intersect B. Without loss
of generality, we assume that those t balls are B1, . . . , Bt , which are divided into two classes. One class contains those balls
whose centers are in the exterior of B′ and the other class contains those balls whose centers are in B′ (see Fig. 1).
For any ball Bi (with center pi and radius ri) in the first class, due to Definition 11 (segment property of the doubling

dimensional space), we can find a new point p′i along the curve from p to pi such that ‖p − p
′

i‖ + ‖p
′

i − pi‖ = ‖p − pi‖,
‖pi − p′i‖ ≤ ri − βr and ‖p − p

′

i‖ ≤ (1 + β)r (If ‖p − p′i‖ ≥ ri, then we can choose p
′

i such that ‖pi − p
′

i‖ = ri − βr;
otherwise, we can choose p′i such that ‖pi − p

′

i‖ = ‖p − pi‖ − βr). Consider any point v such that ‖v − p
′

i‖ ≤ βr , then
we have ‖v − pi‖ ≤ ‖v − p′i‖ + ‖p

′

i − pi‖ ≤ βr + (ri − βr) = ri. We denote the ball of radius βr with center p′i as B
′

i .
Hence B′i is completely contained in Bi. Additionally, we can see that those B

′

i ’s are all contained in (1+ 2β)B. Hence we can
shrink each ball in the first class to radius βr and move its center to the corresponding p′i , so that the k-ply condition of the
neighborhood system does not change and the new balls are all contained in (1+ 2β)B.
We now consider the second class. Similarly, we can shrink each ball Bi (with center pi and radius ri) to radius βr and let

p′i = pi. Hence ‖p− p
′

i‖ = ‖p− pi‖ ≤ (1+ β)r and the new ball B
′

i (with center p
′

i and radius βr) is contained in (1+ 2β)r .
Obviously, each B′i is contained in Bi and substitution from Bi to B

′

i does not increase the ply in the neighborhood system.
Next we shrink each ball B′i to its corresponding homocentric ball B

∗

i with radius
βr
2 . We claim that for any ball B

∗

i , there
are no more than k balls B∗j having overlap with it.
To prove this claim, we consider the set S = {B∗1, B

∗

2, . . . , B
∗
t } and will show that the corresponding intersection

graph G(S) of S is degree bounded, i.e., the max degree of G(S) is at most k. Suppose that there exists a vertex vi (whose
corresponding ball is B∗i in S) in G(S) whose degree is greater than k. There are at least k + 1 balls that intersect B

∗

i , and
without loss of generality, we assume that those balls are B∗1, B

∗

2, . . . , B
∗

k+1. Because these balls have overlap with B
∗

i , we can
see that ‖pi − pj‖ ≤

βr
2 +

βr
2 = βr for 1 ≤ j ≤ k + 1. Recall that the radius of each ball B

′

j is βr . Thus, the center of ball B
′

i
is contained in each B′j , i.e., the ply of the original neighborhood system is at least k+ 1, which contradicts the assumption
of k-ply condition. Consequently, the claim that for any ball B∗i , there are no more than k balls B

∗

j having overlap with it, is
true.
Similar as the method proposed in [11], we color all the vertices (which are the corresponding centers of ball B∗i ) with

k + 1 different colors and make sure that every adjacent two centers have different colors, because the max degree in the
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intersection graph is no more than k. Then we classify these balls B∗i according to the colors of their centers and get k + 1
disjoint sets.
For each color set, there are several disjoint balls B∗i ’s with radius

βr
2 contained in (1 +

3β
2 )B. Applying Corollary 7, we

can see that there are at most ( 2(1+3β/2)
β/2 )γ disjoint balls in (1 + 3β/2)B for each color set. Because there are at most k + 1

different color sets, there are at most (k+ 1)( 4
β
+ 6)γ balls with radius at least βr intersecting the ball B. �

Although there is no such definition as volume in the Euclidean space, the doubling dimensional space does have
similar shallowminor properties. We will show that the intersection graph of a k-ply neighborhood system in the doubling
dimensional space does exclude shallow minors of a certain size.

