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Abstract

The standard approach to fair rent division assumes that
agents have quasi-linear utilities, and seeks allocations that
are envy free; it underlies an algorithm that is widely used
in practice. However, this approach does not take budget
constraints into account, and, therefore, may assign agents
to rooms they cannot afford. By contrast, we design a
polynomial-time algorithm that takes budget constraints as
part of its input; it determines whether there exist envy-free
allocations that satisfy the budget constraints, and, if so, com-
putes one that optimizes an additional criterion of justice. In
particular, this gives a polynomial-time implementation of the
budget-constrained maximin solution, where the maximiza-
tion objective is the minimum utility of any agent. We show
that, like its non-budget-constrained counterpart, this solution
is unique in terms of utilities (when it exists), and satisfies ad-
ditional desirable properties.

1 Introduction
A recent story in New Scientist1 nicely introduces a familiar
dilemma:

Every renter knows that not all rooms are created
equally. One bedroom might have an en-suite bathroom
and a view of the seaside, whereas another is half the
size and overlooks a dump. It’s only fair that the per-
son who gets the better room pays a larger share of the
rent. The question [...] is: how much?

The ubiquity and simplicity of the rent division problem
have made it a poster child for computational fair division.
Indeed, of the five applications on the not-for-profit fair divi-
sion website Spliddit.org (Goldman and Procaccia 2014),
the rent calculator is the most popular — almost 30,000 rent
division instances have been created by users since the web-
site’s launch in November 2014.

The standard rent division setup involves n agents, who
share an apartment with n rooms. Every agent has a value
for each room. An allocation matches the agents with rooms,
and assigns a price to each room, such that the prices add up
to the total rent. We make the standard assumption that the
utility functions of the agents are quasi-linear: the utility of

1https://www.newscientist.com/article/2137642-
maths-website-stops-you-being-ripped-off-by-your-
flatmates

an agent for getting a room he values at x for the price of y
is x − y. The goal is to find an allocation that is envy free:
the utility of each agent for his room at its price should be at
least as high as his utility for any other room, at the price of
that room.

It is well known that an envy-free allocation always ex-
ists (Svensson 1983), and one can be computed in polyno-
mial time (Aragones 1995). In fact, there is an embarrass-
ment of riches, as there are typically many envy-free allo-
cations, which necessitates selecting between them. A nat-
ural choice is the maximin solution of Alkan et al. (1991),
which selects the allocation that maximizes the minimum
utility of any agent, subject to the envy-freeness constraint.
A linear-programming-based algorithm of Gal et al. (2017)
can compute the maximin solution in polynomial time; this
algorithm has been deployed on Spliddit since May 2015.

One advantage of the foregoing approach (especially the
assumption of quasi-linear utilities) is that preference elic-
itation is straightforward: participants only need to report
their value for each room. It many ways, it does hit a sweet
spot between expressiveness and ease of elicitation. But it
certainly does not address the needs of some users, and its
most prominent shortcoming is ignoring budget constraints.
This is reflected in feedback from Spliddit users — the fol-
lowing representative example was submitted in December
2016:

I’ve tried to use your fair calculator, but it did not work
in my case. In our situation, I am the guy with the most
tight [sic] budget. Unfortunately, your system does not
take into account the ‘maximum’ budget restrictions. I
was assigned an option that was too expensive for me,
so it did not help. Please advise if there is a way to use
the system, taking that kind of limitation into account.

Unfortunately, when agents are budget-constrained, an
envy-free allocation is no longer guaranteed to exist. For ex-
ample, suppose there are two agents; a total rent of $1000;
two rooms where the first is valued at $800 by both agents,
and the second is valued at $200 by both agents; and bud-
get constraints of $600 for both agents. To avoid envy, the
desirable room must be priced at $800, but this is more than
either agent can pay.

Our goal in this paper, therefore, is to gain a rigorous un-
derstanding of the budget-constrained rent division problem.



In particular, we would like to be able to say (algorithmi-
cally) when the set of envy-free allocations is nonempty un-
der budget constraints, and, when it is, select among these
allocations in a principled way.

1.1 Our Results
In Section 3, we construct a polynomial-time (LP-based) al-
gorithm that computes an optimal allocation with respect
to a given (linear) criterion of justice, subject to the envy-
freeness constraints and the given budget constraints, when
a feasible allocation exists. This algorithm extends that of
Gal et al. (2017) to the budget-constrained setting, but, for
reasons that we explain in detail, its design and analysis are
significantly more involved.

The obvious next question is: What should we use as
the optimization objective? The foregoing algorithm can be
used to compute the budget-constrained maximin solution –
which maximizes the minimum utility of any agent subject
to envy-freeness and the budget constraints – when a feasible
solution exists. It can also compute the budget-constrained
version of the equitable solution (Gal et al. 2017), where
the objective is to minimize the maximum difference in util-
ities between any two agents. We show that the properties
that make the maximin solution attractive in the non-budget-
constrained setting extend to the budget constrained setting:
it is unique in terms of utilities, and it dominates the equi-
table solution, in the sense that any budget-constrained max-
imin solution is a budget-constrained equitable solution, but
not vice versa. Finally, we extend our algorithms in order
to compute, in polynomial time, an optimal allocation, sub-
ject to the envy-freeness constraint and the minimization of
the maximum budget violation among agents — this recom-
mendation exists for all possible instances.

