
The Load-Distance Balancing Problem

Edward Bortnikov
Yahoo! Research, Matam Park, Haifa 31905, Israel

Samir Khuller
Department of Computer Science, University of Maryland, College Park, Maryland 20742

Jian Li
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China, 100084

Yishay Mansour
School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Joseph Seffi Naor
Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel

Problems dealing with assignment of clients to servers
have been widely studied. However, they usually do not
model the fact that the delay incurred by a client is a func-
tion of both the distance to the assigned server and the
load on this server, under a given assignment. We study a
problem referred to as the load-distance balancing (LDB)
problem, where the objective is assigning a set of clients
to a set of given servers. Each client suffers a delay, that
is, the sum of the network delay (which is proportional
to the distance to its server) and the congestion delay at
this server, a nondecreasing function of the number of
clients assigned to the server.

We address two flavors of LDB—the first one seeking
to minimize the maximum incurred delay, and the second
one targeted for minimizing the average delay. For the
first variation, we present hardness results, a best possi-
ble approximation algorithm, and an optimal algorithm for
a special case of linear placement of clients and servers.
For the second one, we show the problem is NP-hard in
general, and present a 2-approximation for concave delay
functions and an exact algorithm, if the delay function is
convex. We also consider the game theoretic version of
the second problem and show the price of stability of the
game is at most 2 and at least 4/3. © 2011 Wiley Periodicals,
Inc. NETWORKS, Vol. 59(1), 22–29 2012

Keywords: approximation algorithms; facility assignment

Received January 2009; accepted January 2010
Correspondence to: Jian Li; e-mail: lapordge@gmail.com
DOI 10.1002/net.20477
Published online 19 November 2011 in Wiley Online Library
(wileyonlinelibrary.com).
© 2011 Wiley Periodicals, Inc.

1. INTRODUCTION

The ever-increasing demand for large-scale real-time ser-
vices to geographically dispersed user populations motivates
access providers to deploy advanced services close to the
network’s edge. Consider, for example, wireless mesh net-
working (WMN) technologies, which are poised to be a
next-generation platform for high-speed internet access in
urban and rural areas [1]. A WMN infrastructure consists of
numerous wireless routers, which jointly forward the user
traffic to (and from) a limited set of landline gateways.
Today, these gateways mainly provide bandwidth sharing of
their high-speed access links to the WMN users. Tomor-
row, they can be envisioned as a platform for rolling out
application-level services with stringent quality-of-service
(QoS) requirements. For example, we foresee WMN gate-
ways playing the role of VoIP traffic gateways, media content
delivery caches, and even online game servers [5].

In a multiserver setting, service assignment problems nat-
urally arise. In this context, each client session must be
assigned to an application-level server. Assignment prob-
lems have been widely studied in operations research and
computer science, and classical problems model the cost of
assigning clients to servers as a sum of fixed client–server
connection costs and server (facility) costs. In this context,
the servers might or might not have capacities. We iden-
tify a need for a more realistic model for describing the
end-user QoS, for example, service delay. We model the ser-
vice delay of a client session as a sum of a network delay,
incurred by the network connecting the user to its server,

NETWORKS—2012—DOI 10.1002/net

and a congestion delay, caused by queueing and processing
at the assigned server. The delay experienced by each end-
user is the sum of the network delay, which is proportional
to the distance to the assigned server, and the delay incurred
at the server. The load-distance balancing (or LDB) problem
seeks to balance these two factors, to minimize the service
delay among all clients. It has two flavors: (1) maximum
delay minimization (Min-Max LDB) and (2) average delay
minimization (Min-Avg LDB).

1.1. Summary of Results

We demonstrate that the Min-Max LDB problem is NP-
hard and present an approximation algorithm with a factor of
2. We also show that the problem is nonapproximable with
a factor better than 2 for general distance and load functions
assuming P �= NP. In addition, we are able to show that for
metric spaces (where the triangle inequality is satisfied by
the distance function), we cannot obtain an approximation
factor better than 5

3 unless P = NP. For the special case,
when the users and the servers are located on a line segment
with Euclidean network distances, we present a polynomial
time dynamic programming algorithm for this problem.

We show that the Min-Avg LDB problem is NP-hard, and
cannot be approximated within a factor of (1 − ε) ln n for
any ε > 0, unless NP ⊆ DTIME(nO(log log n)). For concave
delay functions, we show the problem is also NP-hard and
present a 2-approximation for it. Indeed, the 2-approximation
we obtained is a Nash equilibrium for the game theoretic ver-
sion of the problem, in which each client is a selfish player
and attempts to minimize its service delay. Hence, the price of
stability of the game is at most 2. We also show a lower bound
of 4/3 for the price of stability. Moreover, we present a poly-
nomial algorithm, which applies for convex delay functions,
and a dynamic programming solution for the linear setting,
which has an improved time complexity.

