The Load-Distance Balancing Problem

Edward Bortnikov

Yahoo! Research, Matam Park, Haifa 31905, Israel

Samir Khuller

Department of Computer Science, University of Maryland, College Park, Maryland 20742

Jian Li

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China, 100084

Yishay Mansour

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Joseph Seffi Naor

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Problems dealing with assignment of clients to servers have been widely studied. However, they usually do not model the fact that the delay incurred by a client is a function of both the distance to the assigned server and the load on this server, under a given assignment. We study a problem referred to as the load-distance balancing (LDB) problem, where the objective is assigning a set of clients to a set of given servers. Each client suffers a delay, that is, the sum of the network delay (which is proportional to the distance to its server) and the congestion delay at this server, a nondecreasing function of the number of clients assigned to the server.

We address two flavors of LDB—the first one seeking to minimize the maximum incurred delay, and the second one targeted for minimizing the average delay. For the first variation, we present hardness results, a best possible approximation algorithm, and an optimal algorithm for a special case of linear placement of clients and servers. For the second one, we show the problem is NP-hard in general, and present a 2-approximation for concave delay functions and an exact algorithm, if the delay function is convex. We also consider the game theoretic version of the second problem and show the price of stability of the game is at most 2 and at least 4/3. © 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 59(1), 22–29 2012

Keywords: approximation algorithms; facility assignment

Received January 2009; accepted January 2010

*Correspondence to: Jian Li; e-mail: lapordge@gmail.com

DOI 10.1002/net.20477

Published online 19 November 2011 in Wiley Online Library (wileyonlinelibrary.com).

© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

The ever-increasing demand for large-scale real-time services to geographically dispersed user populations motivates access providers to deploy advanced services close to the network's edge. Consider, for example, wireless mesh networking (WMN) technologies, which are poised to be a next-generation platform for high-speed internet access in urban and rural areas [1]. A WMN infrastructure consists of numerous wireless routers, which jointly forward the user traffic to (and from) a limited set of landline gateways. Today, these gateways mainly provide bandwidth sharing of their high-speed access links to the WMN users. Tomorrow, they can be envisioned as a platform for rolling out application-level services with stringent quality-of-service (OoS) requirements. For example, we foresee WMN gateways playing the role of VoIP traffic gateways, media content delivery caches, and even online game servers [5].

In a multiserver setting, service assignment problems naturally arise. In this context, each client session must be assigned to an application-level server. Assignment problems have been widely studied in operations research and computer science, and classical problems model the cost of assigning clients to servers as a sum of fixed client–server connection costs and server (facility) costs. In this context, the servers might or might not have capacities. We identify a need for a more realistic model for describing the end-user QoS, for example, service delay. We model the service delay of a client session as a sum of a network delay, incurred by the network connecting the user to its server,

and a congestion delay, caused by queueing and processing at the assigned server. The delay experienced by each enduser is the sum of the network delay, which is proportional to the distance to the assigned server, and the delay incurred at the server. The load-distance balancing (or LDB) problem seeks to balance these two factors, to minimize the service delay among all clients. It has two flavors: (1) maximum delay minimization (Min-Max LDB) and (2) average delay minimization (Min-Avg LDB).

1.1. Summary of Results

We demonstrate that the Min-Max LDB problem is NPhard and present an approximation algorithm with a factor of 2. We also show that the problem is nonapproximable with a factor better than 2 for general distance and load functions assuming $P \neq NP$. In addition, we are able to show that for metric spaces (where the triangle inequality is satisfied by the distance function), we cannot obtain an approximation factor better than $\frac{5}{3}$ unless P = NP. For the special case, when the users and the servers are located on a line segment with Euclidean network distances, we present a polynomial time dynamic programming algorithm for this problem.

We show that the Min-Avg LDB problem is NP-hard, and cannot be approximated within a factor of $(1 - \epsilon) \ln n$ for any $\epsilon > 0$, unless $NP \subseteq DTIME(n^{O(\log \log n)})$. For concave delay functions, we show the problem is also NP-hard and present a 2-approximation for it. Indeed, the 2-approximation we obtained is a Nash equilibrium for the game theoretic version of the problem, in which each client is a selfish player and attempts to minimize its service delay. Hence, the price of stability of the game is at most 2. We also show a lower bound of 4/3 for the price of stability. Moreover, we present a polynomial algorithm, which applies for convex delay functions, and a dynamic programming solution for the linear setting, which has an improved time complexity.

1.2. Related Work

The Min-Max LDB problem has been introduced in Ref. [4]. That work concentrated on solving the problem in a distributed setting, in which the servers jointly compute the assignment with partial local data. The protocol of Ref. [4] can use any sequential algorithm as a building block. In particular, it can use our algorithm described in Section 3.2, the best possible approximation algorithm. Our article studies the LDB problem in a broader context, and presents new problem variations, algorithms, and hardness results.