1.2 Significance in AI
Work on computational fair division has been featured
prominently in recent AI conferences (Bliem, Bredereck,
and Niedermeier 2016; Kurokawa, Procaccia, and Wang
2016; Brânzei et al. 2016; Aziz et al. 2017; Bei, Qiao, and
Zhang 2017; Bouveret et al. 2017; Menon and Larson 2017;
Aleksandrov and Walsh 2017). The surge in excitement is
driven in part by a newfound understanding that, beyond po-
tential applications to multiagent systems, fair division al-
gorithms can play a role in helping groups of people make
decisions on a large scale. Our paper contributes to this line
of work in that it is driven by real-world needs, and provides
practicable solutions that are likely to be deployed.

2 The Model
We study the allocation of a set of n objects A of indivisible
goods, that we refer to as rooms, among a set of n agents
N ≡ {1, ..., n}. Generic rooms are denoted by letters such
as a, b. Each agent is to receive a room and pay an amount of
money for it. Agents have quasi-linear preferences on their
allotments, i.e., agent i’s utility from receiving room a and
paying pa for it is via − pa. The profile of agents values
is v ≡ (via)i∈N,a∈A. We assume that individual payments

should add up to a fixed amount that we refer to as the house
rent r. An economy is then a tuple e ≡ (N,A, v, r).

An allocation for e ≡ (N,A, v, r) is a pair (σ, p), where
the assignment σ : N → A is a bijection, and the vector
of prices p ≡ (pa)a∈A is such that

∑
a∈A pa = r. That is,

under the allocation (σ, p), agent i is assigned the room σ(i)
for the price pσ(i).

An allocation is envy free if no agent prefers the consump-
tion of any other agent at the allocation, i.e., for all i, j ∈ N ,

viσ(i) − pσ(i) ≥ viσ(j) − pσ(j).

The set of envy-free allocations for the economy e is F (e).
We assume that agents may be budget constrained. For

each i, there is bi ∈ R ∪ {+∞} which is the maximum
amount that the agent can pay for any room. The vector of
budget constraints is b ≡ (bi)i∈N . An allocation (σ, p) sat-
isfies budget constraints b if for each i ∈ N , pσ(i) ≤ bi. For
a vector of budget constraints b, the set of envy-free budget-
constrained allocations is Fb(e).

It is well known that for each e, F (e) is a non-empty
compact set. Moreover, one can calculate directly from an
agent’s utility function an upper bound for his consumptions
in each allocation in F (e). Thus, we can assume without loss
of generality that b ∈ Rn.

3 A Polynomial-Time Algorithm
For a given economy, e ≡ (N,A, v, r) and a vector of bud-
get constraints b, we are primarily interested in determining
whether Fb(e) 6= ∅. If so, we are interested in selecting an
element of Fb(e) that optimizes an additional criterion of
justice. The rest of the section is devoted to understanding
and proving the following theorem, which is our main re-
sult:

Theorem 1. Let e ≡ (N,A, v, r), b ≡ (bi)i∈N , and, for
s ∈ [t], where t is polynomial in n, let fs : Rn → R be a
linear function. Then there is a polynomial-time algorithm
that determines whether Fb(e) 6= ∅, and, if so, outputs an
allocation (σ, p) ∈ Fb(e) that maximizes

min
s∈[t]

fs
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
over all allocations in Fb(e).

Gal et al. (2017) pay special attention to two particular
optimization objectives: maximizing the minimum utility of
any agent, which is obtained by simply letting

fi
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
= viσ(i) − pσ(i)

for all i ∈ N ; and minimizing the social disparity — de-
fined as the maximum difference in utilities between any
two agents — which can also be easily captured using the
same formalism. We discuss the relation between these two
objectives in Section 4; for now we focus on the algorithmic
question.

Our starting point is a simple algorithm of Gal et
al. (2017), which achieves the equivalent result to Theo-
rem 1 without budget constraints, i.e., it finds the optimal
allocation in F (e) (which is always nonempty, under their



assumptions on valuations). However, we provide the req-
uisite background from a different viewpoint, in order to be
consistent with the subsequent presentation of our own al-
gorithm.

For e ≡ (N,A, v, r), an assignment σ is efficient if
it maximizes the sum of agents values, i.e.,

∑
i∈N viσ(i),

among all assignments. Basic LP theory shows that the dual
variables in the problem determining an efficient assignment
provide an envy-free allocation (Alkan, Demange, and Gale
1991, Duality Theorem). This implies that each efficient
assignment can be completed into an envy-free allocation.
Conversely, an assignment in an envy-free allocation is al-
ways efficient (Svensson 1983). Two additional facts solve
the puzzle. For any two allocations {(σ, p), (µ, q)} ⊆ F (e),
both (µ, p) and (σ, q) are also in F (e) (Svensson 2009).2
Moreover, each agent is indifferent between (σ, p) and (µ, p)
(this follows from Lemma 1 below). Thus, as observed by
Gal et al. (2017), it is sufficient to calculate an efficient as-
signment σ (which can be done in polynomial time by reduc-
ing the problem to maximum weight matching in a bipartite
graph), and then solving the following LP, which uses the
same notations as Theorem 1:

max
x,pσ(1),...,pσ(n)

x

s.t.
∑
i∈N

pσ(i) = r

∀s ∈ [t], x ≤ fs
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
∀i, j ∈ N, viσ(i) − pσ(i) ≥ viσ(j) − pσ(j)

To be clear, the second constraint guarantees that x is set
to the minimum of the given linear functions, and the third
ensures that the allocation (σ, p) is envy free.