1.2. Related Work

The Min-Max LDB problem has been introduced in Ref.
[4]. That work concentrated on solving the problem in a
distributed setting, in which the servers jointly compute the
assignment with partial local data. The protocol of Ref. [4]
can use any sequential algorithm as a building block. In par-
ticular, it can use our algorithm described in Section 3.2, the
best possible approximation algorithm. Our article studies the
LDB problem in a broader context, and presents new problem
variations, algorithms, and hardness results.

Related min-max problems dealing with capacities and
facility location were studied before [3, 8, 10]. For example,
the capacitated K-center problem [3, 8] asks for K locations
to be designated as centers, so as to minimize the maximum
distance of a node from its assigned center. In the basic K-
center problem, there are no capacities and a center can be
assigned an arbitrary number of clients. In the capacitated
version each center has a (uniform) load capacity of L, and
thus, each center can have at most L clients assigned to it. In

a sense, this guarantees a bound on the delay of any client,
as each is within a distance O(d∗) of its assigned center (d∗
is the optimal radius) and cannot suffer a long service time
at the assigned center due to the load being at most L. In
Ref. [8], a 5-approximation on the distance measure was pre-
sented for the capacitated K-center problem (improving on
a previous bound of 10 [3]), and in addition, a (2

c K , cL, 2d∗)
solution was presented, where c = 1 + ε for any 0 < ε < 1.
This is a solution that uses at most 2

c K centers, and allows
the maximum load to be at most cL, however, provides a
2-approximation for the radius.

In fact, Min-Avg LDB is a special case of the universal
facility location (UniFL) problem [7, 9] (see its definition
and the reduction in Section 4.1). The current best-known
approximation for metric1 UniFL is 6.702 [12] and 1.861, if
the facility cost function is concave [7]. For the nonmetric
UniFL, it is known that it is hard to approximate it within a
factor of (1 − ε) ln n, whereas whether there is an O(ln n)-
approximation is still an open problem [7, 9].

2. PROBLEM DEFINITION

Consider a set of servers S = {s1, . . . , sk} and a set of
clients U = {u1, . . . , un}, so that k � n. The network delay
function D : (U × S) → R

+ captures the network distance
between a client and a server. This function is not necessarily
subject to the triangle inequality.

Consider an assignment λ : U → S that maps every client
to a server. We assume that each client u assigned to server
s adds a unit of load on s. We denote that the load on s as
L(λ, s) � |{u : λ(u) = s}|. We shorten this to L(s), when the
assignment function is clear from the context. A monotonic
nondecreasing congestion delay function, δs : N → R

+,
captures the delay incurred by server s as a function of the
number of assigned clients. Different servers can have differ-
ent congestion delay functions. The service delay �(u, λ) of
session u in assignment λ is the sum of the two delays:

�(u, λ) � D(u, λ(u)) + δλ(u)(L(λ, λ(u))).

The maximum (respectively, average) cost of an assignment
λ is the maximum (respectively, average) delay it incurs for
a client: �M(λ(U)) � maxu∈U �(u, λ), and �A(λ(U)) �
1
n

∑
u∈U �(u, λ).

The min-max (respectively, min-average) LDB assign-
ment problem (or Min-Max LDB and Min-Avg LDB in short)
is to find an assignment λ∗ such that �M(λ∗(U)) (respec-
tively, �A(λ∗(U))) is minimized. An assignment that yields
the minimum cost is called optimal. We also study the game
theoretic version of Min-Avg LDB, where each client is a
selfish player and aims at minimizing its service delay.

We say an assignment is a Nash equilibrium, if no single
player can improve its delay by selfishly switching to another
server. The objective function is also the average delay. We
call this game Min-Avg LDB Game. The price of stability,

1The distance function satisfies the triangle inequality.

NETWORKS—2012—DOI 10.1002/net 23

defined as the ratio of the delay of the best Nash equilib-
rium and that of an optimal solution, is used to measure the
inefficiency of Nash equilibria. We leave the game theoretic
version of Min-Max LDB as future work.

