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ABSTRACT
This paper presents a method for automatically construct-
ing a large commonsense knowledge base, called WebChild1,
from Web contents. WebChild contains triples that connect
nouns with adjectives via fine-grained relations like hasShape,
hasTaste, evokesEmotion, etc. The arguments of these
assertions, nouns and adjectives, are disambiguated by mapping
them onto their proper WordNet senses. Our method is based
on semi-supervised Label Propagation over graphs of noisy can-
didate assertions. We automatically derive seeds from WordNet
and by pattern matching from Web text collections. The Label
Propagation algorithm provides us with domain sets and range
sets for 19 different relations, and with confidence-ranked asser-
tions between WordNet senses. Large-scale experiments demon-
strate the high accuracy (more than 80 percent) and coverage
(more than four million fine grained disambiguated assertions)
of WebChild.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; I.2.6
[Artificial Intelligence]: Learning

Keywords
Knowledge Bases; Commonsense Knowledge; Web Mining; La-
bel Propagation; Word Sense Disambiguation

1. INTRODUCTION
Motivation. Automatically constructed knowledge bases (KBs)
have recently proven to be great assets for Web search, recom-

1WebChild: datasets will be publicly available at http://
mpi-inf.mpg.de/yago-naga/webchild/
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mendations in social media, and text analytics. Prominent ex-
amples are the Google Knowledge Graph and the (small but ef-
fective) use of KBs in the IBM Watson project for deep ques-
tion answering [29, 18]. The largest publicly available KBs are
dbpedia.org, freebase.com and yago-knowledge.
org. The strength of these KBs is in taxonomic and factual
knowledge: entities in semantic classes and relationships be-
tween entities. However, they are fairly ignorant regarding com-
monsense knowledge: properties and statements that are easily
picked up by children, but are hard to acquire by a machine.

For example, all humans know that apples are round and car-
rots are orange and have a longish shape. Computers completely
lack this kind of commonsense knowledge, yet they would enor-
mously benefit from such an asset for various use-cases of grow-
ing relevance: language understanding for translation or summa-
rization, speech-based human-computer dialog, faceted search
and search query suggestions, sentiment analytics on social me-
dia, and more. This paper presents a methodology for automat-
ically extracting and cleaning commonsense properties from the
Web. The resulting KB is called WebChild.

State of the Art and its Limitations. Prior work on common-
sense knowledge includes the seminal projects Cyc [21] and
WordNet [12], the more recent work on ConceptNet [31], and
the work by [35] and [20]. Cyc has compiled complex asser-
tions such as every human has exactly one father and exactly
one mother, but did not aim to gather properties of things at
large scale. WordNet has manually organized nouns and adjec-
tives into lexical classes, with careful distinction between words
and word senses; however, nouns and adjectives are not con-
nected by any semantic relation, except the extremely sparse
attribute relation (with around 1,200 links). ConceptNet
is a huge collection of commonsense assertions, but the vast
majority are instances of generic relations like IsA, PartOf,
ConceptuallyRelatedTo, or DerivedFrom. The more
specific relations like adjectivePertainsTo or UsedFor
have only few instances. Tandon et al. [35] automatically com-
piled millions of triples of the form 〈 noun relation adjective 〉 by
mining n-gram corpora, but the relations are still fairly generic
such as HasA, HasProperty, or CapableOf. Lebani & Pi-
anta [20] proposed encoding additional lexical relations for com-
monsense knowledge into WordNet, but their approach is inher-
ently limited by relying on human input and also focuses on sim-
ple relations such as usedFor, partOf, etc.

None of these knowledge resources have refined proper-
ties like shape, size, taste, emotion, etc., and none have pro-
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duced large amounts of semantically disambiguated knowledge
that distinguishes the different meanings of ambiguous prop-
erties such as hot, which can refer to temperature, taste, or
emotion. For example, the KB by [35] would merely have
simple triples like 〈milk, hasProperty, hot〉, 〈chiliPepper,
hasProperty, hot〉, 〈dress, hasProperty, hot〉. Thus,
state-of-the-art commonsense KBs still have severe limitations:
i) sparseness on aspects that go beyond generic relations, ii) fo-
cus on crude relations, without distinguishing different semantic
properties, and iii) no distinction between words and their differ-
ent senses.

Our Approach. This paper presents WebChild, a large com-
monsense KB automatically built from Web sources by a novel
method relying on semi-supervised learning. WebChild contains
more than 4 million triples for fine-grained relations such as
hasTaste, hasShape, evokesEmotion, etc. We use a ju-
diciously designed form of label propagation (LP) (see [34] for
an intro) for learning the domain set, the range set, and the ex-
tension of such relations, at large scale. To this end, we first con-
struct graphs that connect nouns, adjectives, and WordNet senses
as nodes, by weighted edges. The edge-weights are derived from
sense relatedness, pattern statistics, and co-occurrence statistics.
We harness WordNet and Web data to obtain seeds to initialize
the LP graphs, and then use LP algorithms to derive high-quality
assertions for fine-grained relations between noun senses and ad-
jective senses.

Contributions. Our methodology has a number of salient char-
acteristics and results in a large commonsense KB with unique
qualities:

1 Fine-grained assertions: WebChild is the first common-
sense KB that provides refined hasProperty relationships
between nouns and adjectives into specific and thus more in-
formative relations. We support 19 different relations like
hasShape, hasSize, hasTaste, evokesEmotion,
etc.

2 Disambiguated arguments: The arguments of all assertions
in WebChild are disambiguated by mappings to WordNet
senses: noun senses for the left-hand arguments of a relation,
and adjective senses for the right-hand arguments.