Related min-max problems dealing with capacities and facility location were studied before [3, 8, 10]. For example, the capacitated K-center problem [3,8] asks for K locations to be designated as centers, so as to minimize the maximum distance of a node from its assigned center. In the basic Kcenter problem, there are no capacities and a center can be assigned an arbitrary number of clients. In the capacitated version each center has a (uniform) load capacity of L, and thus, each center can have at most L clients assigned to it. In

a sense, this guarantees a bound on the delay of any client, as each is within a distance $O(d^*)$ of its assigned center (d^* is the optimal radius) and cannot suffer a long service time at the assigned center due to the load being at most L. In Ref. [8], a 5-approximation on the distance measure was presented for the capacitated K-center problem (improving on a previous bound of 10 [3]), and in addition, a $(\frac{2}{c}K, cL, 2d^*)$ solution was presented, where $c=1+\epsilon$ for any $0<\epsilon<1$. This is a solution that uses at most $\frac{2}{c}K$ centers, and allows the maximum load to be at most cL, however, provides a 2-approximation for the radius.

In fact, Min-Avg LDB is a special case of the universal facility location (UniFL) problem [7, 9] (see its definition and the reduction in Section 4.1). The current best-known approximation for metric¹ UniFL is 6.702 [12] and 1.861, if the facility cost function is concave [7]. For the nonmetric UniFL, it is known that it is hard to approximate it within a factor of $(1 - \epsilon) \ln n$, whereas whether there is an $O(\ln n)$ approximation is still an open problem [7,9].

2. PROBLEM DEFINITION

Consider a set of servers $S = \{s_1, \ldots, s_k\}$ and a set of clients $U = \{u_1, \dots, u_n\}$, so that $k \ll n$. The network delay function $D: (U \times S) \to \mathbb{R}^+$ captures the network distance between a client and a server. This function is not necessarily subject to the triangle inequality.

Consider an assignment $\lambda: U \to S$ that maps every client to a server. We assume that each client u assigned to server s adds a unit of load on s. We denote that the load on s as $\mathcal{L}(\lambda, s) \triangleq |\{u : \lambda(u) = s\}|$. We shorten this to $\mathcal{L}(s)$, when the assignment function is clear from the context. A monotonic nondecreasing congestion delay function, $\delta_s: \mathbb{N} \to \mathbb{R}^+$, captures the delay incurred by server s as a function of the number of assigned clients. Different servers can have different congestion delay functions. The service delay $\Delta(u, \lambda)$ of session u in assignment λ is the sum of the two delays:

$$\Delta(u,\lambda) \triangleq D(u,\lambda(u)) + \delta_{\lambda(u)}(\mathcal{L}(\lambda,\lambda(u))).$$

The maximum (respectively, average) cost of an assignment λ is the maximum (respectively, average) delay it incurs for a client: $\Delta^M(\lambda(U)) \triangleq \max_{u \in U} \Delta(u, \lambda)$, and $\Delta^A(\lambda(U)) \triangleq$ $\frac{1}{n}\sum_{u\in U}\Delta(u,\lambda).$

The min-max (respectively, min-average) LDB assignment problem (or Min-Max LDB and Min-Avg LDB in short) is to find an assignment λ^* such that $\Delta^M(\lambda^*(U))$ (respectively, $\Delta^A(\lambda^*(U))$ is minimized. An assignment that yields the minimum cost is called optimal. We also study the game theoretic version of Min-Avg LDB, where each client is a selfish player and aims at minimizing its service delay.

We say an assignment is a Nash equilibrium, if no single player can improve its delay by selfishly switching to another server. The objective function is also the average delay. We call this game Min-Avg LDB Game. The price of stability,

¹The distance function satisfies the triangle inequality.

defined as the ratio of the delay of the best Nash equilibrium and that of an optimal solution, is used to measure the inefficiency of Nash equilibria. We leave the game theoretic version of Min-Max LDB as future work.

3. MIN-MAX LOAD-DISTANCE BALANCING

3.1. NP-Hardness

We prove that the Min-Max LDB problem is NP-hard. We consider the problem of deciding whether delay Δ^* is feasible, that is, $\Delta^M(\lambda(U)) \leq \Delta^*$. In what follows, we show a reduction from the classical exact set cover (XSC) problem. An instance of XSC is a collection S of subsets over a finite set U. A solution $S' \subseteq S$ is a cover for U, that is, every element in U belongs to at least one member of S'. The decision problem is whether there is a cover such that each element belongs to precisely one set in the cover.

Theorem 1. The Min-Max LDB problem is NP-hard, even to approximate to a factor strictly less than 2 (or $\frac{5}{3}$ in metric spaces).

Proof. Consider an instance of XSC in which |U| = n, |S| = k, and each set contains exactly m elements. The problem is, therefore, whether there is a cover containing $\frac{n}{m}$ sets.