3. MIN-MAX LOAD-DISTANCE BALANCING

3.1. NP-Hardness

We prove that the Min-Max LDB problem is NP-hard.
We consider the problem of deciding whether delay �∗ is
feasible, that is, �M(λ(U)) ≤ �∗. In what follows, we show
a reduction from the classical exact set cover (XSC) problem.
An instance ofXSC is a collection S of subsets over a finite set
U. A solution S′ ⊆ S is a cover for U, that is, every element in
U belongs to at least one member of S′. The decision problem
is whether there is a cover such that each element belongs to
precisely one set in the cover.

Theorem 1. The Min-Max LDB problem is NP-hard, even
to approximate to a factor strictly less than 2 (or 5

3 in metric
spaces).

Proof. Consider an instance of XSC in which |U| =
n, |S| = k, and each set contains exactly m elements. The
problem is, therefore, whether there is a cover containing n

m
sets.

The transformation of this instance to an instance of
LDB-D is as follows. In addition to the elements in U, we
define a set U ′ of M(k− n

m) dummy elements, where M > m.
We construct a bipartite graph, in which the left side contains
the elements in U

⋃
U ′ (the clients), and the right side con-

tains the sets in S (the servers). The dummy clients are at
distance d1 from each server. The real clients (elements) are
at distance d2 > d1 from each server (set) that covers them,
and at distance ∞ from all the other servers. The capacity
of each server for distance d1 is M, and for distance d2 is m,
that is, δ−1

s (�∗ − d1) = M, and δ−1
s (�∗ − d2) = m. In other

words, the delay at a server for load at most m is �∗ −d2 and
for load at most M is �∗ − d1. It is easy to see that under a
feasible assignment, no client’s delay exceeds �∗.

Each server can cover either (at most) M dummy clients or
any combination of 0 < m′ ≤ m original clients and m − m′
dummy clients. If both real and dummy clients are assigned
to at least one server, the total number of servers that have
real clients assigned to them is k′ > n

m . All these servers have
capacity m, and hence, they serve at most mk′ − n dummy
clients. The remaining servers can host M(k − k′) dummy
clients. Hence, the total number of assigned dummy clients
is bounded by M(k − k′) + mk′ − n = M(k − n

m) − M(k′ −
n
m) + m(k′ − n

m) < M(k − n
m), that is, the assignment is

not feasible. Hence, exactly n
m servers must be allocated to

real clients, thus, solving the XSC instance. The NP-hardness
proof is complete.

We simply specify some of the parameters in the above
reduction to obtain the inapproximability results. In partic-
ular, we show that if there is a solution to the exact cover
problem, then, there is a solution for the Min-Max LDB with

cost �∗. If there is no solution to the exact cover problem,
then, all solutions for Min-Max LDB have a high cost of 2�∗
(or 5

3�∗ in metric spaces).
For the nonmetric case, consider the choice d1 = 0 and

d2 = �∗. If an element is not a member of a set, the distance
to that server is very high. If there is no solution for exact
cover, then any collection of n

m sets will leave some element
uncovered. The corresponding client will have to be assigned
to a server that is also serving M−1 dummy clients. The delay
experienced by this client is thus d2 + (�∗ − d1) = 2�∗.

The choice of d1 = �∗
3 and d2 = �∗ preserves the triangle

inequality. The distance of a client in C′ to a server is either
�∗ or 5

3�∗. If there is no solution to XSC, then the best
assignment can have delay no lower than 5

3�∗. ■

3.2. A 2-Approximation Algorithm

We now present a 2-approximate solution for Min-Max
LDB. The algorithm works in phases; in each phase it guesses
�∗ = �M(λ∗(U)), and checks the feasibility of a specific
assignment in which neither the network nor the congestion
delay exceeds �∗, and hence, its cost is bounded by 2�∗. A
binary search is performed on the value of �∗. A single phase
is as follows:

1. Each client u marks all servers s that are at distance
D(u, s) ≤ �∗. These are its feasible servers.

2. Each server s announces how many clients it can serve
by computing the inverse of δs(�

∗).
3. Define a bipartite client–server graph where an edge

specifies that a server is feasible for the client. We need
to determine if there is a matching, in which the degree
of each client is exactly one, and the degree of server s
is at most δ−1

s (�∗). A feasible solution can be found via
any flow algorithm.

Theorem 2. The algorithm computes a 2-approximation of
an optimal assignment for Min-Max LDB.

Proof. Consider an optimal assignment λ∗ with cost �∗.
It is easy to see that �1 = maxu D(u, λ∗(u)) ≤ �∗, and
�2 = maxs δs(L(s)) ≤ �∗. A phase of the algorithm that
tests an estimate � = max(�1, �2) is guaranteed to find a
feasible solution with cost �′ ≤ �1 + �2 ≤ 2�∗. ■

As there are at most kn distinct D values, the number
of binary search phases is logarithmic in n. The number of
phases needed for covering all possible capacity values of
server s is O(log δs(n)), which is polynomial in the input
size.