3 Minimal supervision: Our method does not require any la-
beled assertions for training. Instead we use bootstrapping
based on Web patterns and WordNet. Our method copes well
with noisy input data.

2. MODEL AND METHODOLOGY

2.1 Goal and Notation
We aim to compile a large and clean set of fine-grained

commonsense properties, connecting noun senses with adjective
senses by a variety of relations. In contrast to prior work that
only dealt with a generic hasProperty relation, we use 19 dif-
ferent (sub-)relations like hasShape, hasSize, hasTaste,
hasAbility, evokesEmotion, etc. The list of relation
types is derived from WordNet. A noun that is the target of
WordNet’s attribute relation (e.g., shape, size) becomes a
relation in our knowledge base.

Our goal is to populate these relations with assertions in the
form of triples 〈ns, r, as〉 where ns is a noun sense in WordNet,
as is an adjective sense in WordNet, and r is one of the consid-

ered relations. Each relation r has a domain dom(r), the set of
noun senses that appear in r as left-hand arguments, and a range
rng(r), the set of adjective senses that appear in r as right-hand
arguments.

It is important to distinguish word senses from words that oc-
cur in surface text, because nouns and adjectives are often highly
ambiguous. For example, the adjective green is associated with
both plants in the botanical sense and power plants. WebChild
represents assertions for the different word senses in the follow-
ing form:
〈botanical-plant, hasColor, green-color〉
〈power-plant, hasQuality, green-environmental〉

where botanical-plant, power-plant, green-color,
and green-environmental are specific WordNet senses2

Throughout this paper, we carefully distinguish words from
their senses, and use different notation and fonts to make this
explicit. Surface words (or composite phrases) are written in
italics, whereas senses appear in typewriter font and typically
suffixed with either -ni for noun senses or -aj for adjective
senses. Here, i and j are WordNet sense numbers if a noun or
adjective has multiple senses (which is usually the case). For
example, chili is a noun and hot is an adjective (both are words),
whereas chili-n2 and hot-a9 are senses.

2.2 Sub-Tasks
We decompose the problem of finding assertions for fine-

grained commonsense relations into three sub-tasks.

1. Range Population: First, we compute adjective senses
that occur in the range of each of the WebChild relations.
For example, for the hasColor relation, we obtain a list
of color attributes including e.g. green-a1, the color
sense of green from WordNet, but not the environmental
sense of green. For the hasShape relation, we obtain a
list of possible shapes, e.g. circular-a2.

2. Domain Population: Our second task is to compute
noun senses for the domain of each relation. For ex-
ample, war-n1 for the evokesEmotion relation, and
pizza-n2 for the hasTaste relation.

3. Computing Assertions: Finally, we aim to map generic
word-level assertion candidates 〈noun, hasProperty,
adjective〉, gathered from Web corpora, into fine-
grained assertions about word senses. For example,
〈car, hasProperty, sweet〉 is mapped into 〈car-n1,
hasAppearance, sweet-a2〉.

2.3 Candidate Gathering
For all three sub-tasks we can start with a small number of

seeds obtained from WordNet, for example, by using the at-
tribute information that connects relational noun senses (e.g.,
shape-n1) with adjective senses (e.g., straight-a1 and
crooked-a1). This is very sparse data (e.g., there are only
2 adjective senses for the attribute shape). Our specific choice
of seeds depends on which of the three sub-tasks we are dealing
with. This will be discussed later in the respective sections.

To build a knowledge base of high coverage, we gather candi-
dates for assertions from the Web. For this purpose, we harness a

2WordNet shows these senses as plant (a living organism . . . ),
power plant (an electrical generating . . . ), green (of the color be-
tween blue and yellow . . . ), and green (concerned with . . . Green
Party).
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huge N-gram corpus: the Google Web 1T N-Gram Dataset Ver-
sion 1 [7], which consists of 1.2 billion 5-grams (i.e., 5 consecu-
tive words or other tokens) derived from the index of the Google
search engine. Each of these 5-grams comes with its frequency
of occurrences on the Web. Thus, we can use these frequencies
to simulate a full Web corpus. However, we also face the restric-
tion that N-grams are limited in length to 5.

To gather assertion candidates from this data, we employ
surface patterns whose matches return N-grams that contain a
noun and an adjective that are likely to be related, in a generic
hasProperty sense. Note that the resulting candidates are
still at the word level; there is no way of mapping them to senses
at this stage. We define generic templates for lexical patterns of
the form

“<noun> linking_verb [adverb] <adj>” or
“<adj> <noun>”.

Linking verbs are different forms of “to be”, “to become”, “to
smell”, “to taste”, etc.3 Our templates capture many variations
of assertions. Examples are

apple was really <adj>,
apple was <adj>,
<adj> apple.

Applying this family of patterns to the Google N-gram corpus re-
sults in 3.6 million noun-adjective pairs. Many of these are noise
(i.e., incorrect), and none of them is disambiguated onto senses
yet.

2.4 Semi-Supervised Inference on Graphs
The candidates obtained by the outlined procedure are usu-

ally very noisy, not yet disambiguated, and not yet assigned
to our fine-grained relations – they are just word pairs for the
generic hasProperty relation and are still ambiguous. To dis-
till the good pairs from the noisy pool and to map words onto
proper senses and noun-adjective sense pairs into specific rela-
tions, we use a semi-supervised classification method over judi-
ciously constructed graphs. To this end, we employ the method
of Label Propagation (LP) [37].