Definition 13. A depth lminor is a minor of which the length of the longest simple path is l.

Theorem 14. Suppose thatΓ is a k-ply neighborhood system in ametric spacewith doubling dimensionγ andG is the intersection
graph of Γ . Then ∀l > 0, G excludes Kh as a depth l minor for h ≥ (k+ 1)(16l+ 2)γ .

Proof. Suppose that G has a Kh minor of depth l. We claim that there must exist h sets of balls, Γ1, . . . ,Γh ⊂ Γ , such that:

• The intersection graph of each Γi is connected with diameter at most l.
• For each pair i, j ∈ {1, . . . , h}, there’s a ball in Γi that intersects a ball in Γj.

Let Bi be the ball of the largest radius in Γi. Without loss of generality, assume that B1 is the ball of the smallest radius
among {B1, . . . , Bh} and its radius is r . Hence, all the balls in Γ1 are contained in the ball B′ = (2l + 1)B1, because the
intersection graph of Γ1 is connected. According to the second condition, ∀i > 1, there is a ball from Γi that intersects B′.
We claim that for each i > 1, there is a ball in Γi of radius at least r that intersects the ball (4l− 1)B1.
As we know, the diameter of the intersection graph of Γi is at most l and there is a ball from Γi that intersects B′. If that

intersecting ball has radius at least r , then we are done with Γi. If not, we can enlarge the radius of B′ by 2r and the enlarged
B′ will completely contain the intersecting ball in Γi and meet other balls in Γi because of the connectivity of Γi. Then we
judge whether one of the intersecting balls has radius at least r . If not, we repeat the augment process above. Because B1
is the ball of the smallest radius among {B1, . . . , Bh}, the process will surely terminate. This process is like a breadth-first-
search. The number of iterations is less than l−1, since wewill surely meet either Bi (the maximum-radius ball in Γi, whose
radius is at least r) or some other ball in Γi that has radius at least r .
Namely, the ball B∗ of radius R = (4l − 1)r intersects h balls of radius at least βR where β = 1/(4l − 1). Applying

Lemma 12, we have h ≤ (k+ 1)(16l+ 2)γ . �

Now we introduce overlap graph, which is defined in a neighborhood system.

Definition 15. Given a k-ply neighborhood system Γ = {B1, B2, . . . , Bn} and α ≥ 1. The α-overlap graph of Γ is the
undirected graph with vertices V = {1, . . . , n} and edges E = {(i, j) : (Bi ∩ α · Bj 6= ∅) and (Bj ∩ α · Bi 6= ∅)}.

For those overlap graphs of neighborhood system, we can also get the shallow minor excluded properties as follows.

Theorem 16. Suppose thatΓ is a k-ply neighborhood system in ametric space with doubling dimension γ and G is the α-overlap
graph of Γ . Then ∀l > 0, G excludes Kh as a depth l minor for h ≥ (k+ 1)(16αl+ 2)γ .

Proof. This proof is similar to that of Theorem 14. Suppose that G has a Kh minor of depth l. We claim that there must exist
h sets of balls, Γ1, . . . ,Γh ⊂ Γ , such that:

• The intersection graph of each Γi is connected with diameter at most l.
• For each pair i, j ∈ {1, . . . , h}, there is a ball Ui in Γi and a ball Uj in Γj such that Ui ∩ α · Uj 6= ∅ and Uj ∩ α · Ui 6= ∅.

Suppose that Bi is the ball of the largest radius inΓi. Without loss of generality, assume B1 is the ball of the smallest radius
among {B1, . . . , Bh} and its radius is r . Hence, all the balls in Γ1 are contained in the ball (2αl+ 1)B1, because the depth of
α-overlap graph of Γ1 is at most l. According to the second condition, ∀i > 1, there exists a ball Ui from Γi and a ball U in Γ1
such that αU ∩ Ui 6= ∅.
We claim that for each i > 1, there is a ball in Γi of radius at least r that intersects the ball (4αl − 1)B1. The proof is

similar to that of Theorem 14. Hence, the ball B∗ of radius R = (4αl − 1)r intersects h balls of radius at least βR where
β = 1/(4αl− 1). Applying Lemma 12, we have h ≤ (k+ 1)(16αl+ 2)γ . �
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Fig. 2. Two cases in the last iteration.