3.3. Optimal Assignment on a Line with Euclidean
Distances

In this section, we consider the case when the users and
the servers are located on a line segment [0, L], and the net-
work delays are Euclidean distances. We show that Min-Max

24 NETWORKS—2012—DOI 10.1002/net

FIG. 1. Switching the assignment of an order-violating pair (u1, u2).

LDB is polynomially solvable in this model through dynamic
programming.

We start with some definitions. For simplicity of presen-
tation, we assume that every user or server i has a distinct
location xi. The distance between user u and server s is,
therefore, D(u, s) = |xs − xu|. Assignment λ is called order-
preserving, if for every pair of users u1 and u2, such that
xu1 < xu2 , it holds that xλ(u1) ≤ xλ(u2). Otherwise, both λ and
every pair (u1, u2) for which this condition does not hold are
called order-violating.

Every order-preserving assignment partitions the line into
a series of nonoverlapping segments, such that every user
within segment i is assigned to server si. Segment i is located
to the left of segment j if and only if i < j. Note that si is not
necessarily located inside segment i.

Theorem 3. The Min-Max LDB problem on a line has an
order-preserving optimal assignment.

Proof. Consider an order-violating assignment λ. We
show how it can be transformed into an order-preserving
assignment that incurs smaller or equal cost.

As λ is order-violating, there exists a pair of users u1 and u2

assigned to servers s2 and s1 such that xu1 < xu2 but xs2 > xs1 .
We transform λ to a new assignment λ′ by switching the
assignments of u1 and u2, that is, λ′(u1) = s1 and λ′(u2) = s2.
As this switch does not affect the load on s1 and s2, no change
is incurred to any user’s processing delay. Therefore, only
the network delays incurred to u1 and u2 are affected. We,
therefore, need to show that λ′ does not incur greater maxi-
mum network delay values than λ, that is, we need to show
that max(D(u1, s1), D(u2, s2)) ≤ max(D(u1, s2), D(u2, s1)).
To this end, consider the following cases:

1. xu1 < xu2 < xs1 < xs2 (Fig. 1a). Then, D(u1, s1) <

D(u1, s2) and D(u2, s2) < D(u1, s2), hence, max(D(u1, s1),
D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

2. xu1 < xs1 < xu2 < xs2 (Fig. 1b). Then, D(u1, s1) <

D(u1, s2) and D(u2, s2) < D(u1, s2), hence, max(D(u1, s1),
D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

3. xs1 < xu1 < xu2 < xs2 (Fig. 1(c)). Then, D(u1, s1) <

D(u2, s1) and D(u2, s2) < D(u1, s2), hence, max(D(u1, s1),
D(u2, s2)) < max(D(u1, s2), D(u2, s1)).

4. xs1 < xu1 < xs2 < xu2 . Symmetric to case (2).
5. xs1 < xs2 < xu1 < xu2 . Symmetric to case (1).

Thus, we switch the assignment of every order-violating pair
of users until an order-preserving assignment is obtained.

We conclude that every optimal assignment for Min-Max
LDB is either order-preserving or can be transformed into
an order-preserving assignment that incurs an equal service
delay. ■

We now identify the recursive structure of an optimal
assignment λ∗. Let λ∗

i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ k be
an optimal assignment for users {ui, . . . , un} that uses servers
{sj, . . . , sk}. We can assign � = 0, . . . , n− i+1 leftmost users
to server sj. This assignment defines the maximum delay
among the leftmost users. From the optimality of λ∗

i,j, the
assignment λ∗

i+�,j+1 of the remaining users to the remaining
servers is also an optimal one. Hence,

�M(
λ∗

i,j

) = min
0≤�≤n−i+1

[
max

(
δsj (�)

+ max
0≤�′<�

|xsj − xui+�′ |, �M(
λ∗

i+�,j+1

))]
(1)

The boundary conditions are: �M(λ∗n + 1, j) = 0 (no users),
and �M(λ∗i, k + 1) = ∞ (no servers), for 1 ≤ i ≤ n
and 1 ≤ j ≤ k. The global optimal assignment cost is
�M(λ∗(U, S)) = �M(λ∗