It is tempting think that one can adapt the algorithm of
Gal et al. (2017) to our problem by simply adding the budget
constraints to the above LP:

max
x,pσ(1),...,pσ(n)

x

s.t.
∑
i∈N

pσ(i) = r

∀s ∈ [t], x ≤ fs
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
∀i, j ∈ N, viσ(i) − pσ(i) ≥ viσ(j) − pσ(j)
∀i ∈ N, pσ(i) ≤ bi

(1)
However, the basic premise behind their algorithm — that
one can start from any efficient assignment — is false in our
setting, as shown by the following example.

Example 1. Let N = {1, 2}, A = {a, b}, and r = 1. For
i = 1, 2, via=1 and vib=0. Moreover, b1 = 1 and b2 = 0.
The allocation that assigns room a to agent 1 for pa = 1,
and room b to agent 2 for pb = 0, is envy free and satisfies
the budget constraints. However, if we start from assigning
room a to agent 2, and room b to agent 1 — which is also
efficient — then there is no vector of prices that leads to an

2We provide a simple proof of this fact embedded in our proof
of Lemma 2.

envy-free allocation satisfying the budget constraints: Due
to the budget constraint of agent 2, we must have pσ(2) = 0,
even though he is now assigned the valuable room, so agent
1 must be envious.

Example 1 suggests that we need to develop a new al-
gorithmic approach in order to prove Theorem 1. We start
with several lemmas. The first (Lemma 1) is well known.
We present a proof of Lemma 3 for completeness. The rest
are new.
Lemma 1 (Alkan, Demange, and Gale 1991). Let
{(σ, p), (µ, q)} ⊆ F (e). Then σ and µ are both bijections
between the following sets:

{i ∈ N : viσ(i) − pσ(i) > viµ(i) − qµ(i)} and

{a ∈ A : pa < qa},
{i ∈ N : viσ(i) − pσ(i) = viµ(i) − qµ(i)} and

{a ∈ A : pa = qa},
{i ∈ N : viσ(i) − pσ(i) < viµ(i) − qµ(i)} and

{a ∈ A : pa > qa}.
Before proceeding, we introduce a concept that has played

a role in several previous papers. For each (σ, p) ∈ F (e)
define the weak envy graph by Γ(σ, p) ≡ (N,E), where
(i, j) ∈ E if and only if viσ(i)−pσ(i) = viσ(j)−pσ(j). That
is, it is the graph where the vertices are agents, and there is
an edge between i and j if i weakly envies j under (σ, p).
Note that i cannot strictly envy j because the allocation is
envy free.
Lemma 2. Let {(σ, p), (µ, q)} ⊆ F (e). for all i ∈ N, j =
σ−1(µ(i)), i and j are strongly connected in both Γ(σ, p)
and Γ(µ, p).

Proof. Since {(σ, p), (µ, q)} ⊆ F (e), (µ, p) ∈ F (e).3 By
Lemma 1 applied to (σ, p) and (µ, p), for each i ∈ N ,

viσ(i) − pσ(i) = viµ(i) − pµ(i),

i.e., (i, σ−1(µ(i))) is an edge of Γ(σ, p). Let ν = σ−1 ◦ µ,
then i→ ν(i) = j → ν2(i)→ · · · → i is a cycle in Γ(σ, p),
because ν is a permutation on N and can be decomposed
into cycles. Similarly, we have (ν(i), i) is an edge of Γ(µ, p)
for all i ∈ N , and hence i, ν(i) = j, ν2(i), ν3(i), . . . are also
strongly connected in Γ(µ, p).

Lemma 3 (Andersson, Ehlers, and Svensson 2014). The set
of strongly connected components of Γ(σ, p) is invariant for
each allocation in F (e).

Proof. Suppose that {(σ, p), (µ, q)} ⊆ F (e). Then, (σ, q) ∈
F (e) (Svensson 2009). Suppose without loss of generality
that 1, ...,K are the vertices of cycle {(1, 2), ..., (K, 1)} ⊆
Γ(σ, p). Since (σ, q) ∈ F (e), for each k = 1, ..,K, vkσ(k)−

3This was proved by Svensson (2009), and also follows from
the Second Welfare Theorem, as noted by Gal et al. (2017). The
following is a simple proof: Suppose that {(σ, p), (µ, q)} ⊆ F (e).
Since (µ, q) ∈ F (e), for each i ∈ N , viσ(i) − qσ(i) ≤ viµ(i) −
qµ(i). Adding up these n inequalities we find expressions that are
equal because both σ and µ are efficient. Thus, for each i ∈ N ,
viσ(i) − qσ(i) = viµ(i) − qµ(i), and it follows that (σ, q) ∈ F (e).



qσ(k) ≥ vkσ(k+1) − qσ(k+1) where K + 1 = 1. Adding
up these K inequalities we find expressions that are equal
because both σ and the assignment obtained by reshuffling
along the cycle are efficient. Thus, for each for each k =
1, ..,K, vkσ(k) − qσ(k) = vkσ(k+1) − qσ(k+1). It follows
that the set of strongly connected components of Γ(σ, p) is
contained in that of Γ(σ, q).