3.2. Proof of Theorem 5

In this subsection, we give the proof of Theorem 5. First, we bound the maximum degree of nearest neighbor graphs and
the ply of neighborhood system in metric spaces with doubling dimension γ .

Lemma 17. Let P = {p1, . . . , pn} be a point set in a metric space with doubling dimension γ . Then the ply of BNk(P) is bounded
by k · 4γ log 3

2

2L
S , where L is the maximum distance between any two points in P, and S is the smallest one.

Proof. We first consider the case of k = 1, i.e., the radius of each ball equals the distance from its center to its nearest
neighbor. In such a case, no ball contains the center of other balls in its interior.
Suppose that p is the pointwhich has the largest ply t .Without loss of generality, we assume that these t balls that contain

p are {B1, B2, . . . , Bt} with corresponding center set Q = {p1, . . . , pt}. According to the definition of BNk(P), we can derive
that ∀pi, pj ∈ Q , ‖pi−pj‖ ≥ ‖p−pi‖ and ‖pi−pj‖ ≥ ‖p−pj‖. Thenwe consider the point setU = {pi : ‖p−pi‖ > 2

3R} ⊆ Q
where R = max1≤i≤t ‖p− pi‖. And for each pi ∈ U , let Ci be the ball of radius 13R centered at pi. We claim that: (1) those Ci’s
do not have overlap with each other; (2) they are completely contained in a ball centered at p of radius 43R.
As we mentioned above, for any pi, pj ∈ U , ‖pi − pj‖ ≥ ‖p − pj‖ > 2R/3, therefore, Ci and Cj do not have overlap with

each other. According to the triangle inequality, ∀Ci and for any point v ∈ Ci, ‖p−v‖ ≤ ‖p−pi‖+‖pi−v‖ ≤ R+ 1
3R =

4
3R.

Hence those Ci’s where pi ∈ U are all contained in a ball centered at p of radius 43R.
Due to Corollary 7, we can see that there are at most 22γ = 4γ such disjoint Ci in that 43R radius ball, so there are at most

4γ points in the point set U .
We can remove those points and consider the remaining points with R′ = max ‖p− pj‖ ≤ 2

3R. With the similar method,
we can estimate the number of points which are at least 23R

′ far away from p. We can do this iteration on and on until there
are fewer than 2 points left around pwithin distance 23R

′ in the last iteration.
There are two cases shown in Fig. 2. The first case happens when there is only one point left around p within distance

2
3R
′. The second case happens when there is no point left around p with distance less or equal to 23R

′. Because there are at
least two points around p in the last iteration, without loss of generality, we assume two of these points are pi and pj. Hence
we can see that S ≤ ‖pi − pj‖ ≤ 2R′, and derive that R′ ≥ 1

2S.
From the analysis of the above two cases, we can conclude that R′ ≥ 1

2S. Hence the iteration of estimating and removing
could repeat for at most log 3

2

2L
S times, where L = maxi6=j ‖pi − pj‖ and S = mini6=j ‖pi − pj‖. For each iteration, we can

remove at most 4γ points, due to Corollary 7, and there are at most log 3
2

2L
S iterations, therefore the plym ≤ 4

γ log 3
2

2L
S for

k = 1. We have proved the lemma for k = 1.
We consider the cases for k > 1.Without loss of generality, we assume that B1, . . . , Bt contain p, and their corresponding

centers are p1, . . . , pt . Define a set Q ⊆ P = {p1, . . . , pt} by the following procedure. Initially, Q = φ.

while P 6= φ do
Q = Q ∪ {q}, where q is the point in P with the largest k-nearest neighbor radius;
P = P − int(Bq), where Bq stands for the closed ball of Nk(q).