For each of the three sub-tasks towards building WebChild,
we construct a graph with words (or word pairs) and possible
word senses (or sense pairs) as nodes. A small number of nodes
encodes seeds, with known relation labels. Edges reflect the re-
latedness of nodes, with weights derived from Web statistics and
WordNet information. The specifics of the graph depend on the
sub-task that we are dealing with, and will be discussed in the
following sections.

LP computes scores for nodes having certain labels. In our set-
ting, these labels are used to distinguish different relation types.
For inference, we use the MAD (modified adsorption) algorithm
[34], which has shown good performance for graphs with high
numbers of incident edges per node. Our graphs have this prop-
erty because adjectives usually have many possible senses.

MAD propagates labels to neighboring nodes along the
graph’s edges; a high edge weight implies that the incident nodes
are likely to have the same label. Seed nodes are expected to
retain their original labels. Additionally, regularization is em-
ployed to minimize label changes within a neighborhood, which
is essential to avoid overfitting. To encode this intuition, the
MAD algorithm minimizes a loss function. Assume that the
graph is represented as a weighted adjacency matrix W and that

3see http://en.wikipedia.org/wiki/List_of_
English_copulae for a full list

the label vectors of the nodes are encoded into matrices Y for the
initial labeling and Ŷ for the final predicted labeling. (Y∗l) and
(Ŷ∗l) denote the lth column vector of the initial matrix Y and
the final label matrix Ŷ , respectively. Then the loss function is:

L(Ŷ ) =
∑
l

[
(Y∗l − Ŷ∗l)

TSl(Y∗l − Ŷ∗l)

+ µ2Ŷ
T
∗lLŶ∗l

+ µ3

∥∥∥Ŷ∗l −R∗l

∥∥∥
2

]
, (1)

The first term encodes that initial and final labels for seed nodes
should mostly be the same. This is enforced by the diagonal
matrix S having Svv = 0 for non-seed nodes, while for seed
nodes Svv is set to monotonically increase with the entropy of
a node’s transition probabilities (such that high degree nodes are
discounted). The second term encodes that neighbor nodes ob-
tain similar labels. This effect is realized by the unnormalized
graph Laplacian L of the weighted adjacency matrix W . The
third term contributes to the regularization of the estimated la-
bels, in order to avoid over-fitting to their seed labels. This is
enforced with an abandonment matrix R having a zero-valued
column vector corresponding to every label, except the dummy
label (the dummy label is an additional label that has a large
value if the node cannot be properly labeled). A pre-defined
weight is computed for the dummy label, in proportion to the
nodes’ degrees.

The MAD algorithm is a variant of the Jacobi method (also
used for PageRank, for example), an iterative process that uses
the current labels of nodes to update the label scores for neigh-
boring nodes. When this process converges or a specified num-
ber of iterations is reached, each vertex is associated with a vec-
tor indicating the estimated labels (including the dummy label).
The dummy label has a large value if the node cannot be properly
labeled. In our setting, we apply this procedure for each relation
separately, comparing the relation labels vs. the dummy label in
the resulting output. We accept the relation label only if its final
score is larger than that of the dummy label.

3. POPULATING RELATION RANGES
We now discuss how we are able to apply this same method-

ology to each of the three sub-tasks introduced in Section 2.2.
Our first sub-task addresses the problem of identifying possible
adjective senses for the range of each of the relations supported
by WebChild. For example, for hasTaste, we expect adjec-
tives like delicious, spicy, hot, sweet, etc., whereas these adjec-
tives do not make much sense for the hasShape relation. The
main difficulty that we face with this task is to move from the
word level to word senses. So actually, we aim to populate the
range of hasTastewith senses delicious-a2, spicy-a1,
hot-a9, sweet-a1, etc. Some of these surface words also ap-
pear with other relations; for example, hot may also denote a
property for the hasAppearance relation, however with dif-
ferent senses: hot-a10 and sweet-a4. The task is to carefully
discriminate the senses for the ranges of different relations (al-
though some overlap between relations may be possible).

We solve this problem in three steps:
1. Gathering candidates from N-grams and other sources.
2. Constructing a graph that encodes association strengths be-

tween adjectives and adjective senses by weighted edges.
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3. Inferring adjective senses for a relation’s range by semi-
supervised Label Propagation.

Candidate Gathering. We start with the raw candidates de-
rived by extraction patterns from the Google N-gram corpus,
as described in Section 2. For relation r, we filter the candi-
dates by checking for the presence of the word r, any of its syn-
onyms (e.g., shape, form, etc., or appearance, look, etc.), or any
linking verb that is derivationally related to r (e.g., “tastes” for
hasTaste). We apply these patterns also to WordNet glosses
(i.e., short descriptions of word senses), to collect further candi-
dates.

In addition, we apply the Hearst pattern “<r> such as <x>”
to the N-gram data, and collect the matches for x as possible
adjectives for relation r. Finally, we adopt the WebSets method
[9] to HTML tables in specific articles of the English Wikipedia.
The articles of choice are those whose article name corresponds
to relation r (or its synonyms). These were manually identified
for each relation r.

In total we collected around 40,000 adjectives for all relations
together.

Graph Construction. So far we have merely compiled a large
set of – mostly ambiguous – words that may populate the range
of a relation. We use these words as nodes in a graph, and extend
this node set by all possible adjective senses of these words. This
is a simple lookup in WordNet, without any disambiguation yet.
Definition [Range Population Graph (RPG)]:
The RPG of a relation r is a weighted undirected graph with
nodes VRPG and edges ERPG as follows:
• VRPG consists of all candidate adjectives for relation r, and

all their corresponding adjective senses.
• ERPG consists of three kinds of edges:

• edges between two words w1 and w2 if they share at least
one noun in their pattern occurrences;
• edges between two senses w1-ai and w2-aj if they are

related in the WordNet structure or have WordNet glosses
that suggest relatedness;
• edges between a word w and all its senses w-ai.