The transformation of this instance to an instance of LDB-D is as follows. In addition to the elements in U, we define a set U' of $M(k-\frac{n}{m})$ dummy elements, where M>m. We construct a bipartite graph, in which the left side contains the elements in $U \cup U'$ (the clients), and the right side contains the sets in S (the servers). The dummy clients are at distance d_1 from each server. The real clients (elements) are at distance $d_2>d_1$ from each server (set) that covers them, and at distance ∞ from all the other servers. The capacity of each server for distance d_1 is M, and for distance d_2 is m, that is, $\delta_s^{-1}(\Delta^*-d_1)=M$, and $\delta_s^{-1}(\Delta^*-d_2)=m$. In other words, the delay at a server for load at most m is Δ^*-d_2 and for load at most M is Δ^*-d_1 . It is easy to see that under a feasible assignment, no client's delay exceeds Δ^* .

Each server can cover either (at most) M dummy clients or any combination of $0 < m' \le m$ original clients and m - m' dummy clients. If both real and dummy clients are assigned to at least one server, the total number of servers that have real clients assigned to them is $k' > \frac{n}{m}$. All these servers have capacity m, and hence, they serve at most mk' - n dummy clients. The remaining servers can host M(k - k') dummy clients. Hence, the total number of assigned dummy clients is bounded by $M(k - k') + mk' - n = M(k - \frac{n}{m}) - M(k' - \frac{n}{m}) + m(k' - \frac{n}{m}) < M(k - \frac{n}{m})$, that is, the assignment is not feasible. Hence, exactly $\frac{n}{m}$ servers must be allocated to real clients, thus, solving the XSC instance. The NP-hardness proof is complete.

We simply specify some of the parameters in the above reduction to obtain the inapproximability results. In particular, we show that if there is a solution to the exact cover problem, then, there is a solution for the Min-Max LDB with cost Δ^* . If there is no solution to the exact cover problem, then, all solutions for Min-Max LDB have a high cost of $2\Delta^*$ (or $\frac{5}{3}\Delta^*$ in metric spaces).

For the nonmetric case, consider the choice $d_1 = 0$ and $d_2 = \Delta^*$. If an element is not a member of a set, the distance to that server is very high. If there is no solution for exact cover, then any collection of $\frac{n}{m}$ sets will leave some element uncovered. The corresponding client will have to be assigned to a server that is also serving M-1 dummy clients. The delay experienced by this client is thus $d_2 + (\Delta^* - d_1) = 2\Delta^*$.

The choice of $d_1 = \frac{\Delta^*}{3}$ and $d_2 = \Delta^*$ preserves the triangle inequality. The distance of a client in C' to a server is either Δ^* or $\frac{5}{3}\Delta^*$. If there is no solution to XSC, then the best assignment can have delay no lower than $\frac{5}{3}\Delta^*$.

3.2. A 2-Approximation Algorithm

We now present a 2-approximate solution for Min-Max LDB. The algorithm works in phases; in each phase it guesses $\Delta^* = \Delta^M(\lambda^*(U))$, and checks the feasibility of a specific assignment in which neither the network nor the congestion delay exceeds Δ^* , and hence, its cost is bounded by $2\Delta^*$. A binary search is performed on the value of Δ^* . A single phase is as follows:

- 1. Each client u marks all servers s that are at distance $D(u, s) \leq \Delta^*$. These are its feasible servers.
- 2. Each server *s* announces how many clients it can serve by computing the inverse of $\delta_s(\Delta^*)$.
- 3. Define a bipartite client–server graph where an edge specifies that a server is feasible for the client. We need to determine if there is a matching, in which the degree of each client is exactly one, and the degree of server s is at most $\delta_s^{-1}(\Delta^*)$. A feasible solution can be found via any flow algorithm.

Theorem 2. The algorithm computes a 2-approximation of an optimal assignment for Min-Max LDB.

Proof. Consider an optimal assignment λ^* with cost Δ^* . It is easy to see that $\Delta_1 = \max_u D(u, \lambda^*(u)) \leq \Delta^*$, and $\Delta_2 = \max_s \delta_s(\mathcal{L}(s)) \leq \Delta^*$. A phase of the algorithm that tests an estimate $\Delta = \max(\Delta_1, \Delta_2)$ is guaranteed to find a feasible solution with cost $\Delta' \leq \Delta_1 + \Delta_2 \leq 2\Delta^*$.

As there are at most kn distinct D values, the number of binary search phases is logarithmic in n. The number of phases needed for covering all possible capacity values of server s is $O(\log \delta_s(n))$, which is polynomial in the input size.

3.3. Optimal Assignment on a Line with Euclidean Distances

In this section, we consider the case when the users and the servers are located on a line segment [0, L], and the network delays are Euclidean distances. We show that Min-Max

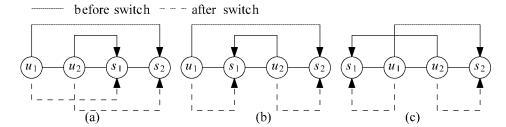


FIG. 1. Switching the assignment of an order-violating pair (u_1, u_2) .

LDB is polynomially solvable in this model through dynamic programming.