Let (i, j) be an edge of Γ(σ, q). Let k ∈ N be such that
µ(k) = σ(j), and, therefore,

viσ(i) + qσ(i) = viµ(k) + qµ(k).

By Lemma 1, and using {(µ, q), (σ, q)} ⊆ F (e),

viµ(i) + qµ(i) = viσ(i) + qσ(i).

Combining the two equalities, we get

viµ(i) + qµ(i) = viµ(k) + qµ(k),

that is, (i, k) is an edge of Γ(µ, q). Now, by Lemma 2, since
j = σ−1(µ(k)), j and k are strongly connected in Γ(µ, q).
We conclude that there is a path from i to j in Γ(µ, q).
Since this is true for every edge (i, j) of Γ(σ, q), the set of
strongly connected components of Γ(σ, q) is contained in
that of Γ(µ, q).

Lemma 3 allows us to define the set of strongly con-
nected components of the envy-free graph associated with
a triple (N,A, v) as Γ(σ, p) for some r ∈ R and (σ, p) ∈
F (N,A, v, r). Let C(N,A, v) be the partition of N into
strongly connected components of the envy-free graph in the
set of economies {(N,A, v, r) : r ∈ R}.

For technical reasons which will become clear momen-
tarily, we are especially interested in the class of economies
where all agents are strongly connected. The following
lemma states some useful properties of envy-free allocations
in these economies.
Lemma 4. Let N , A, v, and suppose that C(N,A, v) =
{N}. Then for all r ∈ R:

1. If {(σ, p), (µ, q)} ⊆ F (N,A, v, r), then p = q.
2. Each agent is indifferent among all allocations in
F (N,A, v, r).

3. Let (σ, p) ∈ F (N,A, v, r). For any s ∈ R, (µ, q) ∈
F (N,A, v, s), and a ∈ A, qa = pa + (s− r)/n.

4. The rent of each room in any element of F (N,A, v, r) is
an increasing function of r.

Proof. We first prove Statement 1. Suppose (i, j) is an edge
of Γ(σ, p) and pσ(j) ≥ qσ(j). Then

viσ(i)−pσ(i) = viσ(j)−pσ(j) ≤ viσ(j)−qσ(j) ≤ viσ(i)−qσ(i),

where the first transition follows from the former assump-
tion, the second from the latter, and the third from (σ, q) ∈
F (N,A, v, r) (Svensson 2009). Thus, pσ(i) ≥ qσ(i). Thus,
if there is a path from i to j in Γ(σ, p) and pσ(j) ≥ qσ(j),
then pσ(i) ≥ qσ(i). Since

∑
a∈A pa =

∑
a∈A qa, there is

a ∈ A such that pa ≥ qa. Thus, using the assumption that
C(N,A, v) = {N}, for each a ∈ A, pa ≥ qa. We conclude
that p = q.

Statement 2 follows directly from 1 and Lemma 1. State-
ment 3 follows from Statement 1 and the observation that,
since preferences are quasi-linear, (µ, q) ∈ F (N,A, v, s),
where q is defined by qa = pa + (s − r)/n for all a ∈ A.
Statement 4 follows directly from Statement 3.

Observe that the envy-free graph could have been defined
by identifying vertices with rooms, not agents as we did.
Doing so would also produce a partition of the set of rooms
into strongly connected components that is common for all
envy-free allocations in an economy. There is a one-to-one
correspondence between the two approaches.
Lemma 5. Let e ≡ (N,A, v, r) and C ∈ C(N,A, v). Then,
for any two efficient assignments for e, σ and µ, σ(C) =
µ(C).

Proof. Let {(σ, p), (µ, q)} ⊆ F (e). Let i ∈ N and let
C ∈ C(N,A, v) be such that i ∈ C. Let j be such that
µ(j) = σ(i). Recall that (σ, q) ∈ F (e) (Svensson 2009). By
Lemma 2, since i = σ−1(µ(j)), i, j must be strongly con-
nected in Γ(σ, q). By Lemma 3, j ∈ C as well. We conclude
that σ(C) ⊆ µ(C).

The previous lemma implies that even though there can
be many efficient assignments in an economy, there is only
one efficient assignment of rooms among the strongly con-
nected components of the envy-free graph of the economy.
Given N , A, v, and C ∈ C(N,A, v), let A(C) be the set
of rooms received by agents in C at some envy-free alloca-
tion for e. Furthermore, let vC and bC be the restrictions of
the two vectors to C, and let δC ∈ R the maximum s ∈ R
for which FbC (C,A(C), vC , s) 6= ∅. Note that δC exists be-
cause utility functions are continuous.
Lemma 6. Let e ≡ (N,A, v, r) and a vector of budget con-
straints b. For each C ∈ C(N,A, v), let bC ≡ (bi)i∈C ,
vC ≡ (via)i∈C,a∈A(C), and suppose that (µC , pA(C)) ∈
FbC (C,A(C), vC , δC). Let µ be the allocation that for each
i ∈ N , µ(i) = µC(i) where C ∈ C(N,A, v) and i ∈ C.
Then, Fb(e) 6= ∅ if and only if LP (1) for assignment µ is
feasible.