1,1).
Optimal assignments can be computed through dynamic

programming using the above recurrence. An optimal algo-
rithm uses a two-dimensional table Table[1..n + 1, 1..k + 1],
where an entry Table[i, j] holds the value of �M(λ∗

i,j), and the
number of uses assigned to sj. Note that

max
0≤�′<�

|xsj − xui+�′ | = max(|xsj − xui |, |xsj − xui+�−1 |),

and hence, the computation of a single entry Table[i, j] incurs
O(1) operations for each examined entry Table[i + �, j + 1].
A naive implementation examines O(n) such entries, and
therefore, the time complexity of filling the whole table is
O(kn2). This result can be improved by noting that Equa-
tion (1) defines a min-max among the value pairs of fi,j(�) =
δsj (�) + max0≤�′<� |xsj − xui+�′ | (a nondecreasing function of
�) and gi,j(�) = �M(λ∗

i+�,j+1) (a nonincreasing function of �).
Hence, the min-max is achieved for the value of � for which
fi,j(�) − gi,j(�) is closest to zero. It can be efficiently found
through binary search, which yields O(log n) operations for
a single table entry, and O(kn log n) operations altogether.

NETWORKS—2012—DOI 10.1002/net 25

4. MIN-AVERAGE LOAD-DISTANCE BALANCING

In this section, we consider the Min-Avg LDB prob-
lem. Contrary to the Min-Max LDB, the goal is to mini-
mize the sum of delays among all users, that is, �(λ) =∑

u∈U �(u, λ).

4.1. General Congestion Delay Functions

4.1.1. NP-hardness Proof. We prove that the Min-Avg
LDB problem for general congestion delay functions is NP-
hard by a reduction from the classical set cover problem. In
a set cover instance, we have a family S of subsets of a finite
ground set U . A feasible solution to the problem is a collec-
tion S ′ ⊆ S of subsets such that for every element u ∈ U ,
there exists at least one set s ∈ S ′ with u ∈ s. It is well known
that the set cover problem is NP-hard.

Theorem 4. The Min-Avg LDB problem is NP-hard. More-
over, it cannot be approximated within a factor of (1−ε) ln n
for any constant ε > 0 unless NP ⊆ DTIME(nO(log log n))).

Proof. Suppose, we are given a set cover instance with
|U | = N and |S| = M. Let the optimal cover be S∗.

The reduction is as follows. For each set s ∈ S, we have
one server. Let α be any positive integer. All servers have the

same delay function δ(x) =
{

0, x ≤ α;
1, x ≥ α + 1.

For each ele-

ment u ∈ U , there is a client (which we call an element client).
If u ∈ s, then the distance (the network delay) D(u, s) = 0
and D(u, s) = ∞ otherwise. For each server s, we also create
α “special” clients such that these clients have zero distance
to s and infinite distance to other servers (thus, in any fea-
sible solution, these clients should be assigned to s). It is
not hard to see that every element client u has service delay
δ(u, λ) = 1 for any reasonable assignment λ. Moreover, for
each server s which serves nonzero element clients, all α spe-
cial clients assigned to s have service delay 1. Therefore, an
optimal solution for the Min-Avg LDB instance uses the min-
imum number of servers to serve element clients and has cost
α · |S∗| + N . This proves the NP-hardness of the problem.

Now, we show the inapproximability result. We need the
following result by Feige [6]: for any ε > 0, it is impossible
to approximate the set cover problem within a factor of (1 −
ε) ln N unless NP ⊆ DTIME(nO(log log n)). Indeed, this result
still holds even when we require that M = Nδ for any δ > 0.
Suppose, we can get an assignment λS having total delay
within a factor of (1 − ε) ln n of the optimal one for some
1/2 > ε > 0. Let S ′ ⊆ S be the collection of sets, whose
corresponding servers serve nonzero element clients. We can
see δ(λS) = α · |S ′| + N ≤ (1 − ε) log(N + Mα)(α · |S∗| +
N). We assume M = Nε/10. By letting α = N1+ε/10, we
can get |S ′| ≤ (1 − ε/2) log n|S∗| + O(1), which is quite
unlikely due to Feige’s result. This proves the second part of
the theorem. ■

4.1.2. The Universal Facility Location Problem. We
show Min-Avg LDB is a special case of the UniFL prob-
lem [7, 9]. In a UniFL instance, we are given a set F of
facilities and a set C of cities. A feasible solution is an
assignment λ of the cities to facilities. The facility cost for
each facility i depends on the number of cities it serves
and is specified by a nondecreasing facility cost function
fi(.). The service cost for each city is equal to the distance
between each city and its assigned facility. The goal is to
minimize the sum of the facility and service costs, that is,∑

i∈F fi(L(λ, i))+∑
j∈C D(j, λ(j)), where L(λ, i) is the num-

ber of cities that are assigned to i in λ. If the distance function
satisfies the triangle inequality, we call the problem met-
ric UniFL problem, otherwise, we call it nonmetric UniFL
problem.