The left part of Figure 1 shows an example of an RPG.

Edge Weighting. To define meaningful edge weights, we utilize
statistics from the candidate gathering (see Section 2) and from
WordNet.

For weighting the edges among words, we harness the co-
occurrences of adjectives with nouns. We derive from the large
N-gram corpus two matrices O : noun × adjective and P :
noun × adjective where Oij is the number of occurrences of
the noun-adjective pair and Pij is the number of distinct extrac-
tion patterns that the noun-adjective pair occurs with. We nor-
malize both matrices to have values in [0, 1]. For O, we divide
all values by the maximum value. For P , we transform all values
using the sigmoid function f(x) = 1− 1

ex−1 . The rationale here
is to reward multiple patterns, but consider also the diminishing
returns of observing many patterns. Finally, we combine O and
P by the linear combination αOT ×O + (1− α)PT × P with
hyper-parameter α. The values of the resulting matrix are the
weights for edges between two adjectives of the RPG.

For edges between two senses u-ai and w-aj , we con-
sider their taxonomic relatedness within WordNet. If there is

a path between u-ai and w-aj using hypernym/hyponym,
derivationally_related, similar_to, also_see,
or antonym links in WordNet, then we use the Hirst measure of
semantic relatedness [17].

If no such path exists, we resort to the glosses of u-ai and
w-aj , expanded by glosses of their respective hyponyms and
hypernyms. We then compute the number of overlapping words
shared by these contexts. This is essentially the concept sim-
ilarity measure by [22]. All these measures are normalized to
fall between 0 and 1, and we use a down-weighting coefficient
for the gloss-based values, to ensure that path-related sense pairs
have higher edge weights.

For edges between words and senses, we would ideally like to
use the sense frequencies as a basis for edge weights. However,
such information is hardly available.4 We thus resort to the fol-
lowing statistics-based heuristics (adopted from [22, 25]). For
each word w, we take the corresponding column from matrix O
(i.e., the frequencies of co-occurring nouns) as a distributional-
semantics vector. For each possible sense w-ai, we compute
a context vector from its gloss and the glosses of neighboring
senses, giving us another noun distribution. The normalized
scalar product between the vector of w and the vector of w-ai

is the weight of the edge between the adjective and its possible
sense.

Label Propagation (LP). The final step is to run the MAD al-
gorithm for Label Propagation on the constructed graph – one
graph for each relation. We consider only two labels for each
graph: the relation of interest and the dummy label (encoding no
relation or other relation). We obtain seeds automatically by ob-
serving that the intersection of adjectives found in WordNet and
on the Web, i.e. in more than one source, are more likely to be
accurate. The sense of the WordNet adjective is considered for
this. 30% of the remaining seeds were used as held-out test data
to tune the parameters µ2 and µ3 of the MAD algorithm (see
Section 2.4). The MAD algorithm then infers which adjective
senses belong the range of the relation.

4. POPULATING RELATION DOMAINS
After populating the ranges of WebChild’s relations, we turn

to the relation domains. For each relation, such as hasTaste,
we aim to compute the noun senses that can appear as left-hand
arguments of the relation, for example, apple-n1, pizza-n1,
plant-n2, beef-n2, but not car-n1, cow-n2, or a different
sense of plant: plant-n1 (the industrial plant). Analogously
to the previous section, we solve this task in a three-step process:
gathering candidates, constructing a graph, and LP inference for
cleaning and disambiguation. We will see that we can harness
the knowledge that we already acquired about adjective senses
that appear in relation ranges.

Candidate Gathering. We use the coarse-grained generic
hasProperty noun-adjective pairs (n, a) gathered by the
method of Section 2.3. Given a pair (n, a), if the adjective a has
at least one sense that appears in the relation’s range computed
in Section 3, then the noun n becomes a domain candidate. For
example, given word pair (beef, salty) and having the knowledge
that salty occurs in the range of hasTaste, we infer that beef
is a noun candidate for hasTaste.

4WordNet provides senses frequencies only for a small set of
words, mostly nouns, and not nearly for all of their senses.
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Figure 1: Graph construction for range (left), domain (middle), and, assertions (right). Blue nodes are seeds. Crossed nodes
(right) denote assertion candidates pruned based on domain and range.

When n has only one sense in WordNet, we directly use
this noun sense. However, this situation is rare. A more typi-
cal candidate would be java, with co-occurrence pairs such as
(java,tasty), (java,easy), (java,hilly), etc. In such situations, to
move from words to senses at least in some of the cases, we
harness the glosses of adjectives in WordNet to derive semi-
disambiguated assertions where either the noun or the adjective
is mapped to a WordNet sense.

Gathering semi-disambiguated assertions: For each adjective
word in our candidate set, we find all noun-sense glosses where
the adjective occurs (as a surface word). Whenever a match-
ing noun sense gloss is found, the specific noun sense is used to
replace the ambiguous surface noun in the candidate pair. We
perform this analogously for nouns in adjective-sense glosses.
For instance, the gloss for sour-a2 reads “the taste experi-
ence when vinegar or lemon juice is taken . . . ”. We generate
two assertions from this: (vinegar, sour-a2) and (lemon juice,
sour-a2). Note that although this technique goes further than
the method for relation ranges, we still face a large amount of
noisy candidates. An adjective such as large has seven word
senses in WordNet, and we can obtain numerous noun-sense can-
didates whose glosses contain “large”.