end while

Because each ball covers only k points in its interior, we have m ≥ dt/ke, where m denotes |Q |. Now we will show that
for all q ∈ Q , int(Bq) ∩ Q = {q}.
Suppose that Q = {q1, . . . , qm} such that for all i < j, qi is put into Q in the procedure before qj. Notice that for all j < i,

qj /∈ int(Bqi) because of the update operation for P in the algorithm. We can find that for all j > i, qj /∈ int(Bqi), because the
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radius of the ball centered at qi is larger than that of the ball centered at qj. Therefore, we prove that int(Bq) ∩ Q = {q} for
all q ∈ Q .
Thus,m ≤ 4γ log 3

2

2L
S which implies t ≤ km ≤ k4

γ log 3
2

2L
S . �

Corollary 18. The max degree of a k-NNG in a metric space with doubling dimension γ is O(k log (L/S)), where L and S are the
longest and shortest distances in the graph.

Proof. Suppose that BNk(P) is the corresponding neighborhood system and p is a vertex in k-NNG. Then p is contained by
at most k · 4γ log 3

2

2L
S balls in BNk(P) and p is connected to those centers. According to the definition of k-NNG, p is also

connected to its k nearest neighbors. Hence the degree of vertex p is no more than k4γ log 3
2

2L
S + k. Generally, the doubling

dimension γ is a constant. Because p is chosen arbitrarily , we can see that the max degree in k-NNG is O(k log (L/S)). �

Plotkin, Rao and Smith [14] gave the following theorem and showed that we can find a small size separator for the graph
which excludes shallow minors.

Theorem 19. For any graph that excludes Kh as a depth l minor, we can find a separator of size O(lh2 log n+ n/l), where n is the
number of vertices of the graph.

We consider the neighborhood system BNk(P) in a metric space with doubling dimension γ . Suppose that the
corresponding k-NNG is G and the intersection graph of BNk(P) is G

′, then we can see that G is a subgraph of G′. Applying
Lemma 17 gives the ply bound of BNk(P), therefore, ∀l > 0, G

′ excludes Kh as a depth l minor for h > (k · 4γ log3/2
2L
S +

k + 1)(16l + 2)γ > k(64l + 8)γ log 3
2
( 2LS ) according to Theorem 14. Applying Theorem 19 gives the separator bound of G

′.
Because G is a subgraph of G′, a separator of G′ is also the separator of G. Therefore, Theorem 5 holds.
To minimize the separator size, we choose l = n1/(2γ+2)(k2 log2 LS · log n)

−1/(2γ+2) such that the two terms are equal
and get that every k-nearest neighbor graph of n points in a metric space with doubling dimension γ has a balanced vertex
separator of size

O(n1−1/(2γ+2)k1/(γ+1) log1/(γ+1)(L/S) · log1/(2γ+2) n).

Since we have showed that the maximum degree of these k-NNGs is O(k log(L/S)), the above degree bound could also give
an upper bound of the Fiedler value of a k-NNG of n points in a metric space with doubling dimension γ . Suppose that the
sizes of two sides of the separation are x and αx, respectively, where α ≥ 1. Let ∆ be the maximum degree of the k-NNG.
Then we can set xi for each vertex on the side with x vertices to be 1x ; xi for each vertex on the other side with αx vertices to
be −1

αx ; and xi for each vertex in the separator to be zero. Since the separator is a vertex separator, there is no edge between
the two sides of the separation. Then we have the following inequality.

λ2 ≤

∑
cut edge(i,j)(xi − xj)

2∑
∀i x
2
i

≤
( 1x )

2
×1x+ ( 1

αx )
2
×∆αx

1/x+ 1/(αx)
= ∆

= O(k log (L/S)).

The above results hold for spaceswith segment property.When there is no segment property in the doubling dimensional
space, we have the following similar results.

Lemma 20. Suppose that {B1, . . . , Bn} is a k-ply neighborhood system in a metric space with doubling dimension γ . For each
ball B with radius r, for all constant β > 0, we have

|{i : Bi ∩ B 6= φ and ri ≥ βr}| ≤
⌈
log2

R
βr

⌉
(k+ 1)2γ

(
5+

2
β

)γ
where ri is the radius of Bi and R is the maximum radius in the system.