We start with some definitions. For simplicity of presentation, we assume that every user or server i has a distinct location x_i . The distance between user u and server s is, therefore, $D(\mathbf{u}, \mathbf{s}) = |x_s - x_u|$. Assignment λ is called orderpreserving, if for every pair of users u_1 and u_2 , such that $x_{u_1} < x_{u_2}$, it holds that $x_{\lambda(u_1)} \le x_{\lambda(u_2)}$. Otherwise, both λ and every pair (u_1, u_2) for which this condition does not hold are called order-violating.

Every order-preserving assignment partitions the line into a series of nonoverlapping segments, such that every user within segment i is assigned to server s_i . Segment i is located to the left of segment j if and only if i < j. Note that s_i is not necessarily located inside segment i.

Theorem 3. The Min-Max LDB problem on a line has an order-preserving optimal assignment.

Proof. Consider an order-violating assignment λ . We show how it can be transformed into an order-preserving assignment that incurs smaller or equal cost.

As λ is order-violating, there exists a pair of users u_1 and u_2 assigned to servers s_2 and s_1 such that $x_{u_1} < x_{u_2}$ but $x_{s_2} > x_{s_1}$. We transform λ to a new assignment λ' by switching the assignments of u_1 and u_2 , that is, $\lambda'(u_1) = s_1$ and $\lambda'(u_2) = s_2$. As this switch does not affect the load on s_1 and s_2 , no change is incurred to any user's processing delay. Therefore, only the network delays incurred to u_1 and u_2 are affected. We, therefore, need to show that λ' does not incur greater maximum network delay values than λ , that is, we need to show that $\max(D(u_1, s_1), D(u_2, s_2)) \leq \max(D(u_1, s_2), D(u_2, s_1)).$ To this end, consider the following cases:

- 1. $x_{u_1} < x_{u_2} < x_{s_1} < x_{s_2}$ (Fig. 1a). Then, $D(u_1, s_1) < s_1$ $D(u_1, s_2)$ and $D(u_2, s_2) < D(u_1, s_2)$, hence, max $(D(u_1, s_1),$ $D(u_2, s_2)$ < max $(D(u_1, s_2), D(u_2, s_1))$.
- 2. $x_{u_1} < x_{s_1} < x_{u_2} < x_{s_2}$ (Fig. 1b). Then, $D(u_1, s_1) < s_1$ $D(u_1, s_2)$ and $D(u_2, s_2) < D(u_1, s_2)$, hence, $\max(D(u_1, s_1), \ldots, D(u_1, s_2))$ $D(u_2, s_2)$ < max $(D(u_1, s_2), D(u_2, s_1))$.
- 3. $x_{s_1} < x_{u_1} < x_{u_2} < x_{s_2}$ (Fig. 1(c)). Then, $D(u_1, s_1) < s_1$ $D(u_2, s_1)$ and $D(u_2, s_2) < D(u_1, s_2)$, hence, max $(D(u_1, s_1),$ $D(u_2, s_2)$ < max $(D(u_1, s_2), D(u_2, s_1))$.
- 4. $x_{s_1} < x_{u_1} < x_{s_2} < x_{u_2}$. Symmetric to case (2).
- 5. $x_{s_1} < x_{s_2} < x_{u_1} < x_{u_2}$. Symmetric to case (1).

Thus, we switch the assignment of every order-violating pair of users until an order-preserving assignment is obtained.

We conclude that every optimal assignment for Min-Max LDB is either order-preserving or can be transformed into an order-preserving assignment that incurs an equal service delay.

We now identify the recursive structure of an optimal assignment λ^* . Let $\lambda_{i,i}^*$ for $1 \le i \le n$ and $1 \le j \le k$ be an optimal assignment for users $\{u_i, \ldots, u_n\}$ that uses servers $\{s_i,\ldots,s_k\}$. We can assign $\ell=0,\ldots,n-i+1$ leftmost users to server s_i . This assignment defines the maximum delay among the leftmost users. From the optimality of $\lambda_{i,j}^*$, the assignment $\lambda_{i+\ell,j+1}^*$ of the remaining users to the remaining servers is also an optimal one. Hence,

$$\Delta^{M}(\lambda_{i,j}^{*}) = \min_{0 \le \ell \le n-i+1} \left[\max \left(\delta_{s_{j}}(\ell) + \max_{0 \le \ell' < \ell} |x_{s_{j}} - x_{u_{i+\ell'}}|, \Delta^{M}(\lambda_{i+\ell,j+1}^{*}) \right) \right]$$
(1)

The boundary conditions are: $\Delta^{M}(\lambda^* n + 1, j) = 0$ (no users), and $\Delta^{M}(\lambda^{*}i, k+1) = \infty$ (no servers), for $1 \leq i \leq n$ and $1 \le j \le k$. The global optimal assignment cost is $\Delta^{M}(\lambda^{*}(U,S)) = \Delta^{M}(\lambda_{1:1}^{*}).$