Proof. Clearly Fb(e) 6= ∅ if LP (1) is feasible. In the
other direction, suppose that (σ, q) ∈ Fb(e). We claim that
(µ, q) ∈ Fb(e). We know that (µ, q) ∈ F (e) (Svensson
2009). To show that the budget constraints are satisfied, let
C ∈ C(N,A, v). Then

s ≡
∑
i∈C

qµ(i) =
∑
i∈C

qσ(i) ≤ δC ,

where the equality holds due to Lemma 5, and the inequality
holds because otherwise (σC , qA(C)) ∈ FbC (C, vC , s) with
s > δC . By Statement 4 in Lemma 4, for each i ∈ C, qµ(i) ≤
pµ(i) ≤ bi.

Thus, we can restrict the solution of our problem to
economies that are fully connected. Our first algorithm,
given as Algorithm 1, applies to such economies. The algo-
rithm uses a budget-aware type of weak envy graph, which
we denote by Γb(σ, p) = (N,E), where
E = {(i, j) : viσ(i)−pσ(i) = viσ(j)−pσ(i) and pσ(j) < bi}.



1: compute (σ, p) ∈ F (N,A, v, r) for some r ∈ R
2: let ∆ ∈ R such that

(σ, (pa −∆)a∈A) ∈ Fb(N,C, v, r − n∆)

and there is i ∈ N such that pσ(i) = bi
3: p← (pσ(i) −∆)i∈N
4: r ← r − n∆
5: while @i ∈ N s.t. pσ(i) = bi and i is not a vertex of a

cycle of Γb(σ, p) do
6: if @i ∈ N s.t. pσ(i) = bi then {Case 1}
7: ∆← mini∈N (bi − pσ(i))
8: p← (pa + ∆)a∈A
9: r ← r + n∆

10: else {Case 2}
11: find i ∈ N s.t. pσ(i) = bi and i is a vertex of a

cycle C of Γb(σ, p)
12: σ ← reshuffle of σ along C
13: end if
14: end while
15: return r and (σ, p)

Algorithm 1: Maximum-rent envy-free allocation in a fully
connected economy.

Lemma 7. For each N , A, v such that C(N,A, v) =
{N}, and b ≡ (bi)i∈N , Algorithm 1 terminates in poly-
nomial time. If r and (σ, p) are the output of Algorithm 1,
(σ, p) ∈ Fb(N,A, v, r), and δN = r, i.e., for each s > r,
Fb(N,A, v, s) = ∅.

Proof. We first prove that Algorithm 1 terminates in poly-
nomial time. The initial computation of (σ, p) in Line 1 can
be done, e.g., using the algorithm of Gal et al. (2017). Case
2 (Line 10) is repeated at most n times before the algorithm
either terminates or Case 1 (Line 6) holds. Case 1 holds at
most n2 times, because here an agent meets his budget con-
straint for a certain room, and the prices of rooms strictly
increase each time Case 1 holds.

We now turn to the claims about the output of the algo-
rithm; suppose r and (σ, p) are that output. By construction,
(σ, p) ∈ Fb(N,A, v, r), as this holds before the while loop,
and every subsequent operation maintains envy-freeness and
budget feasibility.

Next, we claim that for each s > r, Fb(N,A, v, s) = ∅.
Suppose for the sake of contradiction that there is s > r and
(µ, q) ∈ Fb(N,A, v, s). Let ∆ ≡ (s − r)/n. By Statement
3 of Lemma 4, for each a ∈ A, qa = pa + ∆. Recall that
(µ, p) ∈ F (N,A, v, r) (Svensson 2009). Similarly to the
proof of Lemma 2, by Lemma 1, we have that for all i ∈ N ,

viσ(i) − pσ(i) = viµ(i) − pµ(i).

Along with
pµ(i) = qµ(i) −∆ < bi,

it follows that (i, σ−1(µ(i))) must be an edge of Γb(σ, p)
for any i. Let ν = σ−1 · µ, then for all i ∈ N , i → ν(i) →
ν2(i) → · · · → i is a cycle of Γb(σ, p). Also notice that
the while loop only terminates when there is i ∈ N such

that pσ(i) = bi. Therefore, agent i satisfies the conditions of
Case 2, and the algorithm should not have terminated.

We are finally ready to present our main algorithm, given
as Algorithm 2, and its analysis, which completes the proof
of Theorem 1.

1: compute (σ, p) ∈ F (N,A, v, r)
2: C ← strongly connected components of Γ(σ, p)
3: for each C ∈ C do
4: (µC , pC)← output of Algorithm 1 on C, A(C), vC ,

and bC
5: end for
6: let µ : N → A s.t. for all i ∈ N , µ(i) = µC(i) for
C ∈ C s.t. i ∈ C

7: if LP (1) for µ is feasible then
8: p← solution of LP (1) for µ
9: return (µ, p)

10: else
11: return “no solution”
12: end if
Algorithm 2: Optimal envy-free allocation subject to budget
constraints.

Proof of Theorem 1. We first claim that if the algorithm out-
puts “no solution” then Fb(e) = ∅. Indeed, by Lemma 7, the
rent r output by Algorithm 1 on component C is exactly the
δC in the statement of Lemma 6, hence the claim follows
from Lemma 6.