Graph Construction. Next, we construct a graph for subsequent
Label Propagation similarly as in the method for range popula-
tion (Section 3).
Definition [Domain Population Graph (DPG)]:
The DPG for a relation r is a weighted undirected graph with
nodes VDPG and edges EDPG as follows:
• VDPG consists of all candidate nouns for r and their possible

noun senses from WordNet.
• EDPG edges and their weights are computed exactly as de-

scribed for RPGs (Section 3), with nouns taking the place
of adjectives. The only difference is that we use a differ-
ent sense similarity measure [19], because WordNet’s nouns
form a hierarchy and are thus very differently structured from
the adjectives.

The middle part of Figure 1 shows a DPG example.

Label Propagation (LP). Again, we run the MAD algorithm
for Label Propagation on the DPG for each relation. To gener-

ate seeds, we use hasProperty triples that have unambiguous
nouns and adjectives that have been assigned to only a single re-
lation r by the Range Population method. Some of these nouns
are genuinely unambiguous while others are unambiguous for
us because we have previously identified the correct sense us-
ing the WordNet gloss heuristics mentioned previously in semi-
disambiguated assertion gathering. In either case, the single
noun senses of such unambiguous nouns serve as seeds. The
parameters of the MAD algorithm were tuned as described pre-
viously using held-out data. The MAD output provides us with
scores for the noun senses of the ambiguous nouns. For the do-
main of relation r, we accept the noun senses whose score ex-
ceeds the dummy label score.

5. COMPUTING ASSERTIONS
Finally, we leverage the domain and range knowledge for

distilling the raw and ambiguous assertion candidates for the
generic hasProperty relation, gathered as explained in Sec-
tion 2, into word-sense pairs for fine-grained relations. Thus, we
need to disambiguate the left and right arguments of the candi-
date assertions and determine the respective relations. Again, we
build a graph representation for each relation r, and apply Label
Propagation on these graphs.

For a candidate assertion with an ambiguous noun and adjec-
tive, we would often generate a large set of nodes when each of
the two words has many different senses. To prevent the graph
size from becoming intractable, we harness the already acquired
knowledge about the domain and range of each r and consider
only those sense pairs that fall into the previously computed do-
main and range population, respectively. This yields an enor-
mous pruning effect, and makes the difference between a hope-
lessly intractable graph and a practically viable method.

Graph Construction. We construct a graph for subsequent La-
bel Propagation analogously to the method for range population
(Section 3). There are two differences from the previous graphs.
First, every node is a word pair instead of word. Second, there
is an additional candidate node pruning step based on domain

527



and range as described earlier. We capture these by constructing
graphs of the following form for each relation.
Definition [Assertion Graph (AG)]:
The AG of a relation r is a weighted undirected graph with nodes
VAG and edges EAG as follows:
• VAG consists of all word-level assertion candidates and all

sense-level pairs that are not pruned by testing against the
domain and range of r (see above).
• EAG consists of three kinds of edges:

• edges between two word-level assertions,
• edges between a word-level assertion and a sense-level

assertion, and
• edges between two sense-level assertions.

For an example, see the right side of Figure 1.

Edge Weighting. For all three types of edges, we compute edge
weights between two assertions 〈n1, r1, a1〉 and 〈n2, r2, a2〉 by
considering the similarity between n1 and n2 and the similarity
between a1 and a2. Here, n1 and n2 may be either nouns or
noun senses, and similarly a1 and a2 may be either adjectives or
adjective senses. In all cases, we use the multiplicative score

sim(n1, n2) · sim(a1, a2)

as the edge weight. For example, (car-n1, red-a1) is similar
to tuples like (car-n1, pink-a1), (vehicle-n1,red-a1),
(bus-n1, colorful-a1).

The individual noun-noun, noun-noun sense, and noun sense-
noun sense similarities (all denoted by sim(n1, n2) here) are
computed just as for the different types of edge weights ear-
lier in Section 4. Similarly, the adjective-adjective, adjective-
adjective sense, and adjective sense-adjective sense similarities
(all denoted by sim(a1, a2)) are computed just as for the Range
Population Graph’s edge weights, described earlier in Section 3.

Since there are O(|EAG|2) possible assertion edges, we use
top-k retrieval methods to efficiently aggregate scores from
multiple ranked lists and avoid computing similarities below a
threshold.

Label Propagation (LP). For seeds, we consider all assertions
where both the noun and the adjective are unambiguous, either
because they have only one sense each in WordNet or because
our domain- and range-based pruning left us with only one sense
pair for the two words. Again, 30 % of the remaining seeds are
used for tuning the parameters of the MAD algorithm. Based on
these seeds, MAD computes scores for candidate assertions. We
accept all assertions for r whose score exceed the dummy label
score.

6. EXPERIMENTS
Table 1 summarizes the size of the WebChild knowledge base:

the number of distinct senses and assertions, the number of in-
stances of noun and adjectives senses (where a noun or adjective
sense that occurs in k different relations counts k times), and the
precision estimated by extensive sampling (see below). Table 2
illustrates WebChild by anecdotal examples for range, domain,
and assertions. These are top-ranked results, based on a simple
scoring function that rewards many occurrences as well as oc-
currences with multiple distinct patterns.

#distinct #instances Precision

Noun senses 78,077 221,450 0.80
Adj. senses 5,588 7,783 0.90
Assertions 4,649,471 4,649,471 0.82

Table 1: WebChild statistics

We conducted extensive experiments to assess the viability of
our approach and the quality of the resulting commonsense re-
lations. Our experiments cover the three tasks addressed in this
paper: Subsection 6.1 reports on the quality of relation ranges,
Subsection 6.2 presents results on relation domains, and Subsec-
tion 6.3 discusses the quality of sense-disambiguated assertions.
For each task, we compare against various baseline competitors.