Proof. Let p be the center of B. Suppose that t balls with radius at least βr intersect B. Without loss of generality, we assume
that those t balls are B1, . . . , Bt , which are divided intom+1 classes shown in the table below. Herem = dlog2

R
βr e−1 and

R is the largest radius in the neighborhood system.
We discuss two typical classes in the table and give the proof for numbers in the last column.
The proof for the first class is similar to that in Lemma 12. Suppose that there are t1 balls in the first class, and let

B′ = (1 + 5β
2 )B. Then we can shrink each ball Bi (with center pi and radius ri) to radius βr and let p

′

i = pi. Hence
‖p− p′i‖ = ‖p− pi‖ ≤ (1+ 2β)r , and the new ball B

′

i is contained in Bi and substitution from Bi to B
′

i does not increase the
ply in the neighborhood system. Next we shrink each ball B′i to its corresponding homocentric ball B

∗

i with radius
βr
2 . We
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Range of ‖p− pi‖ Radius of Bi Radius of B∗i B′ Number of balls in B′

[0, (1+ 2β)r] ≥ βr βr
2 (1+ 5β

2 )B (k+ 1)2γ (5+ 2
β
)γ

((1+ 2β)r, (1+ 4β)r] > 2βr βr (1+ 5β)B (k+ 1)2γ (5+ 1
β
)γ

((1+ 4β)r, (1+ 8β)r] > 4βr 2βr (1+ 10β)B (k+ 1)2γ (5+ 1
2β )

γ

((1+ 8β)r, (1+ 16β)r] > 8βr 4βr (1+ 20β)B (k+ 1)2γ (5+ 1
4β )

γ

· · · · · · · · · · · · · · ·

((1+ 2jβ)r, (1+ 2j+1β)r] > 2jβr 2jβr
2 (1+ 2j−15β)B (k+ 1)2γ (5+ 1

2j−1β
)γ

· · · · · · · · · · · · · · ·

((1+ 2mβ)r, (1+ 2m+1β)r] > 2mβr 2m
2 βr (1+ 2m−15β)B (k+ 1)2γ (5+ 1

2m−1β
)γ

claim that for any ball B∗i , there are nomore than k balls B
∗

j having overlap with it. Thenwe can color all these t1 centers with
k + 1 colors so that every adjacent two centers have different colors. For each color set, there are some disjoint balls with
radius βr2 and contained in B

′
= (1+ 5β

2 )B. Applying Corollary 7, we can see that there are at most 2
γ (5+ 2

β
)γ disjoint balls

in (1+ 5β/2)B for each color set. Because there are at most k+ 1 different color sets, there are at most (k+ 1)2γ (5+ 2
β
)γ

balls intersecting the ball B in the first class.
Nowwe consider a general class, for example, the (j+1)th class. Suppose that there are tj+1 balls in the (j+1)th class, and

let B′ = (1+ 2j−15β)B. Because all these tj+1 balls intersect B and their centers are in the range ((1+ 2jβ)r, (1+ 2j+1β)r],
every ball in this class has radius at least 2jβr . Then we can shrink each ball Bi in this class (with center pi and radius ri) to
radius 2jβr and let p′i = pi. Hence‖p−p

′

i‖ = ‖p−pi‖ ≤ (1+2
jβ)r , and the newballB′i is contained inBi and substitution from

Bi to B′i does not increase the ply in the neighborhood system. Next we shrink each ball B
′

i to its corresponding homocentric
ball B∗i with radius 2

j−1βr . We claim that for any ball B∗i , there are nomore than k balls B
∗

j having overlapwith it. The proof is
similar to that in Lemma 12. Thenwe can color all these tj+1 centers with k+1 colors so that every adjacent two centers have
different colors. For each color set, there are some disjoint balls with radius 2j−1βr and contained in B′ = (1 + 2j−15β)B.
Applying Corollary 7, we can see that there are at most 2γ (5 + 1

2j−1β
)γ disjoint balls in (1 + 2j−15β)B for each color set.