Optimal assignments can be computed through dynamic programming using the above recurrence. An optimal algorithm uses a two-dimensional table Table [1..n + 1, 1..k + 1], where an entry Table[i,j] holds the value of $\Delta^{M}(\lambda_{i,i}^{*})$, and the number of uses assigned to s_i . Note that

$$\max_{0 \le \ell' < \ell} |x_{s_j} - x_{u_{i+\ell'}}| = \max(|x_{s_j} - x_{u_i}|, |x_{s_j} - x_{u_{i+\ell-1}}|),$$

and hence, the computation of a single entry Table [i, j] incurs O(1) operations for each examined entry Table $[i + \ell, j + 1]$. A naive implementation examines O(n) such entries, and therefore, the time complexity of filling the whole table is $O(kn^2)$. This result can be improved by noting that Equation (1) defines a min-max among the value pairs of $f_{i,i}(\ell) =$ $\delta_{s_i}(\ell) + \max_{0 \le \ell' < \ell} |x_{s_i} - x_{u_{i+\ell'}}|$ (a nondecreasing function of ℓ) and $g_{ij}(\ell) = \Delta^M(\lambda_{i+\ell,j+1}^*)$ (a nonincreasing function of ℓ). Hence, the min-max is achieved for the value of ℓ for which $f_{i,i}(\ell) - g_{i,i}(\ell)$ is closest to zero. It can be efficiently found through binary search, which yields $O(\log n)$ operations for a single table entry, and $O(kn \log n)$ operations altogether.

4. MIN-AVERAGE LOAD-DISTANCE BALANCING

In this section, we consider the Min-Avg LDB problem. Contrary to the Min-Max LDB, the goal is to minimize the sum of delays among all users, that is, $\Delta(\lambda) = \sum_{u \in U} \Delta(u, \lambda)$.

4.1. General Congestion Delay Functions

4.1.1. NP-hardness Proof. We prove that the Min-Avg LDB problem for general congestion delay functions is NP-hard by a reduction from the classical set cover problem. In a set cover instance, we have a family S of subsets of a finite ground set U. A feasible solution to the problem is a collection $S' \subseteq S$ of subsets such that for every element $u \in U$, there exists at least one set $s \in S'$ with $s \in S$. It is well known that the set cover problem is NP-hard.

Theorem 4. The Min-Avg LDB problem is NP-hard. Moreover, it cannot be approximated within a factor of $(1 - \epsilon) \ln n$ for any constant $\epsilon > 0$ unless $NP \subseteq DTIME(n^{O(\log \log n)}))$.

Proof. Suppose, we are given a set cover instance with $|\mathcal{U}| = N$ and $|\mathcal{S}| = M$. Let the optimal cover be \mathcal{S}^* .

The reduction is as follows. For each set $s \in \mathcal{S}$, we have one server. Let α be any positive integer. All servers have the same delay function $\delta(x) = \begin{cases} 0, & x \le \alpha; \\ 1, & x \ge \alpha + 1. \end{cases}$ For each element $u \in \mathcal{U}$, there is a client (which we call an element client). If $u \in s$, then the distance (the network delay) D(u,s) = 0and $D(u, s) = \infty$ otherwise. For each server s, we also create α "special" clients such that these clients have zero distance to s and infinite distance to other servers (thus, in any feasible solution, these clients should be assigned to s). It is not hard to see that every element client u has service delay $\delta(u,\lambda) = 1$ for any reasonable assignment λ . Moreover, for each server s which serves nonzero element clients, all α special clients assigned to s have service delay 1. Therefore, an optimal solution for the Min-Avg LDB instance uses the minimum number of servers to serve element clients and has cost $\alpha \cdot |\mathcal{S}^*| + N$. This proves the NP-hardness of the problem.

Now, we show the inapproximability result. We need the following result by Feige [6]: for any $\epsilon > 0$, it is impossible to approximate the set cover problem within a factor of $(1 - \epsilon) \ln N$ unless $NP \subseteq DTIME(n^{O(\log\log n)})$. Indeed, this result still holds even when we require that $M = N^{\delta}$ for any $\delta > 0$. Suppose, we can get an assignment λ_S having total delay within a factor of $(1 - \epsilon) \ln n$ of the optimal one for some $1/2 > \epsilon > 0$. Let $S' \subseteq S$ be the collection of sets, whose corresponding servers serve nonzero element clients. We can see $\delta(\lambda_S) = \alpha \cdot |S'| + N \le (1 - \epsilon) \log(N + M\alpha)(\alpha \cdot |S^*| + N)$. We assume $M = N^{\epsilon/10}$. By letting $\alpha = N^{1+\epsilon/10}$, we can get $|S'| \le (1 - \epsilon/2) \log n |S^*| + O(1)$, which is quite unlikely due to Feige's result. This proves the second part of the theorem.