6.1 Relation Ranges

Baselines. Since there is no direct competitor (see related work
in Section 8), we designed several baselines as follows.

WordNet attributes: For some relations, WordNet provides the
range directly by its attribute relation (e.g., size contains
the adjective senses small-a1 and big-a1).

WordNet attributes expanded: We expanded the above data
by including related word senses using synonyms, antonyms,
similar_to, and derivationally_related links. We
then iterated this step once more to enlarge the set, but stopped
at this point to curb the inevitable topic drift.

WordNet glosses: WordNet provides a short gloss for each ad-
jective. If the gloss mentions a relation, we include the adjective
sense in the relation’s range. For example, the gloss of red-a1

mentions the word color.
Controlled LDA MFS: Hartung et al. [14] developed a method

for creating pseudo-documents per relation r (e.g. color) us-
ing nouns and adjectives that appear in the relation. An LDA
model estimates the probability P [a|d] for an adjective a given
a pseudo-document d, thereby approximating P [a|r] to P [a|d].
All adjectives above a threshold for this probability form the
range of the relation. We map these adjectives to their most fre-
quent sense (MFS) according to WordNet.

Google Sets MFS: This service, now part of the spread-
sheet processor of docs.google.com, expands sets of similar
words given a few seeds to start with. We use it to find, for each
relation, large candidate sets, using five WordNet adjectives as
seeds. The resulting adjectives are mapped to the most frequent
sense according to WordNet.

Results. We constructed a random sample of 30 adjectives for
each relation from the output of WebChild (a total of 570 sam-
ples). These were manually evaluated by three people. The
kappa value for inter-annotator agreement was 0.869. We like-
wise drew samples from the outputs of the baseline competitors
(or used the entire output when less than 30), and manually as-
sessed them, too. For statistical significance, we computed Wil-
son score intervals for α = 95% [8].

The results of this evaluation are shown in Table 3, report-
ing the macro-averaged precision and the total number of results
(coverage). WebChild stands out in this comparison: It discovers
far more (sense-mapped) adjectives than any other method, and
achieves a very good precision of 90%. WebChild’s coverage is
three times larger than that of the best prior method [14].
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relation range domain assertions

hasTaste sweet-a1 strawberry-n1 (chocolate-n1,creamy-a2)
hot-a9 chili-n1 (pizza-n1,delectable-a1)
sour-a2 salsa-n1 (salsa-n1,spicy-a2)
salty-a3 sushi-n1 (burger-n1,tasty-a1)
lemony-a1 java-n2 (biscuit-n2,sweet-a1)

hasShape triangular-a1 leaf-n1 (palace-n1,domed-a1)
meandering-a1 circle-n1 (table-n2,flat-a1)
crescent-a1 ring-n8 (jeans-n2,tapered-a1)
obtuse-a2 egg-n1 (tv-n2,flat-a1)
tapered-a1 face-n1 (lens-n1,spherical-a2)

Table 2: Anecdotal example results for hasTaste, and hasShape

Method Precision Coverage

WordNet attributes 1.00 40
WordNet attributes expanded 0.61 ± 0.03 5,145
WordNet glosses 0.70 ± 0.06 3,698
Controlled LDA [14] MFS 0.30 ± 0.06 2,775
Google Sets MFS 0.27 ± 0.04 426
WebChild 0.90 ± 0.03 7,783

Table 3: Results for range population

6.2 Relation Domains

Baselines. We compare WebChild against the following com-
petitors.

Extraction Unambiguous: [2] and [13] manually defined eight
patterns (e.g. “the <adj> of <noun> was”) to populate the domain
of a relation. We applied these patterns to the N-gram corpus and
to WordNet glosses. As this technique yields nouns rather than
noun senses, we consider only unambiguous nouns with a single
sense in WordNet.

Extraction MFS: For higher coverage, we considered all nouns
obtained by the previous method and mapped them to their most
frequent sense according to WordNet.

Controlled LDA MFS: Using the method of [14] (see base-
lines on range population) we collect nouns n with a probability
P [n|d] above a threshold. We map the nouns to their most fre-
quent senses in WordNet.

WordNet glosses: If a relation name (e.g. color) appears in the
WordNet gloss of a noun sense, we capture the noun sense as an
instance of the relation’s domain.

WebChild adj. projections: Our candidate gathering step ex-
tracted a large set of noun-adjective pairs from the Web. Since
WebChild already has mapped adjectives to specific relations’
ranges, a heuristic technique is to assign the co-occurring nouns
to the domains of the same relations. Since these nouns are not
yet disambiguated, we map them to the most frequent sense in
WordNet.

Google Sets: For domain population, this technique per-
formed very poorly due to heterogeneity of seeds; so we do not
show any results below.

Results. Table 4 shows the results of this comparison. Again,
WebChild stands out, especially by its high coverage. At the
same time, its precision of 83% is still fairly high. The method

based on WordNet glosses performed slightly better in terms of
precision, but yields an order of magnitude lower coverage.

