
Trade-off Lower Bounds for Stack Machines

Matei David
Center for Computational Intractability

Princeton University
Princeton, USA

Periklis A. Papakonstantinou
Institute for Theoretical Computer Science

Tsinghua University
Beijing, PR China

Abstract—A space bounded Stack Machine is a regular
Turing Machine with a read-only input tape, several space
bounded read-write work tapes, and an unbounded stack.
Stack Machines with a logarithmic space bound have been
connected to other classical models of computation, such
as polynomial time Turing Machines (P) (Cook; 1971) and
polynomial size, polylogarithmic depth, bounded fan-in circuits
(NC) e.g., (Borodin et al.; 1989).

In this paper, we give the first known lower bound for
Stack Machines. This comes in the form of a trade-off lower
bound between space and number of passes over the input
tape. Specifically, we give an explicit permuted inner product
function such that any Stack Machine computing this func-
tion requires either sublinear polynomial space or sublinear
polynomial number of passes. In the case of logarithmic
space Stack Machines, this yields an unconditional sublinear
polynomial lower bound for the number of passes. To put
this result in perspective, we note that Stack Machines with
logarithmic space and a single pass over the input can compute
Parity, Majority, as well as certain languages outside NC. The
latter follows from (Allender; 1989), conditional on the widely
believed complexity assumption that EXP is different from
PSPACE.

Our technique is a novel communication complexity reduc-
tion, thereby extending the already wide range of models of
computation for which communication complexity can be used
to obtain lower bounds. Informally, we show that a k-player
number-in-hand communication protocol for a base function
f can efficiently simulate a space- and pass-bounded Stack
Machine for a related function F, which consists of several
permuted instances of f, bundled together by a combining
function h. Trade-off lower bounds for Stack Machines then
follow from known communication complexity lower bounds.

The framework for this reduction was given by (Beame and
Huynh-Ngoc; 2008), who used it to obtain similar trade-off
lower bounds for Turing Machines with a constant number
of pass-bounded external tapes. We also prove that the latter
cannot efficiently simulate Stack Machines, conditional on the
complexity assumption that E is not a subset of PSPACE.
It is the treatment of an unbounded stack which constitutes
the main technical novelty in our communication complexity
reduction.

Keywords-AuxPDA; stack; communication complexity; lower
bound; space bound; reversals; streaming;

This work was completed and submitted when both authors were
graduate students in the Department of Computer Science, University of
Toronto. M.D. is supported in part by the NSF grant CCF-0832797. P.A.P.
is supported in part by the National Natural Science Foundation of China
Grant 60553001, the National Basic Research Program of China Grant
2007CB807900, 2007CB807901.

I. INTRODUCTION

One of the goals of complexity theory is understanding the
relative power of various models of computation. Consider
the classes P and LOGSPACE of languages decided by
deterministic Turing Machines in polynomial time and loga-
rithmic space, respectively. Also consider NC =

⋃
i≥0 NCi,

where NCi is the class of languages decided by (uniform)
circuits of polynomial size, depth O

(
(log n)i

)
, consisting

of bounded fan-in And, Or and Not gates. We regard P and
LOGSPACE as modelling efficient time-bounded and space-
bounded computation, respectively, and we regard the class
NC as modelling efficient parallelizable computation. We
know that

NC1 ⊆ LOGSPACE ⊆ NC2 ⊆ . . . ⊆ NCi ⊆ . . . ⊆ P,

but we don’t know whether any of the inclusions are proper.
One possible way to attack the problem of separating

complexity classes defined using different models of com-
putation (e.g., Turing Machines, combinatorial circuits) and
different resource bounds (e.g., time, space, size, depth) is to
rephrase them as separations of classes based on a common
computational model, a common resource bound, and prove
lower bounds for that common resource.

Consider the problem of characterizing polynomial-time
computation in terms of a space bound. We know that a
logarithmic-space Turing Machine can be simulated by a
polynomial-time Turing Machine, and we believe that the op-
posite is not true in general (i.e., that LOGSPACE (P). Fur-
thermore, we also believe that, e.g., some polylogarithmic-
space Turing Machine cannot be simulated by a polynomial-
time Turing Machine. Thus, there seems to be no obvious
way to exactly capture polynomial-time computation in
terms of a space bound.

A stack, also called a push-down storage, models an
unlimited storage space that comes with a First-In Last-
Out access restriction. A Stack Machine is a classical Turing
Machine equipped with a stack (also called an AuxPDA.) A
space bound for a Stack Machine refers exclusively to the
size of its work tapes, and not to its stack. In light of the
previous paragraph, [1] gives a fascinating characterization
of a time-bounded complexity class in terms of a space-
bounded computational model, showing that the class of

languages decided by logarithmic-space Stack Machines
exactly equals that of languages decided by polynomial-time
Turing Machines, that is, P.

It is not hard to show that there is no loss in computational
power in assuming that a logarithmic space Stack Machine
also operates in at most exponential (2n

O(1)
) time [5]. A

series of subsequent results, e.g. [5], [6], [2], [3], [7], estab-
lish a perhaps surprising connection between simultaneously
space- and time- bounded Stack Machines and combinatorial
circuits: nondeterministic logarithmic-space Stack Machines
that run in time 2O(logi n) precisely characterize SACi, the
extension of NCi in which Not gates are at the input level
and we allow Or gates with unbounded fan-in. Furthermore,
denoting by SM(s, t) the class of languages decided by
deterministic Stack Machines operating in space s and time
t, we now know that, for every integer i ≥ 1,

NCi ⊆ SM
(

O (log n) , 2O((logn)i)
)
⊆ NCi+1 ⊆ . . .

⊆ P = SM
(

O (log n) , 2n
O(1)
)
.

In spite of the connections laid out above between Stack
Machines and major open problems in computational com-
plexity, this model is not well understood.