4.1.2. The Universal Facility Location Problem. We show Min-Avg LDB is a special case of the UniFL problem [7,9]. In a UniFL instance, we are given a set \mathcal{F} of facilities and a set \mathcal{C} of cities. A feasible solution is an assignment λ of the cities to facilities. The facility cost for each facility i depends on the number of cities it serves and is specified by a nondecreasing facility cost function $f_i(.)$. The service cost for each city is equal to the distance between each city and its assigned facility. The goal is to minimize the sum of the facility and service costs, that is, $\sum_{i \in \mathcal{F}} f_i(L(\lambda, i)) + \sum_{j \in \mathcal{C}} D(j, \lambda(j))$, where $L(\lambda, i)$ is the number of cities that are assigned to i in λ . If the distance function satisfies the triangle inequality, we call the problem metric UniFL problem, otherwise, we call it nonmetric UniFL problem.

The reduction is simply as follows. Each facility and city in UniFL correspond to a server and a client in Min-Avg LDB, respectively. By letting the corresponding facility cost function be $f_s(x) = x \cdot \delta_s(x)$, we can see that a Min-Avg LDB instance reduces exactly to a UniFL instance with the same optimal cost. Therefore, any approximation for UniFL can be carried over to Min-Avg LDB with the same ratio. However, all known approximations for UniFL are for the metric case. The current best known approximation for metric UniFL is 6.702 by Vygen [12] and 1.861 if the facility cost function is concave [7]. We note that $\delta_s(.)$ being concave does not necessarily imply the concavity of the corresponding $f_s(.)$. For the nonmetric UniFL, it is hard to approximate it within a factor of $(1 - \epsilon) \ln n$ for any $\epsilon > 0$, as it also generalizes the set cover problem [6], while whether there is an $O(\ln n)$ approximation is still an open problem [7,9].

4.2. Concave Delay Functions

In many real applications, the delay can roughly be modeled as a concave function of the load. We prove the problem is NP-hard even for a very simple piecewise linear concave delay function. Then, we provide a polynomial time 2-approximation. As a byproduct, we show the approximation is a Nash equilibrium for the game theoretic version of the problem, which implies the price of stability of the game is 2

4.2.1. The NP-hardness

Theorem 5. The Min-Avg LDB problem is NP-hard for some concave delay function $\delta(x)$.

Proof. The reduction is almost the same as in Theorem 4 except that $\alpha = 1$ and all servers have the same following delay function $\delta(x) = \begin{cases} x, & 0 \le x \le 2; \\ 2, & x \ge 2. \end{cases}$ It is obvious that $\delta(x)$ is a concave function. Using an argument similar to the previous proof, we can see each element client must experience a service delay of 2. Any special client who share a common server with any element client has a service delay of 2 and the other special clients experience delay 1. Therefore,

an optimal solution has cost $(M - |S^*|) + 2|S^*| + 2N =$ $M + 2N + |S^*|$ which implies the problem is NP-hard.

4.2.2. A 2-Approximation Algorithm. We first define the following potential function Φ that maps every assignment into a numeric value. The potential function is similar to the one used in Ref. [2].

$$\Phi(\lambda) = \sum_{s \in S} \sum_{x=0}^{\mathcal{L}(\lambda, s)} \delta_s(x) + \sum_{u \in U} D(u, \lambda(u)).$$
 (2)

The following simple lemma shows the relationship between the potential function value of an assignment λ and the actual delay produced by λ .

Lemma 1. If $\delta_s(x)$ is nondecreasing and concave for each server s, for any assignment λ , $\frac{1}{2} \cdot \Delta^A(\lambda) \leq \Phi(\lambda) \leq \Delta^A(\lambda)$.

Proof. By writing $\Delta^A(\lambda) = \sum_{s \in S} \mathcal{L}(\lambda, s) \delta_s(\mathcal{L}(\lambda, s)) + \sum_{u \in U} D(u, \lambda(u))$, we can see the second inequality holds obviously. To see the first inequality, it suffices to show $\frac{1}{2}\ell\delta_s(\ell) \leq \sum_{x=0}^{\ell} \delta_s(x)$ for any $\ell > 0$. Assume that ℓ is odd (the proof for even ℓ is similar and omitted). Due to the concavity of $\delta_s(x)$, we have

$$\sum_{x=0}^{\ell} \delta_s(x) = \sum_{x=0}^{\lfloor \ell/2 \rfloor} (\delta_s(x) + \delta_s(\ell - x))$$

$$\geq \sum_{x=0}^{\lfloor \ell/2 \rfloor} (\delta_s(0) + \delta_s(\ell)) \geq \frac{1}{2} \ell \delta_s(\ell).$$

We show the problem can be reduced to a minimum cost matching computation. We build a bipartite graph where the left part contains n clients, and the right part contains n copies of each server. The weight of the edge connecting user u to the i'th copy of server s is $D(u, s) + \delta_s(i)$. Now, we compute a minimum cost matching such that each client is matched with one server copy. If client u is matched with some copy of server s, we assign u to s. Moreover, if k copies of sare matched, they should be the first k copies, as $\delta_s(.)$ is an increasing function. Therefore, we can see a minimum cost matching corresponds exactly to the assignment with the minimum potential function value.