Next, suppose that the algorithm outputs (µ, p). Since this
allocation solves LP (1), (µ, p) ∈ Fb(e). Let (η, q) be a
maximizer of the minimum of f1, ..., ft applied to the vec-
tor of utilities among all allocations in Fb(e). Then as a
byproduct of Lemma 6, we have (µ, q) ∈ Fb(e), which
means that (µ, q) is an optimal solution to LP (1). Moreover,
by Lemma 1, all agents are indifferent between (µ, q) and
(η, q), so the objective value under (µ, p) must be at least
the objective value under (η, q).

4 Fairest Budget-Constrained Allocations
The algorithm of Section 3 provides a practical method for
selecting an allocation in Fb(e) maximizing an objective
function, when Fb(e) 6= ∅. Gal et al. (2017) have identified
the maximin solution, which maximizes the minimum util-
ity of any agent subject to envy-freeness, as an especially
desirable solution. Our goal in this section is to show that
this solution has similar properties even under budget con-
straints.

Formally, given an allocation (σ, p) ∈ F (N,A, v, r), let
U(σ, p) = min

i∈N
viσ(i) − pσ(i).

The budget-constrained maximin solution returns an alloca-
tion in argmax(σ,p)∈Fb(e) U(σ, p) when Fb(e) 6= ∅.

The following theorem asserts that agent utilities under
the budget-constrained maximin solution are unique, thus
eliminating the potential need to select among multiple so-
lutions; it extends a result of Alkan et al. (1991) to the bud-
geted setting.



Theorem 2. Let
{(σ, p), (µ, q)} ⊆ argmax

(σ′,p′)∈Fb(e)
U(σ′, p′).

Then for all i ∈ N , viσ(i) − pσ(i) = viµ(i) − qµ(i).

Proof. We first claim that it is sufficient to show that for ev-
ery {(σ, p), (σ, q)} ⊆ argmax(σ′,p′)∈Fb(e) U(σ′, p′), p = q,
i.e., we can assume the two assignments are identical. In-
deed, let (σ, p) and (µ, q) be budget-constrained maximin
solutions, and let (η, o) be the output of Algorithm 2. Then,
as a byproduct of Lemma 6, {(η, p), (η, q)} ⊆ Fb(e). By
Lemma 1, all agents are indifferent between (σ, p) and
(η, p), and between (µ, q) and (η, q), that is,

{(η, p), (η, q)} ⊆ argmax
(σ′,p′)∈Fb(e)

U(σ′, p′).

Now, suppose for contradiction that there exist
{(σ, p), (σ, q)} ⊆ argmax

(σ′,p′)∈Fb(e)
U(σ′, p′)

such that p 6= q. Consider the price vector o such that ∀a ∈
A, oa = max{pa, qa}. Although

∑
i∈N oσ(i) > r, o clearly

satisfies the budget constraints, i.e., for all i ∈ N , oσ(i) ≤ bi.
Moreover, (σ, o) is envy free, because for all i, j ∈ N ,

viσ(i) − oσ(i) = min{viσ(i) − pσ(i), viσ(i) − qσ(i)}
≥ min{viσ(j) − pσ(j), viσ(j) − qσ(j)}
= viσ(j) − oσ(j).

Let s =
∑
i∈N oσ(i), and define a price vector o′ by o′a =

oa − (s− r)/n for all a ∈ A. Then∑
i∈N

o′σ(i) =
∑
i∈N

(
oσ(i) − (s− r)/n

)
= s− s+ r = r.

In addition, (s − r)/n > 0, so (σ, o′) ∈ Fb(N,A, v, r).
Finally, since for all i ∈ N ,
viσ(i)− o′σ(i) > viσ(i)− oσ(i) = viσ(i)−max{pσ(i), qσ(i)},
it holds that

U(σ, o′) = min
i∈N

(viσ(i) − o′σ(i))

> min
i∈N

(viσ(i) −max{pσ(i), qσ(i)})

= min{U(σ, p), U(σ, q)}.
We conclude that that (σ, p) and (σ, q) are not budget-
constrained maximin solutions — a contradiction to our as-
sumption.

While the budget-constrained maximin solution is con-
ceptually appealing, previous work in behavioral eco-
nomics (Herreiner and Puppe 2009) has shown that social
disparity — the maximum difference in utilities between any
two agents — plays a major role in whether allocations are
perceived as fair. Formally, define
D(σ, p) = max

i∈N
(viσ(i) − pσ(i))−min

i∈N
(viσ(i) − pσ(i)).

The budget-constrained equitable solution returns an alloca-
tion in argmin(σ,p)∈Fb(e)D(σ, p) when Fb(e) 6= ∅. Surpris-
ingly, Gal et al. (2017) show that, without budget constraints,
any maximin solution is also an equitable solution. Here we
generalize their result to the budget-constrained setting.

Theorem 3. If (σ, p) is a budget-constrained maximin solu-
tion, then it is a budget-constrained equitable solution.

Proof. Let G = (N ∪ {0}, E) be a directed graph such that
there is a edge from i ∈ N to 0 if and only if viσ(i)−pσ(i) =
U(σ, p) or pσ(i) = bi; and there is a edge from i ∈ N to
j ∈ N if and only if viσ(i) − pσ(i) = viσ(j) − pj .