A. Our Contribution

As the main contribution of this work, we provide the
first ever lower bounds specifically for Stack Machines. We
do not know how to tackle time lower bounds directly.
Instead, we consider the number of (two-way) passes a
Stack Machine makes over its input. We assume that a
Stack Machine has at least logarithmic space and, without
losing generality, that in every pass, the input head moves
from one end of the tape to the other. Sometimes this
measure is also called reversal complexity, as the number of
passes equals one plus the number of reversals. The lower
bounds we prove come in the form of trade-off lower bounds
between space and number of passes. Specifically, we give
two examples of functions for which any Stack Machine
requires either Ω

(
Nβ
)

space or Ω
(
Nβ
)

passes, for some
β < 1. In the case of logarithmic-space Stack Machines,
this translates into unconditional Ω

(
Nβ
)

lower bounds for
the number of passes.

Communication complexity has been used to derive lower
bounds in a wide variety of other areas of theoretical
computer science: cell probe complexity, VLSI circuit de-
sign, Turing Machine complexity, circuit complexity, pseu-
dorandomness, algorithmic game theory, proof complexity,
and streaming. Perhaps as important as its corollaries, our
main technical contribution is to show that communication
complexity can also be used to derive lower bounds for Stack
Machines.

Consider a base function f = fk,n : ({0, 1}n)k →
{0, 1}, and a combining function h : {0, 1}m → {0, 1}

that is symmetric and has a neutral element (e.g., this is
the case for OR and XOR, with neutral element 0). Let
F = Fk,m·n : (({0, 1}n)m)k → {0, 1} be a lifted function
which consists, informally, of m instances of f on disjoint
inputs, “permuted” in a way made precise in Section III,
and “glued together” by h. Our main technical contribution
is the following reduction, saying that a k-player number-in-
hand communication protocol for f can efficiently simulate
a Stack Machine for F .

Theorem I.1. Let k = k(n) ≥ 2 be a non-decreasing
function and let m = m(n) ≥ 1 be an increasing function
such that k ≤ mO(1). Let N = N(n) := k · m · n. Let
s = s(N) and r = r(N) be increasing functions and let
δ < 1/2 be a constant. Let d := k · r · log r/

√
m.

Let f = fk,n be a boolean base function, and let F = FN
be a function related to f in the sense informally described
above, and made precise in Section III.

Assume there exists a randomized (even, nonuniform)
Stack Machine for F with space bound s, pass bound r
and error δ. Then, there exists a k-player number-in-hand
randomized protocol for f , with cost O (k · r · log(k · r) · s)
and error at most δ + O (d).

As a consequence of Theorem I.1 and of the known com-
munication complexity lower bound for the Inner Product
function, we obtain the following trade-off lower bound,
which is the first of its kind.

Corollary I.2 (Informal statement). Let ε > 0 and δ < 1/2
be constants. There exists an “inner product-like” function
F = FN ∈ LOGSPACE such that any Stack Machine
computing F with error δ requires space s = ω

(
N1/4−ε)

or passes r = ω
(
N1/4−ε).

In particular, a log-space Stack Machine needs
ω
(
N1/4−ε) passes to compute F .

The `-th frequency moment of a sequence ā =
(a1, . . . , at), where ai ∈ [R], is Freq`(ā) =

∑
j∈[R] f

`
j ,

where fj = |{i ∈ [t] | ai = j}|. Computing Freq` is a well-
studied problem in the streaming literature [8]. As another
consequence of Theorem I.1, we also obtain the following
result, which can be interpreted as saying that a stack does
not help in computing frequency moments.

Corollary I.3. Let ` > 4, ε ≥ 0 and δ < 1/2 be constants.
There exists a constant 0 < β < 1 such that any randomized
Stack Machine computing a (1 + ε) multiplicative approx-
imation of Freq` with error δ requires space s = ω

(
N ′β

)
or passes r = ω

(
N ′β

)
, where N ′ denotes the input size.

In particular, a log-space Stack Machine needs ω
(
N ′β

)
passes to approximate Freq`.

For this result, we use a number-in-hand communication
complexity lower bound for the promise Set Intersection
function [9], along with a streaming reduction between the
problems of computing the promise Set Intersection function

and the frequency moments of a data stream, originating
from [8].

Remark I.4. Clearly, the number of passes is also a lower
bound on the running time of a Stack Machine. If interpreted
in this way, our method comes with an important limita-
tion. Specifically, by using a reduction to communication
complexity it is not clear how to obtain any super-linear
lower bounds, because the communication complexity of any
function is at most linear. Still, as explained in Section VI,
Stack Machines with logarithmic space and few passes over
the input are quite powerful, so a lower bound on passes
can be seen as interesting in its own right.

Remark I.5. Some of the technical effort in our proofs is
directed towards dealing with Stack Machines that have
two-way rather than one-way access to their input tape. We
point out that these restrictions are polynomially, but super-
linearly, related: a Turing Machine (with or without a stack)
that makes r(N) two-way passes over an input of size N can
be simulated by a similar Turing Machine M ′ that makes
N · r(N) one-way passes. However, the method presented
in this work can only derive lower bounds of the form
r(N) ≥ Ω (Nα) for some 0 < α ≤ 1. Therefore, we cannot
use our current methods to first prove lower bounds for one-
way access, and then transfer them to two-way access using
the simple argument above.

B. Related Work

Turing Machines with limited reversals have been studied
before, e.g. [10]. However, in that line of work, reversals are
bounded on all tapes. By comparison, the Stack Machines
we consider are significantly more powerful, because rever-
sals are unbounded on both their space bounded internal
tapes, and their stack.