Because there are at most k+ 1 different color sets, there are at most (k+ 1)2γ (5+ 1
2j−1β

)γ balls intersecting the ball B in
the (j+ 1)th class.
Till now, we have proved all the upper bounds in the last column. Hence

|{i : Bi ∩ B 6= φ and ri ≥ βr}| ≤ t1 + · · · + tm+1 ≤
⌈
log2

R
βr

⌉
(k+ 1)2γ

(
5+

2
β

)γ
. �

With Lemma 20, we can derive the following theorems similarly as what we have done in Theorem 14, Theorem 16 and
Theorem 5.

Theorem 21. Suppose thatΓ is a k-ply neighborhood system in ametric spacewith doubling dimensionγ andG is the intersection
graph of Γ . Then ∀l > 0, G excludes Kh as a depth l minor for h ≥ (k+ 1)dlog2

R(4l−1)
r e(16l+ 6)

γ , where R is the largest radius
and r is the smallest one in the neighborhood system.

Theorem 22. Suppose thatΓ is a k-ply neighborhood system in ametric space with doubling dimension γ and G is the α-overlap
graph of Γ . Then ∀l > 0, G excludes Kh as a depth l minor for h ≥ (k+1)dlog2

R(4αl−1)
r e(16αl+6)γ , where R is the largest radius

and r is the smallest one in the neighborhood system.

Theorem 23. For every l > 0, if P is a set of n points in a metric space with doubling dimension γ , then the k-NNG of P has a
vertex separator of size O(k2l log2 LS (log l + log

L
S )
2(16l + 6)2γ log n + n

l ), where L and S are, respectively, the maximum and
minimum distances between any two points in P.

4. A spectral theorem for nearly-Euclidean spaces

Since Fiedler [6] discovered that the second smallest eigenvalue is closely related to the connectivity of the graph, a large
amount of work has been done on spectra analysis of graphs. In 1996, Spielman and Teng [17] proved that the Fiedler value
of a k-nearest neighbor graph with n vertices in Rd is bounded by O(k1+2/d/n2/d).
In this section, we consider a point set P of n vertices in Rm space. P = {p1, . . . , pn} ⊆ Rm. We can get anm× nmatrix

P with column vectors (p1, . . . , pn). An upper bound of Fiedler value of the Laplacian matrix L(P), given by Spielman and
Teng, is as follows.

Theorem 24 (Spielman–Teng). If G is a subgraph of an α-overlap graph of a k-ply neighborhood system inRm and the maximum
degree of G is∆, then the Fiedler value of L(G) is bounded by γm∆α2( kn )

2/m, where γm = 2(π + 1+ π
α
)2(

Am+1
Vm
)2/m.
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Am is the surface volume of a unitm-dimensional ball, and Vm is the volume of a unitm-dimensional ball. In general case, the
numbers k and α are two constants, and the item γm can be considered as a constant if the dimensionm is fixed. Therefore,
the bound can be simplified as O( 1

n2/m
).

If we change the base carefully, the dimension could be changed as well. Hence we can consider the Laplacianmatrix of a
k-NNG and find a low-rank approximationmatrix which can be contained in a lower dimension space so that the dimension
of the new space is smaller. The changing of basis couldmake the problem easier, andwe call the new space nearly-Euclidean
space.
As we mentioned in Section 2, SVD could help us get a low-rank approximation matrix Q whose rank is d with d < m.

Suppose that the column vectors of Q are (q1, . . . , qn) and these n points form a new point set Q . Suppose that G′ is the
(1 + 7δ

s )-overlap graph of the k-NNG of Q , the maximum degree of G
′ is ∆, s is the length of the shortest edge in G′, δ is

the maximum distance between each pi and qi for any i ∈ {1, . . . , n}, we can prove the following theorem and get a more
accurate bound for L(P).