Method Precision Coverage

Extraction Unambiguous 0.76 ± 0.06 6,190
Extraction MFS 0.75 ± 0.05 30,445
Controlled LDA [14] MFS 0.71 ± 0.06 9,632
WordNet glosses 0.86 ± 0.03 14,328
WebChild adj. projections 0.71 ± 0.03 175,480
WebChild 0.83 ± 0.03 221,450

Table 4: Results for domain population

6.3 Assertions
As for the main task on commonsense knowledge acquisition,

computing fine-grained assertions between noun senses and ad-
jective senses, we can compare WebChild’s performance directly
with the prior method Controlled LDA (C-LDA) of [14]. C-LDA
treats the task as a classification problem, with relations as the
classifier’s labels. We use the same data that the experiments
of [14] were based on. As C-LDA works at the word rather than
word-sense level, for the results of their system, a noun-adjective
pair is counted as correct if there is at least one sense pair for
which the relation label is meaningful. In contrast, we give Web-
Child the significant disadvantage of considering an assertion as
correct only if the senses are correctly chosen, too. Table 5 shows
the results of this experiment, demonstrating the clear superiority
of WebChild over the prior state of the art.

Baselines. For more comprehensive studies, on our Web-scale
candidates, we again designed a variety of baseline competitors.

Controlled LDA MFS: We use C-LDA [14] to map a
hasProperty candidate pair onto fine-grained relations.
Nouns and adjectives are mapped to their most frequent senses
in WordNet.

Vector Space MFS: This is analogous to the previous baseline,
except that we use the vector space model of [13] rather than
LDA.

Precision Recall

Controlled LDA [14] 0.33 0.23
WebChild 0.93 0.50

Table 5: Results for assertions on data of [14]
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Web Unambiguous Adjective: We consider only those noun-
adjective pairs where the adjective has a single sense. We use
WebChild’s range knowledge to map the adjective to one or more
relations. The noun is mapped to its most frequent sense in
WordNet.

WebChild Independence: For a given relation, we consider
all combinations of noun senses from the domain and adjective
senses from the range as assertions for the relation.

Results. Table 6 shows the results of the comparison. Web-
Child yields more than 4 million assertions at a good precision
of 80%. It outperforms all competitors by a large margin, with
ten times higher coverage and twice better precision than the
best of the prior methods [13]. Interestingly, even the relatively
crude WebChild Independence technique performs better than
the other baselines. However, its precision is far behind that of
the full WebChild method.

Method Precision Coverage

Controlled LDA MFS 0.35 ± 0.06 254,576
Vector Space MFS 0.40 ± 0.09 355,018
Web Unambiguous Adjective 0.54 ± 0.09 709,337
WebChild Independence 0.62 ± 0.06 3,399,312
WebChild 0.82 ± 0.03 4,709,149

Table 6: Results for assertions

Table 7 shows the results of WebChild, per relation.

relation precision coverage

ability 0.80 ± 0.10 90,288
appearance 0.95 ± 0.05 365,201
beauty 0.70 ± 0.15 95,838
color 0.70 ± 0.15 494,380
emotion 0.90 ± 0.09 79,630
feeling 0.91 ± 0.08 141,453
length 0.70 ± 0.15 90,021
motion 0.80 ± 0.10 146,148
smell 0.82 ± 0.10 25,347
quality 0.82 ± 0.10 793,484
sensitivity 0.70 ± 0.15 5,727
shape 0.80 ± 0.10 359,789
size 0.82 ± 0.10 910,901
sound 0.71 ± 0.15 130,952
state 0.88 ± 0.09 563,022
strength 0.82 ± 0.10 165,412
taste 0.70 ± 0.15 19,892
temperature 0.80 ± 0.13 27,399
weight 0.70 ± 0.15 144,587

overall 0.82 ± 0.03 4,709,149

Table 7: Quality of WebChild relations

7. USE-CASE: POPULATING CLASSES
As a use-case that demonstrates the application benefits of

WebChild, we studied the problem of populating semantic
classes, such as river, car, or singer. This problem is of-
ten addressed as a set-expansion task [36]: Given a small num-
ber of seeds, which are instances (or hyponyms) of the same
class, find as many additional instances as possible and rank

them into a high-precision list. For example, for seeds like Mis-
sissippi, Nile, and Ganges, we would like to collect other rivers
such as Danube, Rhine, Seine, Mekong, etc. A good baseline
to compare with is the Google Sets tool, which is part of the
docs.google.com service. Other methods like [9] may be
better, but they are also much more complex and need extensive
Web data not available to us.

Our method for class population is fairly simple; its main point
is the way it harnesses the WebChild knowledge. For a given
noun sense n corresponding to an instantiable semantic class,
we perform the following steps:
1. We select the m highest ranked adjective senses a1, . . . , am

that are connected with n by one or more of WebChild’s fine-
grained assertions. As these are senses, we can further ex-
pand them by their WordNet synonyms, thus constructing a
ranked list of adjectives a1, . . . , al (where usually l ≥ m),
now cast into simple words.

2. To avoid extensively used adjectives of unspecific or ambigu-
ous nature (e.g., great), we compute PMI scores between the
starting noun n and each of the adjectives ai (i = 1 . . . l):

PMI(n, ai) = log2
P [n ∧ ai]
P [n] P [ai]

We prune all adjectives from the ranked list whose PMI score
is below a specified threshold. From the remaining adjec-
tives, we take the top k words a1, . . . , ak (e.g., with k = 10).

3. Now we apply the linking-verb patterns that we introduced
in Section 2 to the Google N-gram corpus and extract noun
phrases from the matching N-grams. This yields frequencies
for (n,ai) co-occurrences. The noun phrases are the candi-
dates for populating the class denoted by n.

4. We rank the collected noun phrases p by aggregating over the
co-occurrence frequencies:

score(p) =

k∑
i=1

freq(p, ai)× weight(ai)

where weight(ai) is the score of the original ai for noun
sense n in WebChild (based on pattern-matching statistics,
see Section 3).