This type of a reduction, connecting efficient communica-
tion protocols and space bounded computation, is not new.
One of the first examples is [11], which derives time-space
tradeoffs for multi-head Turing Machines. Subsequently,
such reductions have been used to derive lower bounds in
streaming [8], an area of computer science whose object of
study is the power of Turing Machines with small space and
a single (or, very few) pass(es) over the input tape.

At the technical level, Stack Machines are related to
(r, s, t) read-write stream algorithms. The latter are Turing
Machines that have: a constant number t of “external” read-
write tapes, several “internal” tapes of combined space s, and
a total number r of passes, counted over all external tapes.
These machines were introduced by [12] as an extension of
the standard streaming model, in which the machines has
access to a single external read-only tape. [12], [13] derived
several lower bounds for deterministic and one-sided error
randomized read-write stream algorithms by analyzing their
structural properties. [14] showed that two of the standard
measures that are used to bound communication complexity,

discrepancy and corruption, can be used to derive lower
bounds for computing certain direct-sum type functions with
two-sided error randomized stream algorithms. Finally, [4]
gave a simpler and more direct reduction between number-
in-hand communication protocols and read-write stream
algorithms, obtaining trade-off lower bounds between space
and number of passes, that inspired some the technical
arguments in this paper.

Stack Machines and read-write stream algorithms are
somewhat similar at the technical level because they both
augment a space bounded Turing Machine, with an un-
bounded stack one the one hand, and with several pass-
bounded read-write tapes on the other. However, the moti-
vation for considering these models is essentially different.
Stack Machines are intimately connected to combinatorial
circuits, which in turn model efficient parallel computation,
whereas read-write stream algorithms model efficient com-
putation in the presence of unlimited but slow “external”
memory and fast but limited “internal” memory. In the
full version of this paper, we show that read-write stream
algorithms cannot efficiently simulate Stack Machines, con-
ditional on the widely believed complexity assumption that
E 6⊆ PSPACE.

It is the treatment of the stack that constitutes the main
technical novelty in our result. To put this into perspec-
tive, observe that a Turing Machine equipped with two
unbounded stacks can decide any decidable language, using
no workspace at all and a single pass over the input
(e.g., [15, Problem 3.9]). In comparison, Turing Machines
with any constant number of external tapes with space
bound s and pass bound r can only compute languages in
DSPACE

(
r2 · s

)
[16, Lemma 4.8].

C. Organization

The heart of our result is the a new communication
complexity reduction. In Section II, we give an outline of
this reduction in a simplified setting which still involves most
difficulties. In Section III, we give the formal definitions
needed to state our results. In Section IV, we give the
formal statements that comprise the reduction. Finally, in
Section V, we state the consequences we obtain using
the reduction. The formal proofs, including the evidence
suggesting that Stack Machines are incomparable to read-
write stream algorithms, are deferred to the full version of
this paper.

II. OUTLINE OF THE ARGUMENT

Consider the regular Inner Product function IP = IP2,n :
({0, 1}n)2 → {0, 1}. Let (x1, x2) be an input, with xp =
(xp,1, . . . , xp,n), where xp,j ∈ {0, 1} for p ∈ [2] and j ∈ [n].
In the communication complexity world, we are interested
in computing this function with 2 player protocols, in which
player p gets xp, for p ∈ [2]. We know that R2(IP2,n) ≥
Ω (n) [17]. In the TM world, we are interested in computing

this function when its input is given on a tape in the natural
way: first the n bits of x1, then the n bits of x2. The input
size for the TM is N = 2 · n. In this simplified outline, we
study the tradeoff between the space s(N) and the number
of one-way passes r(N) that a deterministic TM needs. In
the full proof, we allow k ≥ 2 players, we allow two-way
passes, and we allow randomization in the TM.

In the absence of a stack.: When there is no stack,
there is a simple, well-known, simulation of a space and
pass bounded TM by a 2 player communication protocol.
Player 1 simulates the TM until the head first crosses into
the input zone containing x2, at which point it sends the
full state of the TM to player 2. The latter continues the
simulation until the head crosses back into x1, and so on. In
total, the communication in this protocol is O (s(N) · r(N)).
By the communication complexity lower bound, we get
s(N) · r(N) ≥ Ω (n) = Ω (N). This simple simulation
breaks down in the case of a SM because there might be
transfer of information via the stack between the parts of
the computation when the input head is scanning x1 and
x2. One way to see this is to observe that the configuration
of a TM can be described by O (s) bits, whereas that of a
SM might require up to 2Θ(s) bits.

A framework for dealing with a stack.: In order to deal
with the presence of a stack, we adapt a framework that
was originally introduced by [4] in the context of TMs with
several external tapes.

Consider a function f which we know is hard in the
communication model. We assume that an efficient SM M
exists for a related function F . Using this assumption, we
build an efficient communication protocol P for f . Let x be
an input to f in P . The players in P first construct an input
v to F (which contains x and some public “padding”), they
simulate M on v, computing F (v), and finally they derive
f(x) from F (v). The simulation of M on v must be efficient
so that communication lower bounds apply.

Let Γ be the sequence of configurations of M on v. In P ,
the players simulate Γ using a series of publicly and privately
simulated sections. The public simulation is “cheap” in
the sense that it does not cost any communication. The
private simulation is “expensive” because, at the end of each
private section, the player simulating it must communicate
something in order for the other player(s) to “know where
they are” in Γ. Each section in Γ where the input head scans
a symbol from x (which is the input to P) is to be simulated
privately by the player who knows that symbol. Moreover,
the basic idea is that, since we do not have any bounds on
how a SM can use its stack, we want to avoid communicating
stack content in P . Thus, we do not mind if either: a symbol
is pushed on the stack during public simulation and popped
during either public or private simulation; or a symbol is
pushed on the stack in a privately simulated section by
player p and later popped in a (possibly different) privately
simulated section the same player p. What we want to

avoid is the remaining scenario: a symbol is pushed on the
stack in a privately simulated section by player p1 and later
popped in a privately simulated section by player p2 6= p1.
Informally, the way we achieve this “protection” against M
using its stack on x is by “hiding” x into the larger input
v, so that, with high probability, M only uses its stack for
“meaningless” computation.