We first claim that for all i ∈ N , there is a path from i to
0. Indeed, assume for contradiction that this is not the case,
and let S be the set of all i ∈ N that have paths to 0 in G.
Since S 6= ∅ and N − S 6= ∅, we can define another price
vector p′ such that

p′σ(i) =

{
pσ(i) − ε i ∈ S
pσ(i) + |S|

n−|S|ε i /∈ S

where ε > 0. Clearly
∑
i∈N p

′
σ(i) = r. Also, we can set ε

small enough to satisfy the following properties:

• ∀i /∈ S, viσ(i) − p′σ(i) > U(σ, p);

• ∀i /∈ S, p′σ(i) < bi;

• ∀i /∈ S,∀j ∈ S, viσ(i) − p′σ(i) > viσ(j) − p′σ(j). (This is
because no i /∈ S weakly envies j ∈ S in (σ, p), otherwise
i would have a path to 0.)

Therefore, (σ, p′) ∈ Fb(N,A, v, r). Moreover, since for all
i ∈ S,

viσ(i) − p′σ(i) > viσ(i) − pσ(i) ≥ U(σ, p),

U(σ, p′) > U(σ, p), which contradicts the assumption that
(σ, p) is a budget-constrained maximin solution.

Next, let (σ′, p′) be a budget-constrained equitable so-
lution. Using similar arguments to those at the beginning
of the proof of Theorem 2, we can assume without loss of
generality that σ′ = σ, that is, it is sufficient to show that
D(σ, p) ≤ D(σ, p′).

Let ε = U(σ, p) − U(σ, p′). Since (σ, p) is a budget-
constrained maximin solution, ε ≥ 0. We claim that for all
a ∈ A, p′a ≤ pa + ε. Indeed, consider a path i1 → i2 →
· · · → i` → 0 in G. Since such a path exists for all i1 ∈ N ,
it is sufficient to prove that p′σ(i1) ≤ pσ(i1) + ε.

We prove the claim by induction on the length of the path
`. First, when ` = 1, there are two cases for the edge from
i1 to 0: if pσ(i1) = bi1 , then p′σ(i1) ≤ bi1 ≤ pσ(i1) + ε; and
if vi1σ(i1) − pσ(i1) = U(σ, p),

p′σ(i1) ≤ vi1σ(i1) − U(σ, p′)

= vi1σ(i1) − U(σ, p) + ε

= pσ(i1) + ε.

When ` > 1, the induction assumptions gives us p′σ(i2) ≤
pσ(i2) + ε. Then

p′σ(i1) ≤ vi1σ(i1) − vi1σ(i2) + p′σ(i2)

≤ vi1σ(i1) − vi1σ(i2) + pσ(i2) + ε

= pσ(i1) + ε,



where the first transition holds because (σ, p′) is envy free,
and the last transition holds because (i1, i2) is an edge of G.

We can now conclude that

D(σ, p′) = max
i∈N
{viσ(i) − p′σ(i)} − U(σ, p′)

≥ max
i∈N
{viσ(i) − pσ(i) − ε} − U(σ, p) + ε

= D(σ, p).

5 Extensions
In order to apply our results in practice, one would ask
participants for both values and budget constraints, instead
of just values. Now, there are two options. The first is to
compute the budget-constrained maximin solution (Algo-
rithm 2), and if Fb(e) is empty, simply compute the (non-
budget-constrained) maximin solution, and let users know
that it is impossible to satisfy the budget constraints. The
second option is to inform the choice of an envy-free alloca-
tion with the budget constraints, even when these cannot be
satisfied. This suggest the following general approach.

For an allocation (σ, p) for e, define its budget violation
penalty as maxi∈N{0, pσ(i) − bi}. We first find the alloca-
tions that minimize the budget violation penalty among all
envy-free allocations for e. We then maximize a given cri-
terion of justice among these allocations. Note that select-
ing an element in Fb(e) that optimizes an objective func-
tion whenever Fb(e) 6= ∅ can be seen as an instance of this
two-step approach. And it turns out that the more general
approach is still implementable in polynomial time.
Theorem 4. Let e ≡ (N,A, v, r), b ≡ (bi)i∈N , and, for
s ∈ [t], where t is polynomial in n, let fs : Rn → R be a
linear function. Then there is a polynomial-time algorithm
that outputs an allocation (σ, p) ∈ F (e) that maximizes

min
s∈[t]

fs
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
over all allocations in F (e) that minimize the budget viola-
tion penalty.

We present the proof of this theorem in Appendix A.
Specifically, we construct a polynomial-time algorithm (Al-
gorithm 3) that produces an allocation that minimizes the
budget violation penalty among all envy-free allocations. We
find that if this allocation violates the budget constraints,
it necessarily maximizes any additional criteria of justice
among all envy-free allocations that minimize the maximum
budget violation penalty (Lemma 12). If the allocation pro-
duced by Algorithm 3 satisfies the budget constraints, Algo-
rithm 2 produces the desired outcome.

Going a step further, using the ideas of Section 3 and some
additional machinery, we design, in Appendix B, a purely
combinatorial algorithm that transforms the allocation pro-
duced by Algorithm 3 into a budget-constrained maximin
solution in O(n3) time.