Theorem 25. If G is the k-NNG of the point set P in Rm space, then using SVD, we can find an approximate point set Q with
rank(Q) = d < m, and the Fiedler value of L(P) can be bounded by (1+ 7δs )

2γd∆(τdk/n)
2
d where γd = 2(π+1+ π

α
)2(

Ad+1
Vd
)2/d,Ad

is the surface volume of a unit d-dimensional ball, and Vd is the volume of a unit d-dimensional ball.

To make the idea look clearer, we consider a simple example in R2 space. Q = {q1, . . . , qn} is a set of n points in R2 space.
We perturb these n points in the direction perpendicular to the original plane and get a new set of n points, denoted by
P = {p1, . . . , pn}, in R3 space. Assuming that the smallest distance between any two points of Q is s, and the perturbation
distance is at most δ. If s ≥ δ, we can get the following inequalities.

‖pi − pj‖ ≤
√
(2δ)2 + ‖qi − qj‖2 ≤

√
5‖qi − qj‖.

If ri is the k-NNG radius for qi, and Ri is the k-NNG radius for pi, then we can see that Ri ≤
√
5ri for all i ∈ {1, . . . , n}.

Therefore, we can use
√
5-overlap graph G′ of Q to approximate the k-NNG G of P . And the Fiedler value of L(G′) can also be

bounded by the Fiedler value of L(G). In fact, we can think that all those n points of P in R3 are perturbed perpendicularly to
the same plane and the new point set on the plane is Q .
To prove Theorem 25, we need the following preliminary lemmas.

Lemma 26. Suppose that P is a set of point, and we can use SVD to find an approximate point set Q for P. For each pi ∈ P, there
is a corresponding point qi in Q . Let Ri be the distance from pi to its k-th nearest neighbor in P. And let ri be the distance from qi
to its k-th nearest neighbor in Q . Then Ri ≤ ri + 2δ.

Proof. Suppose that qj is the k-th nearest neighbor of qi in Q . Hence ri = ‖qi − qj‖. We consider the following three cases.
Case 1. If the k-th nearest neighbor of pi in P is just pj, then

Ri = ‖pi − pj‖
≤ ‖pi − qi‖ + ‖qi − qj‖ + ‖pj − qj‖.

Because δ = max ‖pi − qi‖, we can get Ri ≤ ri + 2δ.
Case 2. If the k-th nearest neighbor of pi in P is pl and ‖qi − ql‖ ≤ ‖qi − qj‖ = ri, then

Ri = ‖pi − pl‖
≤ ‖qi − ql‖ + ‖pi − qi‖ + ‖pl − ql‖
≤ ‖qi − qj‖ + ‖pi − qi‖ + ‖pl − ql‖.

Because δ = max ‖pi − qi‖, we can also get Ri ≤ ri + 2δ.
Case 3. If the k-th nearest neighbor of pi in P is pl and ‖qi − ql‖ > ‖qi − qj‖ = ri, then there must exist some px ∈ P ,

px /∈ Nk(pi) and ‖qi − qx‖ ≤ ‖qi − qj‖ = ri. Therefore, we can get

Ri ≤ ‖pi − pl‖
≤ ‖pi − qi‖ + ‖qi − qx‖ + ‖qx − px‖
≤ ‖qi − qj‖ + ‖pi − qi‖ + ‖pj − qj‖.

Because δ = max ‖pi − qi‖, we can get Ri ≤ ri + 2δ finally. �

Lemma 27. The 1-overlap graph of BNk(P) in Rm is isomorphic to an edge subgraph of the (1 + 7δ/s)-overlap graph of BNk(Q )
in Rd.
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Proof. Suppose that Gp is the k-NNG of P in Rm, G is the 1-overlap graph of BNk(P), GQ is the k-NNG of Q in Rd, and G′ is the
(1+ δ/s)-overlap graph of BNk(Q ). If (pi, pj) is an arbitrary edge in G, then we have ‖pi − pj‖ ≤ Ri + Rj.

‖qi − qj‖ ≤ ‖pi − pj‖ + 2δ
≤ Ri + Rj + 2δ
≤ ri + 2δ + rj + 2δ + 2δ
= ri + rj + 6δ.