Let λ' be the assignment that minimizes the potential function Φ , and let λ^* be the global optimal solution. From Lemma 1, we have $\Delta(\lambda') \leq 2\Phi(\lambda') \leq 2\Phi(\lambda^*) \leq 2\Delta(\lambda^*)$. Therefore, we have proven the following theorem.

Theorem 6. There is a polynomial time 2-approximation for Min-Avg LDB with concave congestion delay functions.

4.2.3. The Price of Stability of Min-Avg LDB Game. In this section, we show the 2-approximation just presented is actually a Nash equilibrium for Min-Avg LDB Game, thus

establishing an upper bound of 2 for the price of stability of the game. We also present an example showing a lower bound on the price of stability of 4/3.

The most important property of the potential function is that if a single client u changes its strategy, then the difference between the potential of the new assignment and that of the original one is exactly the change in the delay of u. We formally state this in the following lemma.

Lemma 2. Consider two assignments, λ and λ' , which only differ in the assignment of client u: $\lambda(u) = s$, whereas $\lambda'(u) = s$ s'. Then, $\Phi(\lambda') - \Phi(\lambda) = \Delta(u, \lambda') - \Delta(u, \lambda)$.

Proof. It is not hard to see the left-hand side is $\delta_{s'}(\mathcal{L}(\lambda',s')) + D(u,s') - \delta_{s}(\mathcal{L}(\lambda,s)) - D(u,s)$ which exactly equals the right-hand side.

Theorem 7. The price of stability of the Min-Avg LDB game with concave $\delta(x)$ is at most 2 and at least 4/3.

Proof. Let λ' be the assignment that minimizes the potential function Φ and let λ^* be the global optimal solution. By Lemma 2, λ' is a Nash equilibrium. By Theorem 6, we can conclude the price of stability is at most 2.

To see the lower bound of 4/3, we consider the following simple instance. Consider two servers s₁ and s₂ with congestion delay functions defined to be $\delta_{s_1}(x) = \begin{cases} x, & 0 \le x \le 2; \\ 2, & x \ge 2. \end{cases}$ and $\delta_{s_2}(x) = 0$ for all $x \ge 0$. We also have two clients u_1 and u_2 with $D(u_1, s_1) = 0, D(u_1, s_2) = +\infty, D(u_2, s_1) = 0$ and $D(u_2, s_2) = 2 + \epsilon$. The global optimum is to assign u_1 to s_1 and u_2 to s_2 with cost $3 + \epsilon$. The only Nash equilibrium is to assign both clients to s_1 which has a total cost 4.

4.3. A Polynomial Time Algorithm for Almost Convex Delay Functions

We now present a polynomial time algorithm for Min-Avg LDB when the function $x\delta_s(x)$ is convex for each server s (most practical congestion delay functions satisfy this requirement). We note that $x\delta_s(x)$ is always convex if $\delta_s(x)$ is convex.

The algorithm reduces the assignment problem to the minimum cost matching problem in a bipartite graph. The left part contains n clients, and the right part contains n copies of each server (i.e., nk nodes). The cost of connecting user u to the i'th instance of server s is defined as

$$\Delta_i(u,s) = D(u,s) + i\delta_s(i) - (i-1)\delta_s(i-1).$$

Intuitively, these costs are marginal costs in the assignment, that is, $\Delta_i(u, s)$ is the cost of connecting user u to server s after i-1 other users.

The algorithm computes a minimum cost matching in the constructed graph (i.e., each user is assigned to exactly one server copy), and turns this matching into a legal assignment by assigning each user to the server it is matched to, regardless of the instance number.

Theorem 8. The algorithm computes an optimal assignment for Min-Avg LDB.

Proof. We first claim that if the copy s_i of server s is utilized by the matching, then all the copies s_j for $j \le i$ are used too. Indeed, suppose by contradiction that user u is matched to some copy s_i (i > 1), and s_{i-1} is not used. If u is switched from s_i to s_{i-1} , the matching cost can be reduced by

$$\Delta_i(u,s) - \Delta_{i-1}(u,s)$$

= $i\delta_s(i) + (i-2)\delta_s(i-2) - 2\delta_s(i-1)$,

which is a positive value, as $x\delta_s(x)$ is a convex function. Hence, the matching's cost can be improved, in contradiction to optimality.

Consider a matching μ in the bipartite graph for which the set of used instances of each server is contiguous, and the corresponding assignment λ for the original problem. We denote the set of users assigned to some instance of server s by $\mu(s)$, and the user assigned to the i'th copy of server s by $\mu_i(s)$. As the used set is contiguous, the sum of individual matching costs of the users in $\mu(s)$ telescopes to

$$\sum_{i=1}^{|\mu(s)|} \Delta_i(\mu_i(s), s) = |\mu(s)| \delta_s(|\mu(s)|) + \sum_{i=1}^{|\mu(s)|} D(\mu_i(s), s)$$

$$= \sum_{i=1}^{|\mu(s)|} [D(\mu_i(s), s) + \delta_s(|\mu(s)|)]$$

$$= \sum_{u:\lambda(u)=s} \Delta(u, \lambda).$$

Hence, the cost of the matching is equal to the cost of an assignment for the original problem. Therefore, as the minimum cost matching μ^* has the desired property of contiguity, it produces a minimum cost assignment λ^* .