Concretely, let m = n =
√
N/2. Suppose that in a

communication protocol 2 players want to compute IP2,n,
and they have access to an efficient (space s(N), one-way
passes r(N)) SM for IP2,N/2. We think of IP2,N/2 as m
instances of IP2,n glued together by a top-level XORm gate.

In the communication protocol P , the players get
inputs x1, x2 ∈ {0, 1}n, respectively. They begin
by choosing a random i∗ ∈ [m] and random
y1,i, y2,i ∈ {0, 1}n for i ∈ [m] \ {i∗}, all using
public coins. Let v = (v1, v2) be the input to
M defined by, vp,i∗ := xp and vp,i := yp,i, for
i 6= i∗ and p ∈ [2]. Henceforth, the goal of P is
to simulate M on v.

Thus, both players know most of the input to the SM, except
for two pieces of n bits each, where their respective inputs
from the communication protocol are embedded in the N
bit input v to M . Furthermore, observe that if they were
indeed able to simulate the SM, they could compute the
output for the protocol as IP(x1, x2) = IP(v1,i∗ , v2,i∗) =
XOR2 (IP(v1, v2),XORm−1 (IP(v1,i, v2,i) | i 6= i∗)).

Unique stack symbols.: For the purposes of the anal-
ysis, we assume that each symbol on the stack is given a
unique tag. Thus, even though the same symbol might appear
many times on the stack, we assume we can distinguish
between any of those appearances. In particular, to say that
“a symbol is placed on the stack in configuration γ1 and
popped in configuration γ2” formally means that: the stack
level is the same in γ1 and in the configuration immediately
following γ2; and the stack level is strictly higher in any
intermediate configuration between those two.

Corrupted instances.: A key concept in our argument
is that of a “corrupted instance”. For a SM M and an input
v, we say that instance i is corrupted in v on M if, during
the run of M on v, a symbol is placed on the stack while the
input head is scanning vp1,i and popped while it is scanning
vp2,i, where p1 6= p2.

Three claims.: Henceforth, our argument is built on the
following three claims:

(i) The number of corrupted instances in any one input
is small.

(ii) The choice of i∗ and of v in the communication
protocol are statistically independent of each other.

(iii) If the input x to the communication protocol is not
embedded in a corrupted instance in the input v to the
SM, then the protocol can efficiently simulate the SM.

The intuition for claim (i).: Fix a SM M and an input
v. We want to give a bound for the number of corrupted
instances in v on M . We associate each corrupted instance
i ∈ [m] with a unique 4-tuple (l1 ≤ l2, p1 6= p2), such that a
symbol is pushed on the stack in the pass l1 over vp1,i and
popped in the pass l2 over vp2,i. Note, for each corrupted
instance there might be several such 4-tuples to choose from,
here, we associate i with only (any) one of them. We say
that i is corrupted by this 4-tuple.

Let l1 ≤ l2 ≤ r and let p1 6= p2 ∈ [2]. During the pass l1
over vp1 , the input head scans the instances in v going from
left to right in the order: 1, 2, . . . ,m. The same is true for
the pass l2 over vp2 . Assume instances i1 6= i2 are corrupted
by this particular 4-tuple. Without losing generality, say 1 ≤
i1 < i2 ≤ m. We see that: the stack symbol associated with
i1 is pushed first, then the stack symbol associated with
i2, then the stack symbol associated with i1 is popped, and
finally the stack symbol associated with i2 is popped. This
contradicts the First-In Last-Out access semantics of a stack.
Hence, at most one instance is corrupted by any one 4-tuple.

Since the number of 4-tuples is at most 2 · r2, we derive
that at most O

(
r2
)

instances can be corrupted in v on M .
Thus, as long as r2/m = o (1), the fraction of corrupted
instances in any one input is small. This argument is
extended to work for two-way access, and slightly improved,
as Lemma IV.1.

The intuition for claim (ii).: To see why we need
(ii), observe that in the communication protocol P , v is
constructed based on i∗. For (i) to be useful, we would
like the choice of i∗ to probabilistically “hide” the instance
containing the input to P from the set of corrupted instances
in v on M . It seems that we would need i∗ to be chosen
after v.

To achieve (ii), we use an argument that goes through dis-
tributional communication complexity: for every distribution
D on the inputs to IP2,n in the communication protocol,
the players choose the m − 1 “decoy” instances from that
same distribution D, so that v is distributed according to Dm

independently of i∗. In this case, we can permute the choices
of v and i∗, so that claim (i) gives a bound on the probability
the communication protocol embeds the real input in a
corrupted instance. We go back to randomized communi-
cation complexity (for which we have lower bounds) using
the standard Yao’s min-max principle [18, Theorem 3.20]
connecting these two measures. This argument is made
precise inside the proof of Theorem I.1.

The intuition for claim (iii).: Assume that the instance
i∗, where the real input x = (x1, x2) to the communication
protocol P is embedded in v, is not corrupted. We argue
that P can efficiently simulate M .

Let Γ be the sequence of configurations that M goes
through on input v. We say that a configuration is input-
private to player p if the input head is scanning a symbol
from vp,i∗ (which is where xp is embedded). Intuitively, we

want player p to simulate the transition out of a configuration
that is input-private to player p, because only it knows
the symbols in vp,i∗ = xp. Moreover, symbols might be
pushed on the stack in such a transition, we say that any
such stack symbol is private to player p. We say that a
configuration is stack-private to player p if the transition
out of this configuration pops a stack symbol that is private
to player p. Intuitively, we want player p to simulate such a
transition in order to avoid communicating stack contents
during the protocol. All other configurations are public.
Since we assumed instance i∗ is not corrupted, we know
there is no configuration which is input- and stack-private
to different players.