The first inequality is due to the triangle inequality, and the second one is due to Lemma 26.
Because δ = max ‖pi − qi‖, we get δ ≥ ri and δ ≥ rj. Therefore, we can see that ri + rj + 6δ ≤ ri + 7δ = ri(1+ 7δ/ri) ≤

ri(1 + 7δ/s). We can also get ri + rj + 6δ ≤ rj(1 + 7δ/s) in the similar way. Hence, the edge(qi, qj) must be contained in
the graph G′ as long as the edge (pi, pi) is contained in G. Because the choice of edge (pi, pj) is arbitrary and (1+ 7δ/s) is a
constant, we prove that G is isomorphic to an edge subgraph of G′. �

Lemma 28. Let P = {p1, . . . , pn} be a set of n points, and the corresponding ball system of Nk(P) is BNk(P) =
{BR(p1)(p1), . . . , BR(pn)(pn)}. Then the k-NNG of P is a subgraph of the 1-overlap graph of BNk(P).

Proof. Suppose that G is a k-NNG of point set P , and G′ is the 1-overlap graph of BNk(P). Now we consider an arbitrary edge
(pi, pj) in G. Since G is a k-NNG, we have ‖pi − pj‖ ≤ ri or ‖pi − pj‖ ≤ rj. In addition, ‖pi − pj‖ ≤ ri + rj. Hence (pi, pj)must
exists in the graph G′. From the generality of (pi, pj), we can see that the k-NNG graph of P is a subgraph of the 1-overlap
graph of BNk(P). �

Combining Lemmas 26–28, we can derive the following corollary.

Corollary 29. The k-NNG of P in Rm is isomorphic to an edge subgraph of the (1+ 7δ/s)-overlap graph of a ball system BNk(Q )
in Rd, where δ = max ‖pi − qi‖ and s = min ‖qi − qj‖.

In [12] it is shown that any k-NNG is a subgraph of a kτd-ply neighborhood system where τd is the kissing number in
dimension d. If G is an α-overlap graph of a k-NNG in Rd then G is a subgraph of an α-overlap graph of a kτd-neighborhood
system in Rd. Suppose that the maximum degree of G is ∆, then we can apply Theorem 24 and get the following corollary
directly.

Corollary 30. If G is a subgraph of the α-overlap graph of BNk(P) in Rd with maximum degree ∆, then the Fiedler value of L(G)
is bounded by γd∆α2(τdk/n)2/d, where γd = 2(π + 1+ π/α)2(Ad+1/Vd)2/d.

Finally, we give the proof of Theorem 25.

Proof of Theorem 25. Suppose that G′ is the (1+ 7δ/s)-overlap graph of a ball system BNk(Q ) in Rd. Applying Corollary 29,
we can see that G is isomorphic to a subgraph of G′. Because the isomorphic graphs have the same Laplacian matrices, G and
the subgraph of G′ have the same Fiedler value.
In addition, the edge subgraph of G′ has no larger Fiedler value than G′ according to Proposition 2. Hence the Fiedler value

of G is no larger than the Fiedler value of G′.
Replacing α with 1 + 7δ/s in Corollary 30, we get an upper bound for the Fiedler value of L(P). Hence the Fiedler value

is bounded by (1+ 7δ
s )
2γd∆(τdk/n)

2
d where γd = 2(π + 1+ π

α
)2(

Ad+1
Vd
)2/d. �

5. Conclusion

In this paper, we study the combinatorial and spectral aspects of nearest neighbor graphs in doubling dimensionalmetric
spaces and in nearly-Euclidean spaces. We obtain bounds on the largest possible minor and bounds on the size of vertex
separators. For those graphs in nearly-Euclidean spaces with high dimension, we prove that k-nearest neighbor graphs
could have better spectral properties using SVD. If the number k is a constant, then we can show that its Fiedler value can
be bounded by O(∆(1+ 7δ/s)2n−2/d)where∆ is the maximum degree of the approximation graph.
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