The reduction is simply as follows. Each facility and city
in UniFL correspond to a server and a client in Min-Avg
LDB, respectively. By letting the corresponding facility cost
function be fs(x) = x · δs(x), we can see that a Min-Avg LDB
instance reduces exactly to a UniFL instance with the same
optimal cost. Therefore, any approximation for UniFL can be
carried over to Min-Avg LDB with the same ratio. However,
all known approximations for UniFL are for the metric case.
The current best known approximation for metric UniFL is
6.702 by Vygen [12] and 1.861 if the facility cost function
is concave [7]. We note that δs(.) being concave does not
necessarily imply the concavity of the corresponding fs(.).
For the nonmetric UniFL, it is hard to approximate it within
a factor of (1 − ε) ln n for any ε > 0, as it also generalizes
the set cover problem [6], while whether there is an O(ln n)-
approximation is still an open problem [7, 9].

4.2. Concave Delay Functions

In many real applications, the delay can roughly be mod-
eled as a concave function of the load. We prove the problem
is NP-hard even for a very simple piecewise linear con-
cave delay function. Then, we provide a polynomial time
2-approximation. As a byproduct, we show the approxima-
tion is a Nash equilibrium for the game theoretic version of
the problem, which implies the price of stability of the game
is 2.

4.2.1. The NP-hardness

Theorem 5. The Min-Avg LDB problem is NP-hard for
some concave delay function δ(x).

Proof. The reduction is almost the same as in Theorem
4 except that α = 1 and all servers have the same following

delay function δ(x) =
{

x, 0 ≤ x ≤ 2;
2, x ≥ 2.

It is obvious that

δ(x) is a concave function. Using an argument similar to the
previous proof, we can see each element client must expe-
rience a service delay of 2. Any special client who share a
common server with any element client has a service delay of
2 and the other special clients experience delay 1. Therefore,

26 NETWORKS—2012—DOI 10.1002/net

an optimal solution has cost (M − |S∗|) + 2|S∗| + 2N =
M + 2N + |S∗| which implies the problem is NP-hard. ■

4.2.2. A 2-Approximation Algorithm. We first define the
following potential function � that maps every assignment
into a numeric value. The potential function is similar to the
one used in Ref. [2].

�(λ) =
∑
s∈S

L(λ,s)∑
x=0

δs(x) +
∑
u∈U

D(u, λ(u)). (2)

The following simple lemma shows the relationship
between the potential function value of an assignment λ and
the actual delay produced by λ.

Lemma 1. If δs(x) is nondecreasing and concave for each
server s, for any assignment λ, 1

2 · �A(λ) ≤ �(λ) ≤ �A(λ).

Proof. By writing �A(λ) = ∑
s∈S L(λ, s)δs(L(λ, s)) +∑

u∈U D(u, λ(u)), we can see the second inequality holds
obviously. To see the first inequality, it suffices to show
1
2�δs(�) ≤ ∑�

x=0 δs(x) for any � > 0. Assume that � is
odd (the proof for even � is similar and omitted). Due to
the concavity of δs(x), we have

�∑
x=0

δs(x) =
��/2�∑
x=0

(δs(x) + δs(� − x))

≥
��/2�∑
x=0

(δs(0) + δs(�)) ≥ 1

2
�δs(�).

■

We show the problem can be reduced to a minimum cost
matching computation. We build a bipartite graph where the
left part contains n clients, and the right part contains n copies
of each server. The weight of the edge connecting user u to
the i’th copy of server s is D(u, s) + δs(i). Now, we compute
a minimum cost matching such that each client is matched
with one server copy. If client u is matched with some copy
of server s, we assign u to s. Moreover, if k copies of s
are matched, they should be the first k copies, as δs(.) is
an increasing function. Therefore, we can see a minimum
cost matching corresponds exactly to the assignment with
the minimum potential function value.

Let λ′ be the assignment that minimizes the potential
function �, and let λ∗ be the global optimal solution. From
Lemma 1, we have �(λ′) ≤ 2�(λ′) ≤ 2�(λ∗) ≤ 2�(λ∗).
Therefore, we have proven the following theorem.

Theorem 6. There is a polynomial time 2-approximation
for Min-Avg LDB with concave congestion delay functions.

4.2.3. The Price of Stability of Min-Avg LDB Game. In
this section, we show the 2-approximation just presented is
actually a Nash equilibrium for Min-Avg LDB Game, thus

establishing an upper bound of 2 for the price of stability of
the game. We also present an example showing a lower bound
on the price of stability of 4/3.