The players simulate Γ by alternating between public and
private simulation. At the end of each privately simulated
section, the player performing that simulation communi-
cates: the state of the SM, the lowest stack level reached
during the private simulation section, the current stack level,
and the top stack symbol. It can be shown that the cost of
the communication at the end of each privately simulated
section is O (s). In the proof of Lemma IV.2, we argue that
the information communicated is sufficient for the players to
obtain a “hollow view” of the stack: each player knows the
public stack symbols, the stack symbols which are private
to itself, and the locations of the stack symbols private to
other players. Moreover, this hollow view is sufficient for
the players to continue the simulation until the end of Γ.

Finally, let us give an informal bound on the amount
of communication. Observe that input-private configurations
form exactly 2 · r contiguous subsequences in Γ. Let us
denote these contiguous zones of input-private configura-
tions in Γ by Sa, for 1 ≤ a ≤ 2 · r. Let γa and γ′a be the
configurations at the beginning and end of Sa, respectively.
Observe that the stack at the end of Sa (in γ′a) contains
at most a contiguous zones of private stack symbols, at
most one such zone corresponding to each previous input-
private section Sa′ , with a′ ≤ a. Some of these zones
might be accessed before Sa+1. As explained in detail in
the proof of Lemma IV.2, the players in the protocol can
simulate the sequence of configurations between γ′a and
γa+1 using as many privately simulated sections as there
are contiguous zones of private stack symbols in γ′a. Since
a ≤ 2·r, the number of privately simulated sections between
γ′a and γa+1 is O (r). Summing over all a, and taking
into account the privately simulated sections Sa, we get
that, in total, the simulation of Γ can be performed using
at most O

(
r2
)

privately simulated sections. Hence, the
communication bound for the entire protocol is O

(
r2 · s

)
.

Putting (i), (ii) and (iii) together, assuming that we have
a SM for IP2,N/2, we obtain a randomized communica-
tion protocol for IP2,n that has error O

(
r2/m

)
and cost

O
(
r2 · s

)
. As long as r2/m = o (1), the known randomized

communication complexity lower bound R2(IP2,n) ≥ Ω (n)
applies [17], and we obtain the tradeoff lower bound r(N)2 ·

s(N) ≥ Ω (n) = Ω
(
N1/2

)
.

What was left out of this outline.: First, the number of
players in this outline is set to k = 2. While this is sufficient
to derive SM tradeoff lower bounds for Inner Product-like
functions, we need to allow the number of players to be a
function of the input size, that is, k = k(n), in order to
obtain inapproximability results for the frequency moments
problem in Corollary I.3.

Second, the Inner Product function is of such a nature that
no matter how the players in P choose the decoy instances
yp,i ∈ {0, 1}n for p ∈ [2] and i 6= i∗, they can always
retrieve f(x) = IP(x1, x2) from F (v) = IP(v1, v2) by
computing the XOR of all decoy instances IP(y1,i, y2,i)
together with F (v). This is a property of the top-level gate
in IP, which is XOR. In order to deal with the frequency
moments problem, we use a reduction involving the promise
Set Intersection problem, which has top-level gate OR. In
this case, in order to be able to retrieve f(x) from F (v), the
decoy instances must be 0-instances, and only then do we
have f(x) = F (v). To accommodate for this requirement
and still achieve claim (ii), we need to treat 0-inputs and
1-inputs differently inside the proof of Theorem I.1.

Third, we need to fill in the details of the simulation
informally described as claim (iii).

Fourth, there is the issue of two-way versus one-way
passes. This outline only considers how to obtain trade-off
lower bounds for SMs with one-way access to the input.
As we have seen above, a SM with two-way access to the
input can compute IP with only 2 passes. The point where
this framework breaks down is claim (i), which is outright
false. Consider the case when p1 = 1, p2 = 2, the pass
l1 = 1 is left-to-right, and the pass l2 = 2 is right-to-left.
We see that the instances are visited in the pass 1 in the order
1, 2, . . . ,m− 1,m and they are visited in the pass 2 in the
order m,m− 1, . . . , 2, 1. Then, the associated “corrupting”
stack symbols can be pushed in the order 1, . . . ,m and
popped in the order m, . . . , 1, without violating the access
semantics of a stack. Thus, potentially all instances can be
corrupted by a single 4-tuple (1, 2, 1, 2), which is precisely
what happens in the simple 2-pass protocol seen earlier.

In order to obtain tradeoff lower bounds for SMs with
two-way access, we need to fix claim (i). To that end, we
“scramble” the order in which the m instances are seen in
pass l1 over vp1 and in pass l2 over vp2 , no matter what
p1 and p2 are, and no matter whether the passes l1 and l2
are left-to-right or right-to-left. Informally, we achieve this
by reordering the m instances corresponding to each player
using a family of permutations Φ = (ϕ1, . . . , ϕk), with one
permutation for each player, that has the following property.

For p ∈ [k], let σp := (ϕp(1), . . . , ϕp(m)) and
σrev
p := (ϕp(m), . . . , ϕp(1)). Then, for every p1 6=
p2, σ′1 ∈ {σp1 , σrev

p1 }, and σ′2 ∈ {σp2 , σrev
p2 }, σ

′
1

and σ′2 have as small a common subsequence as
possible.

It turns out that there exist families Φ where any such
common subsequence has size O (

√
m) [4].

III. DEFINITIONS AND FACTS

We use standard definitions for communication complex-
ity and for Turing Machines.