As a demonstration of the high quality that our method achieves,
we evaluate its precision@5, in comparison to the top-5 re-
sults from Google Sets. We did this for the following 10
test cases (5 common nouns and 5 proper nouns): river,
ice cream, mountain, chocolate, keyboard, nile
river, bangalore, tiger lily, parsley, florine.
We evaluate Google Sets with 1 seed (G-1) and 2 seeds (G-2)
against WebChild, which only takes the class noun as input (W-
1). G-1 runs into limitations, but G-2 performs reasonably well
even in this extreme situation. For example, with seed river as
input, G-1 gives as output boca, estudiantes, independiente, rac-
ing, san lorenzo; with the seed tiger lily as input, G-1 produces
no output. G-2, with the seeds river, river valley, gives as out-
put canyon, arizona, valley, colorado; with the seeds tiger lily,
panther lily as input, G-2 gives as output peacock iris, meadow
saffron, pancratium, peruvian lily, flag.

Table 8 shows the results. WebChild outperforms G-1 and G-
2 on common nouns. On proper nouns, G-2 outperforms Web-
Child, but WebChild performs as well as G-1. Tables 9 and 10
show the top-10 WebChild adjectives, and the top-5 set expan-
sions for the input chocolate and keyboard respectively.
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Approach Genre P@5

G-1 common noun 0.52
G-2 common noun 0.72
W-1 common noun 0.92
G-1 proper noun 0.52
G-2 proper noun 0.68
W-1 proper noun 0.52

Table 8: Results for set expansion

top-10 smooth, assorted, dark, fine,
adjectives delectable, black, decadent,

white, yummy, creamy

top-5 chocolate bar, chocolate cake,
expansions milk chocolate, chocolate chip,

chocolate fudge

Table 9: chocolate: top-10 adj, top-5 expansions

top-10 ergonomic, foldable, sensitive,
adjectives black, comfortable, compact,

lightweight, comfy, pro, waterproof

top-5 keyboard, usb keyboard,
expansions computer keyboard, qwerty keyboard,

optical mouse, touch screen

Table 10: keyboard: top-10 adj, top-5 expansions

8. RELATED WORK
Large-scale knowledge bases have received much attention in

recent years, most notable endeavors being Freebase [6], DB-
pedia [3], and Yago [33]. These and other projects along simi-
lar lines focus on facutal knowledge, and disregard the kind of
commonsense knowledge considered in this paper. Methods for
open information extraction have harnessed verbal phrases and
patterns derived from them [27], [10], [26]; however, their focus
is still on factual knowledge and does not deliver a hierarchy of
disambiguated commonsense properties.

The seminal Cyc project [21] aimed to manually compile com-
monsense knowledge, with emphasis on rules rather than prop-
erties. The publicly available version OpenCyc does not provide
any properties of the kind addressed here. The WordNet the-
saurus [12] contains a small amount of properties; we use these
as seeds for WebChild and we also compare the WebChild results
against using WordNet alone.

ConceptNet [23, 15, 31] is probably the largest repos-
itory of commonsense assertions about the world, cover-
ing relations such as hasProperty, usedFor, madeOf,
motivatedByGoal, etc. Ongoing projects on extend-
ing ConceptNet have made use of crowdsourcing [15, 30]
and pattern-based extraction from Web pages [35]. [1] and
[16] present games-with-a-purpose to acquire commonsense
facts. Approaches for extracting noun properties from text in-
clude pattern-based information extraction [2] and corpus co-
occurrence analysis [4]. However, this line of research stayed
at the level of a single generic hasProperty relation.

There is little prior work on methods for acquiring fine-
grained commonsense relations. [2] proposed patterns like (<ob-
ject> is a/the <attribute> of <subject>, e.g. brown is a color

of dogs) to find more specific properties, but even on the Web
this method yields only very low recall [4]. [13, 14] developed
classifiers for mapping assertion candidates into a small set of
8 fine-grained relations, using vector-space features as well as
LDA-based topic models. However, these methods assume that
the given assertions are already correct instances of at least the
generic hasProperty relation. So this work tackled the as-
sertion classification problem, not the problem of computing as-
sertions from raw data. [20] studied relations like hasSize,
hasShape, etc., assigning their instances to word senses. How-
ever, it solely relied on human elicitation for 50 nouns, and is not
suited for automation at large scale. Finally, [5] used WordNet
and ConceptNet to infer commonsense rules, e.g., edible objects
are likely to be found at a supermarket. This task is quite differ-
ent from acquiring commonsense properties.

Unlike most of the above works, our method yields sense-
disambiguated assertions for fine-grained relations. In contrast
to all prior work, our method is able to produce large-scale out-
put of high quality.

9. CONCLUSION
We presented WebChild, the first comprehensive common-

sense knowledge base with fine-grained relations about sense-
disambiguated nouns and adjectives. Our methodology com-
bines pattern-based candidate gathering from Web corpora with
semi-supervised Label Propagation over judiciously constructed
weighted graphs. Experiments demonstrate that this methodol-
ogy can achieve high precision with good coverage. WebChild
is publicly available as a resource for other researchers.

As for ongoing and future work, we are considering adding
value to WebChild by inferring further relationships among
word senses: antonyms in addition to those known already in
WordNet, and ordinal relations such as isLargerThan or
isDarkerThan (cf. [11]). When applied to image annota-
tions, this could possibly contribute to more semantic training
data for computer vision. We are also exploring applications of
WebChild. We believe that the rich knowledge of noun-adjective
relations is a valuable asset for sentiment mining [24] in general
and for analyzing feelings about images [28] in particular.
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