The most important property of the potential function is
that if a single client u changes its strategy, then the differ-
ence between the potential of the new assignment and that of
the original one is exactly the change in the delay of u. We
formally state this in the following lemma.

Lemma 2. Consider two assignments, λ and λ′, which only
differ in the assignment of client u: λ(u) = s, whereas λ′(u) =
s′. Then, �(λ′) − �(λ) = �(u, λ′) − �(u, λ).

Proof. It is not hard to see the left-hand side is
δs′(L(λ′, s′))+D(u, s′)−δs(L(λ, s))−D(u, s) which exactly
equals the right-hand side. ■

Theorem 7. The price of stability of the Min-Avg LDB
game with concave δ(x) is at most 2 and at least 4/3.

Proof. Let λ′ be the assignment that minimizes the
potential function � and let λ∗ be the global optimal solution.
By Lemma 2, λ′ is a Nash equilibrium. By Theorem 6, we
can conclude the price of stability is at most 2.

To see the lower bound of 4/3, we consider the following
simple instance. Consider two servers s1 and s2 with conges-

tion delay functions defined to be δs1(x) =
{

x, 0 ≤ x ≤ 2;
2, x ≥ 2.

and δs2(x) = 0 for all x ≥ 0. We also have two clients u1 and
u2 with D(u1, s1) = 0, D(u1, s2) = +∞, D(u2, s1) = 0 and
D(u2, s2) = 2 + ε. The global optimum is to assign u1 to s1

and u2 to s2 with cost 3 + ε. The only Nash equilibrium is to
assign both clients to s1 which has a total cost 4. ■

4.3. A Polynomial Time Algorithm for Almost Convex
Delay Functions

We now present a polynomial time algorithm for Min-Avg
LDB when the function xδs(x) is convex for each server
s (most practical congestion delay functions satisfy this
requirement). We note that xδs(x) is always convex if δs(x)
is convex.

The algorithm reduces the assignment problem to the min-
imum cost matching problem in a bipartite graph. The left part
contains n clients, and the right part contains n copies of each
server (i.e., nk nodes). The cost of connecting user u to the
i’th instance of server s is defined as

�i(u, s) = D(u, s) + iδs(i) − (i − 1)δs(i − 1).

Intuitively, these costs are marginal costs in the assignment,
that is, �i(u, s) is the cost of connecting user u to server s
after i − 1 other users.

The algorithm computes a minimum cost matching in the
constructed graph (i.e., each user is assigned to exactly one
server copy), and turns this matching into a legal assignment
by assigning each user to the server it is matched to, regardless
of the instance number.

NETWORKS—2012—DOI 10.1002/net 27

Theorem 8. The algorithm computes an optimal assign-
ment for Min-Avg LDB.

Proof. We first claim that if the copy si of server s is
utilized by the matching, then all the copies sj for j ≤ i
are used too. Indeed, suppose by contradiction that user u is
matched to some copy si (i > 1), and si−1 is not used. If u is
switched from si to si−1, the matching cost can be reduced by

�i(u, s) − �i−1(u, s)

= iδs(i) + (i − 2)δs(i − 2) − 2δs(i − 1),

which is a positive value, as xδs(x) is a convex function.
Hence, the matching’s cost can be improved, in contradiction
to optimality.

Consider a matching µ in the bipartite graph for which
the set of used instances of each server is contiguous, and
the corresponding assignment λ for the original problem. We
denote the set of users assigned to some instance of server s
by µ(s), and the user assigned to the i’th copy of server s by
µi(s). As the used set is contiguous, the sum of individual
matching costs of the users in µ(s) telescopes to

|µ(s)|∑
i=1

�i(µi(s), s) = |µ(s)|δs(|µ(s)|) +
|µ(s)|∑
i=1

D(µi(s), s)

=
|µ(s)|∑
i=1

[D(µi(s), s) + δs(|µ(s)|)]

=
∑

u:λ(u)=s

�(u, λ).