We use n to denote the size of the input to a player
in a communication protocol. The number of players is
k = k(n), which is a non-decreasing function of n. We
use f = fk,n : ({0, 1}n)k → {0, 1} to denote a generic
boolean function which we are interesting in computing in
the communication model. We use F : {0, 1}N → {0, 1} to
denote a generic function that we are interested in computing
in the Stack Machine model. We denote by N the size of
the input to F . We use s = s(N) and r = r(N) to denote
increasing functions bounding the space and the number of
passes of a Stack Machine.

The Inner Product function IP2,n : ({0, 1}n)2 → {0, 1}
is defined by IP2,n(x1, x2) =

∑n
i=1 x1,i · x2,i. The Set

Intersection function SetIntk,n : ({0, 1}n)k → {0, 1} is
defined by SetIntk,n(x1, . . . , xk) =

∨n
i=1

(
∧kj=1xj,i

)
. In

the promise Set Intersection function pSetIntk,n, we are
promised that the inputs satisfy the following: there is at
most one i ∈ [n] such that ∧kj=1xj,i = 1; and for every
i ∈ [n] where ∧kj=1xj,i = 0, there is at most one j ∈ [k]
such that xj,i = 1.

Permutations, Sequences, and Sortedness.: Let Sm
denote the set of all permutations of [m]. Let id denote the
identity permutation. For a permutation π ∈ Sm, let seq(π)
denote the m-element sequence (π(1), π(2), . . . , π(m)).
For a sequence σ, let σrev denote σ reversed. E.g.,
seq(π)rev = (π(m), . . . , π(1)). For two sequences σ1, σ2,
let LCS(σ1, σ2) denote their longest common (not neces-
sarily contiguous) subsequence. For a sequence σ, let |σ|
denote its length.

Consider two permutations ϕ1, ϕ2 ∈ Sm. We define their
relative sortedness as

relsort (ϕ1, ϕ2) := max |LCS(σ1, σ2)| ,
∀i ∈ [2],∀σi ∈ {seq(ϕi), seq(ϕi)rev}

For a set of permutations Φ = {ϕ1, . . . , ϕt}, we define
its relative sortedness to be the maximum relative sorted-
ness of any two of its members. Formally, relsort (Φ) :=
max { relsort (ϕi, ϕj) | i 6= j ∈ [t]}.

The following facts give us sets of permutations with
small relative sortedness.

Fact III.1 (Lemma 6 in [12]). For every m, there exists a
permutation ψ∗m ∈ Sm such that relsort (id, ψ∗m) ≤ 2·

√
m−

1. Furthermore, ψ∗m can be computed in space O (logm).

[4] use a simple counting argument to show that a similar
bound, still asymptotically optimal, can be achieved even for
sets of permutations.

Fact III.2 (Corollary 2.2 in [4]). Let k = k(m) be a function
such that k ≤ mO(1). There exists a family Φ∗ =

(
Φ∗k,m

)
m

where Φ∗k,m = {ϕ1, . . . , ϕk} is a set of k permutations from

Sm, such that relsort
(

Φ∗k,m
)
≤ O (

√
m).

Permuted Functions.: Let f = fk,n : ({0, 1}n)k →
{0, 1} be a base function. Let h = hm : {0, 1}m → {0, 1}
be a combining function. Let Φ = Φk,m = {ϕ1, . . . , ϕk} be
a set of k permutations from Sm. In what follows, we define
LiftMix (fk,n, hm,Φk,m) : ({0, 1}m·n)k → {0, 1} which is
a lift-and-mix function that consists of m instances of f ,
permuted by Φ, and combined by h.

Let v ∈ ({0, 1}m·n)k be an input. Let v = (v1, . . . , vk),
where vp ∈ {0, 1}m·n for every p ∈ [k]. Let vp =
(vp,1, . . . , vp,m), where vp,i ∈ {0, 1}n for every (p, i) ∈
[k] × [m]. Let vp,i = (vp,i,1, . . . , vp,i,n), where vp,i,j ∈
{0, 1} for every (p, i, j) ∈ [k] × [m] × [n]. When v is
given as an input to a TM, v appears on the input tape
as v1,1, . . . , v1,m, v2,1, . . . , v2,m, . . . , vk,1, . . . , vk,m, and for
(p, i) ∈ [k] × [m], vp,i appears as the sequence of bits
vp,i,1, vp,i,2, . . . , vp,i,n.

For (p, i′) ∈ [k]× [m], we say that vp,ϕ−1
p (i′) is the i′-th

instance (of f) inside vp. For i′ ∈ [m], we define the i′-th
instance (of f) inside v to be

v[i′],Φ :=
(
v1,ϕ−1

1 (i′), v2,ϕ−1
2 (i′), . . . , vk,ϕ−1

k
(i′)

)
∈ ({0, 1}n)k .

For (p, i) ∈ [k] × [m], vp,i appears in v[i′],Φ if and only
if i = ϕ−1

p (i′). Since this is equivalent to i′ = ϕp(i), we
observe the following basic fact.

Fact III.3. The order on the tape of the m instances inside
vp is (ϕp(1), ϕp(2), . . . , ϕp(m)), which is precisely seq(ϕp).
Thus, a left-to-right tape scan over vp visits the m instances
in the order seq(ϕp), and a right-to-left tape scan visits them
in the order seq(ϕp)rev.

We now define the lift-and-mix function
LiftMix (f, h,Φ) : ({0, 1}m·n)k → {0, 1} by

LiftMix (f, h,Φ) (v) :=
h(f(v[1],Φ), f(v[2],Φ), . . . , f(v[m],Φ)).

We embed an input to f into a specific instance of
an input to F as follows. Let x ∈ ({0, 1}n)k be an
input to f . Let i∗ ∈ [m] be an instance number. Let
ȳ−i∗ = (y1, . . . , yi∗−1, yi∗+1, . . . , ym) be a set of m − 1
inputs to f , where yi ∈ ({0, 1}n)k for i 6= i∗. We define
vΦ(i∗, x, ȳ−i∗) to be the input to F in which x is embedded
at instance i∗ and yi is embedded at instance i, for i 6= i∗.