4.4. Optimal Assignment on a Line with Euclidean Distances

The fastest known minimum cost flow algorithm on a graph G(V, E) runs in $O(|E| \log |V|(|E| + |V| \log |V|))$ time [11]. We construct a bipartite graph in which |V| = O(nk) and $|E| = O(kn^2)$, hence, the running time is $O(kn^2 \log(nk)(kn^2 + nk\log(nk))) = O(k^2n^4\log n)$. In the special case, when users and servers are located on a line segment, and network delays are modeled as Euclidean distances, this running time can be significantly improved. Similar to the Min-Max LDB problem, the Min-Avg LDB on a line has an order-preserving optimal assignment. Hence, a polynomial time dynamic programming algorithm similar to the one presented in Section 3.3 is applicable in this case. The algorithm's running time is $O(kn^2)$ (in contrast to Min-Max LDB, the binary search optimization to reduce the number of operations on a single table entry to $\log n$ cannot be applied).

5. CONCLUSIONS AND FUTURE WORK

We studied two variations of the LDB problem, namely, Min-Max LDB and Min-Avg LDB, which aim to minimize the maximum and the average delay, respectively. For the first problem, we proved hardness of approximation for general cost functions, and presented the best possible approximation algorithm, as well as an optimal algorithm for the case of linear placement of clients and servers. For the second problem, we showed it is NP-hard and presented approximations for concave delay functions and an exact algorithm for convex delay functions. We also show an upper bound of 2 and a lower bound of 4/3 on the price of stability for the game theoretic version of the problem, Min-Avg LDB Game.

It would be interesting to achieve an approximation ratio less than 2 for Min-Max LDB, when the network delay satisfies the triangle inequality (note that we proved a lower bound of 5/3). Another open question is whether there is an $O(\ln n)$ -approximation for Min-Avg LDB with arbitrary non-decreasing congestion delay functions (or even non-metric UniFL).

A more general question might be to optimize over the choice of servers, rather than fixing the set of servers. For example, how can we choose a subset of *k* servers to open, and find an assignment of clients to open servers to minimize the average cost or the maximum cost of any client? Alternatively, each server may have a cost, and there may be a budget on the total cost of open servers. We have assumed so far that the load of a server is simply the number of clients assigned to it. We can further generalize the load to be the makespan of the server, that is the sum of the processing times of the jobs assigned to the server. Recently, Khuller et al. [13] considered the problem of minimizing server opening cost subject to a makespan constraint. Incorporating makespan constraints into our model and other questions would be interesting to study.

Acknowledgments

The authors thank Israel Cidon, Uri Feige, Idit Keidar, and Isaac Keslassy for stimulating discussions.

REFERENCES

- I.F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: A survey, Comput Networks 47 (2005), 445–487.
- [2] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden, The price of stability for network design with fair cost allocation, In IEEE Symposium on Foundations of Computer Science (FOCS), 2004.
- [3] J. Bar-Ilan, G. Kortsarz, and D. Peleg, How to allocate network centers, J Algorithms 15 (1993), 385–415.
- [4] E. Bortnikov, I. Cidon, and I. Keidar, Scalable load-distance balancing, In International Symposium on Distributed Computing (DISC), Lemesos, Cyprus, 2007.
- [5] J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amza, Locality aware dynamic load management for massively multiplayer games, ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), Chicago, Illinois, USA, 2005.

- [6] U. Feige, A threshold of $\ln n$ for approximating set cover, J ACM 45 (1998), 314-318.
- [7] M. Hajiaghayi, M. Mahdian, and V. Mirrokni, The facility location problem with general cost functions, Networks 42 (2003), 42-47.
- [8] S. Khuller and Y.J. Sussmann, The capacitated K-center problem, SIAM J Discrete Math 13 (2000), 403-418.
- [9] M. Mahdian and M. Pal, "Universal facility location," In European Symposium on Algorithms (ESA), Springer, Budapest, Hungary, 2003, pp. 409-421.
- [10] P.B. Mirchandani and R.L. Francis, Discrete location theory, Wiley, 1990.
- [11] J. Orlin, A faster strongly polynomial minimum cost flow algorithm, In The Annual ACM Symposium on Theory of Computing (STOC), 1988.
- [12] J. Vygen, From stars to comets: Improved local search for universal facility location, Oper Res Lett 35 (2007), 427–433.
- [13] S. Khuller, J. Li, and B. Saha, "Energy efficient scheduling via partial shutdown," Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, pp. 1360-1372.