Hence, the cost of the matching is equal to the cost of an
assignment for the original problem. Therefore, as the mini-
mum cost matching µ∗ has the desired property of contiguity,
it produces a minimum cost assignment λ∗. ■

4.4. Optimal Assignment on a Line with Euclidean
Distances

The fastest known minimum cost flow algorithm on
a graph G(V , E) runs in O(|E| log |V |(|E| + |V | log |V |))
time [11]. We construct a bipartite graph in which |V | =
O(nk) and |E| = O(kn2), hence, the running time is
O(kn2 log(nk)(kn2 + nk log(nk))) = O(k2n4 log n). In the
special case, when users and servers are located on a line
segment, and network delays are modeled as Euclidean dis-
tances, this running time can be significantly improved.
Similar to the Min-Max LDB problem, the Min-Avg LDB on
a line has an order-preserving optimal assignment. Hence, a
polynomial time dynamic programming algorithm similar to
the one presented in Section 3.3 is applicable in this case. The
algorithm’s running time is O(kn2) (in contrast to Min-Max
LDB, the binary search optimization to reduce the number of
operations on a single table entry to log n cannot be applied).

5. CONCLUSIONS AND FUTURE WORK

We studied two variations of the LDB problem, namely,
Min-Max LDB and Min-Avg LDB, which aim to minimize
the maximum and the average delay, respectively. For the first
problem, we proved hardness of approximation for general
cost functions, and presented the best possible approxima-
tion algorithm, as well as an optimal algorithm for the case
of linear placement of clients and servers. For the second
problem, we showed it is NP-hard and presented approxima-
tions for concave delay functions and an exact algorithm for
convex delay functions. We also show an upper bound of 2
and a lower bound of 4/3 on the price of stability for the game
theoretic version of the problem, Min-Avg LDB Game.

It would be interesting to achieve an approximation ratio
less than 2 for Min-Max LDB, when the network delay
satisfies the triangle inequality (note that we proved a lower
bound of 5/3). Another open question is whether there is an
O(ln n)-approximation for Min-Avg LDB with arbitrary non-
decreasing congestion delay functions (or even non-metric
UniFL).

A more general question might be to optimize over the
choice of servers, rather than fixing the set of servers. For
example, how can we choose a subset of k servers to open, and
find an assignment of clients to open servers to minimize the
average cost or the maximum cost of any client? Alternatively,
each server may have a cost, and there may be a budget on
the total cost of open servers. We have assumed so far that the
load of a server is simply the number of clients assigned to
it. We can further generalize the load to be the makespan of
the server, that is the sum of the processing times of the jobs
assigned to the server. Recently, Khuller et al. [13] considered
the problem of minimizing server opening cost subject to
a makespan constraint. Incorporating makespan constraints
into our model and other questions would be interesting to
study.

Acknowledgments

The authors thank Israel Cidon, Uri Feige, Idit Keidar, and
Isaac Keslassy for stimulating discussions.

REFERENCES

[1] I.F. Akyildiz, X. Wang, and W. Wang, Wireless mesh net-
works: A survey, Comput Networks 47 (2005), 445–487.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T.
Wexler, and T. Roughgarden, The price of stability for net-
work design with fair cost allocation, In IEEE Symposium
on Foundations of Computer Science (FOCS), 2004.

[3] J. Bar-Ilan, G. Kortsarz, and D. Peleg, How to allocate
network centers, J Algorithms 15 (1993), 385–415.

[4] E. Bortnikov, I. Cidon, and I. Keidar, Scalable load-distance
balancing, In International Symposium on Distributed Com-
puting (DISC), Lemesos, Cyprus, 2007.

[5] J. Chen, B. Knutsson, B. Wu, H. Lu, M. Delap, and C. Amza,
Locality aware dynamic load management for massively
multiplayer games, ACM Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), Chicago, Illinois,
USA, 2005.

28 NETWORKS—2012—DOI 10.1002/net

[6] U. Feige, A threshold of ln n for approximating set cover,
J ACM 45 (1998), 314–318.

[7] M. Hajiaghayi, M. Mahdian, and V. Mirrokni, The facility
location problem with general cost functions, Networks 42
(2003), 42–47.

[8] S. Khuller and Y.J. Sussmann, The capacitated K-center
problem, SIAM J Discrete Math 13 (2000), 403–418.

[9] M. Mahdian and M. Pal, “Universal facility location,”
In European Symposium on Algorithms (ESA), Springer,
Budapest, Hungary, 2003, pp. 409–421.

[10] P.B. Mirchandani and R.L. Francis, Discrete location theory,
Wiley, 1990.

[11] J. Orlin, A faster strongly polynomial minimum cost flow
algorithm, In The Annual ACM Symposium on Theory of
Computing (STOC), 1988.

[12] J. Vygen, From stars to comets: Improved local search for
universal facility location, Oper Res Lett 35 (2007), 427–433.

[13] S. Khuller, J. Li, and B. Saha, “Energy efficient scheduling via
partial shutdown,” Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2010, pp. 1360–1372.

NETWORKS—2012—DOI 10.1002/net 29