Formally,

vΦ(i∗, x, ȳ−i∗) := v ∈ ({0, 1}m·n)k ,

such that

{
v[i],Φ = x, i = i∗

v[i],Φ = yi, i 6= i∗

Corrupted Instances.: Let M be a deterministic SM
and v be an input of size N = k · m · n. We say that
instance i ∈ [m] is corrupted in v on M if there exist
players p1 6= p2 ∈ [k] such that, during the run of M on
v, a symbol is pushed on the stack when the input head
is scanning vp1,ϕ−1

p1 (i) and that symbol is popped when the
input head is scanning vp2,ϕ−1

p2 (i), where ϕp1 , ϕp2 ∈ Φk,m.
Observe that both strings above are part of v[i],Φ, which is
instance i inside v.

Let BAD(M,v) ⊆ [m] be the set of all instances which
are corrupted in v on M . Observe that this definition implic-
itly depends on the values of k,m, n and Φ, so we should
formally write BADk,m,n,Φ(M,v). We use the shorter form
for brevity.

Neutral Element.: We say that a combining function
h : {0, 1}m → {0, 1} has a neutral element e ∈ {0, 1} if
(i) h(em) = 0 and (ii) if an input w has exactly m − 1
elements set to e then h(w) equals the number of bits that
are different from e in w (this can only be 0 or 1). Observe
that both OR and XOR have neutral element e = 0.

IV. THE REDUCTION

Theorem I.1 (Restated). Let k = k(n) ≥ 2 be a non-
decreasing function and let m = m(n) ≥ 1 be an increasing
function such that k ≤ mO(1). Let N = N(n) := k ·m · n.
Let s = s(N) and r = r(N) be increasing functions. Let
δ < 1/2 be a constant. Let Φ = (Φk,m)m be a family of per-
mutations, where Φk,m = {ϕ1, . . . , ϕk} are k permutations
from Sm. Let d := k · r · log r · relsort (Φk,m) /m.

Let f = fk,n be a boolean base function and let h = hm
be a combining function with a neutral element. Let F =
FN := LiftMix (fk,n, hm,Φk,m).

Assume there exists a randomized nonuniform SM M for
F with space bound s, pass bound r and error δ. Then, there
exists a randomized k-player NIH communication protocol
P for f , with cost O (k · r · log(k · r) · s) and error at most
δ + O (d).

To prove this Theorem, use the following two Lemmas,
which correspond to claims (i) and (iii) in the outline from
Section II. Throughout this section, let n, k,m,N, s, r,Φ be
as in Theorem I.1.

The first Lemma gives a bound on the number of cor-
rupted instances inside a fixed input. As such, it directly
corresponds to claim (i) from the outline in Section II. As
opposed to that claim, the Lemma allows for a growing
number of players k = k(n) and for two-way passes over the
input tape thanks to the “scrambling” of instances according
to the family of permutations Φ.

Lemma IV.1. Let M ′ be a deterministic nonuniform
SM with space bound s and (two-way) pass bound r.
Let v′ be an input of size N . Then, |BAD(M ′, v′)| ≤
O (k · r · log r · relsort (Φk,m)).

The next Lemma corresponds to claim (iii) from the
outline in Section II. It says that if the players in a com-
munication protocol embed their input in a non-corrupted
instance, then the protocol can efficiently simulate the SM.

Lemma IV.2. Let M ′ be a deterministic nonuniform SM.
Let i∗ ∈ [m] be an instance number and let ȳ−i∗ =
(y1, . . . , yi∗−1, yi∗+1, . . . , ym) be a set of m − 1 inputs to
f . Then, there exists a deterministic k-player NIH commu-
nication protocol P ′ = P ′(M ′, i∗, ȳ−i∗) such that, on input
x:
• if i∗ ∈ BAD(M ′, v(i∗, x, ȳ−i∗)), then P ′ outputs

“fail”;
• otherwise, P ′ correctly simulates M ′ and outputs
M ′(v(i∗, x, ȳ−i∗));
• the cost of P ′ is O (k · r · log(k · r) · s).

V. THE CONSEQUENCES

Corollary I.2 (Restated). Let ε > 0 and δ < 1/2 be
constants. There exists a constant α = α(ε) > 0 such
that the following holds. Let m = m(n) := nα, let
k = k(n) := 2, and let N := 2 · m · n. Let Ψ∗2,m :=
{id, ψ∗m} for the permutation ψ∗m defined in Fact III.1. Let
F = FN := LiftMix

(
IP2,n,XORm,Ψ∗2,m

)
.

Every randomized SM that computes F with error δ
requires space s = ω

(
N1/4−ε) or two-way passes r =

ω
(
N1/4−ε).

Observe that, by Fact III.1, the function F ∈ LOGSPACE.
The proof of Corollary I.2 mainly consists of setting the

right parameters in order to apply Theorem I.1. The con-
clusion follows from the known communication complexity
lower bound R2(IP2,n) ≥ Ω (n) [17].

Corollary I.3 (Restated). Let ` > 4, ε ≥ 0 and δ < 1/2 be
constants. There exists a constant 0 < β < 1 such that any
randomized SM computing a (1 + ε) multiplicative approx-
imation of Freq` with error δ requires space s = ω

(
N ′β

)
or passes r = ω

(
N ′β

)
, where N ′ denotes the input size.

In order to prove Corollary I.3, we use one more
result, saying that an efficient SM A computing fre-
quency moments can be transformed into an efficient
SM B computing the permuted Set Intersection function
FN = LiftMix

(
pSetIntk,n,ORm,Φk,m

)
, for any permu-

tation family Φ = (Φk,m)m. Subsequently, we apply Theo-
rem I.1 to obtain an efficient NIH protocol for the promise
Set Intersection function for which we have the lower bound
Rk(pSetIntk,n) ≥ Ω (n/k) [9].

This following streaming reduction originates in [8],
where there are no permutations Φ to deal with. It was

rewritten in [4] to deal with the case of several external tapes,
where the permutations Φ are needed. The version in here is
a combination of the two: we need to deal with permutations,
and we also have to perform it “online”, because we have
no external tapes in this model. In order to deal with the
permutations Φ, we use non-uniformity.

Lemma V.1. Let ` > 1, ε ≥ 0 and 0 < δ <
1/2 be constants. Let n, k,m,N, s, r,Φ be as in Theo-
rem I.1. Set k = k(n) := Θ

(
(m · n)1/`

)
. Let FN :=

LiftMix
(
pSetIntk,n,ORm,Φk,m

)
.

Assume there exists a randomized SM A with space bound
s, pass bound r, and error δ, that computes a (1 + ε)
multiplicative approximation of Freq`. Then, there exists a
randomized nonuniform SM B = (BN) that computes FN
with space bound s′(N) = s(N) + O (logN), pass bound
r′(N) = r(N) + 2, and error δ.

VI. DISCUSSION

When considering logarithmic space Stack Machines, the
lower bounds that we prove on the number passes over the
input tape are only sublinear, and they become uninteresting
if directly translated into time lower bounds. However, we
believe it is interesting to interpret these results without
attempting to translate them into time lower bounds.

To see this, consider the class C of languages decidable
by logarithmic space Stack Machines with a single pass
over the input. On the one hand, Corollaries I.2 and I.3
give examples of functions unconditionally outside C. On
the other, it is not hard to see the following fact (we defer
its formal proof to the full version).

Fact VI.1. C contains all unary languages (tally sets) in P.

This fact highlights the power of the class C. By [3],
C contains languages outside NC, conditional on EXP 6=
PSPACE. In the full version of this paper, we show that C
contains languages outside POLYLOGSPACE, conditional
on E 6⊆ PSPACE.

Logarithmic space Stack Machines are closely connected
to combinatorial circuits. As such, we ask whether such ma-
chines restricted to a sublinear polynomial number of passes
characterize (even partially) a natural circuit family. We
point out that this family has the following properties: (i) the
circuits are of polynomial size; (ii) the family can compute
Parity and Majority; and (iii) the family can compute some
languages outside NC (again, assuming EXP 6= PSPACE).

ACKNOWLEDGEMENTS.

We would like to thank Siavosh Benabbas, Toni Pitassi
and Charlie Rackoff for helpful discussions.

REFERENCES

[1] S. A. Cook, “Characterizations of pushdown machines in
terms of time-bounded computers,” J. Assoc. Comput. Mach.,
vol. 18, pp. 4–18, 1971.

[2] A. Borodin, S. A. Cook, P. Dymond, L. Ruzzo, and
M. Tompa, “Two applications of inductive counting for com-
plementation problems,” SIAM J. Comput., vol. 18, 1989.

[3] E. W. Allender, “P-uniform circuit complexity,” J. Assoc.
Comput. Mach., vol. 36, no. 4, pp. 912–928, 1989.

[4] P. Beame and D.-T. Huynh-Ngoc, “On the value of multiple
read/write streams for approximating frequency moments,” in
FOCS. IEEE, 2008, pp. 499–508.

[5] W. L. Ruzzo, “Tree-size bounded alternation,” J. Comput.
Syst. Sci., vol. 21, no. 2, pp. 218–235, 1980.

[6] ——, “On uniform circuit complexity,” J. Comput. Syst. Sci.,
vol. 22, no. 3, pp. 365–383, 1981.

[7] H. Venkateswaran, “Properties that characterize LOGCFL,” J.
Comput. System Sci., vol. 43, no. 2, pp. 380–404, 1991.

[8] N. Alon, Y. Matias, and M. Szegedy, “The space complexity
of approximating the frequency moments,” J. Comput. Syst.
Sci., vol. 58, no. 1, pp. 137–147, 1999.

[9] A. Gronemeier, “Asymptotically optimal lower bounds on the
NIH-multi-party information complexity of the AND-function
and disjointness,” in STACS, 2009, pp. 505–516.

[10] J.-e. Chen and C.-K. Yap, “Reversal complexity,” SIAM J.
Comput., vol. 20, no. 4, pp. 622–638, 1991.

[11] L. Babai, N. Nisan, and M. Szegedy, “Multiparty protocols,
pseudorandom generators for logspace, and time-space trade-
offs,” J. Comput. Syst. Sci., vol. 45, no. 2, pp. 204–232, 1992.

[12] M. Grohe and N. Schweikardt, “Lower bounds for sorting
with few random accesses to external memory,” in PODS.
ACM, 2005, pp. 238–249.

[13] M. Grohe, A. Hernich, and N. Schweikardt, “Randomized
computations on large data sets: Tight lower bounds,” in
PODS. ACM, 2006, pp. 243–252.

[14] P. Beame, T. S. Jayram, and A. Rudra, “Lower bounds for
randomized read/write stream algorithms,” in STOC. ACM,
2007, pp. 689–698.

[15] M. Sipser, Introduction to the Theory of Computation. PWS
Publishing Company, 1997.

[16] A. Hernich and N. Schweikardt, “Reversal complexity revis-
ited,” Theor. Comput. Sci., vol. 401, no. 1-3, pp. 191–205,
2008.

[17] B. Chor and O. Goldreich, “Unbiased bits from sources of
weak randomness and probabilistic communication complex-
ity,” SIAM J. Comput., vol. 17, no. 2, pp. 230–261, Apr. 1988.

[18] E. Kushilevitz and N. Nisan, Communication complexity.
New York, NY, USA: Cambridge University Press, 1997.