6 Discussion
The need for computational efficiency. From a computa-
tional complexity viewpoint, all of our algorithms are prac-

ticable. One may wonder, though, why computational com-
plexity is even an issue, given that typical rent division in-
stances are small (the vast majority of real-world instances
have up to 4 agents). The reason is that the number of in-
stances is relatively large. Spliddit, for example, employs
Amazon Web Services, so running its algorithms comes at
a cost. Informally speaking, if algorithm A is, say, twice
as computationally efficient as Algorithm B, then the cost
of solving tens of thousands of instances using algorithm A
would (ideally) be half that of Algorithm B.

An alternative approach (which does not work). In a
masterpiece of mathematical exposition, Su (1999) presents
an algorithm for envy-free rent division that relies on
Sperner’s Lemma; this Algorithm was actually implemented
in 2014 by the New York Times.4 The algorithm asks partic-
ipants a sequence of queries (“which room would you prefer
at these prices?”), until it converges to an (approximately)
envy-free allocation. Even though Su’s assumptions on util-
ity are relatively weak, his approach has several shortcom-
ings. First, preference elicitation is cumbersome, as it re-
quires repeated interaction with users, and, moreover, that
interaction may be lengthy as the rate of convergence can be
exponential in the tolerance for envy. Second, the approach
makes it impossible to select among envy-free allocations
(or, at least, it is unknown how to do so), and, therefore,
it may lead to envy-free allocations that are intuitively un-
fair. Even more importantly for the present paper, it seems
inherently impossible to adapt Su’s algorithm to the budget-
constrained case, as a participant must be able to choose a
room under every rent division, including those where the
prices of all rooms violate his budget constraints.

Incentives. A natural question is whether our algorithms
are manipulable, that is, whether an agent can benefit by
misrepresenting his preferences; the answer is “yes”, not
only for our algorithms, but for any algorithm that produces
an envy-free allocation for the utility reports (Alkan, De-
mange, and Gale 1991). However, as Gal et al. (2017) argue,
the incentive problem may be mitigated in practice by the
fact that participants are typically unaware of how the al-
gorithm works (apart from its fairness guarantees), which
makes strategic manipulation difficult.

But we can say even more. Velez (2015) shows that, in the
non-budget-constrained setting, each envy-free algorithm
has the remarkable property that the set of envy-free allo-
cations, for true utilities, coincides with the set of limit equi-
librium outcomes (Radner 1980) of their induced complete
information games. The budget-constrained setting creates
more opportunities for manipulation, as now agents report
their values for the rooms (as before) and, additionally, their
budget constraints. However, it is possible to show that the
result of Velez (2015) goes through, by extending his analy-
sis. Therefore, when agents know each other well and strate-
gically engage in manipulating the algorithm, we can still
expect to obtain an envy-free allocation.

4https://www.nytimes.com/2014/04/29/science/to-
divide-the-rent-start-with-a-triangle.html
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Appendix

A Minimizing the Max Budget Violation
In order to prove Theorem 4 we first modify Algorithm 2
to calculate an allocation at which the agents, in aggregate,
pay the maximal rent they could pay in an envy-free alloca-
tion while satisfying budget constraints. Then we prove two
key observations that essentially complete the proof. First,
a “horizontal” translation of this allocation minimizes the
maximal budget violation. Second, whenever no envy-free
allocation satisfies budget constraints, minimizing the max-
imal budget violation penalty selects a unique level of wel-
fare.

For e ≡ (N,A, v, r) let µv be the allocation computed in
Step 6 of Algorithm 2 (note that this allocation is invariant
to the value of r); for each p ∈ RA for which there is σ such
that (σ, p) ∈ F (e), let ΓC(p) be the graph (C(N,A, v), E)
where (C,D) ∈ E if and only if there is i ∈ C and j ∈
D such that (i, j) ∈ Γ(µv, p). One can easily check that
(C,D) ∈ ΓC(p) if and only if for each (σ, p) ∈ F (u), there
are i ∈ C and j ∈ D such that (i, j) ∈ Γ(σ, p).5

Lemma 8. Let (µ, p) and (σ, p) be two allocations in F (u),
and (C,D) ∈ ΓC(p) such that

∑
a∈µ(C) qa >

∑
a∈µ(C) pa.

Thus,
∑
a∈µ(D) qa >

∑
a∈µ(D) pa.

Proof. Since (C,D) ∈ ΓC(p) there are i ∈ C and j ∈ D
such that (i, j) ∈ Γ(µ, p). By Lemma 4,

∑
a∈µ(C) qa >∑

a∈µ(C) pa, implies qµ(i) > pµ(i). Thus,

ui(pµ(j), µ(j)) = ui(pµ(i), µ(i))

> ui(qσ(i), σ(i))

≥ ui(qµ(j), µ(j)),

where the strict inequality holds by Lemma 1, and the weak
inequality holds because (σ, p) ∈ F (u). Thus, qµ(j) >
pµ(j). By Lemma 4,

∑
a∈µ(D) qa >

∑
a∈µ(D) pa.

5Let (σ, p) and (µ, p) be two allocations in F (u), {C,D} ⊆ C,
i ∈ C, and j ∈ D such that ui(pσ(i), σ(i)) = ui(pσ(j), σ(j)). By
Lemma 5, k ≡ µ−1(σ(j)) ∈ D. By Lemma 1, ui(pσ(i), σ(i)) =
ui(pµ(i), µ(i)). Thus, ui(pµ(i), µ(i)) = ui(pµ(k), µ(k)).



Lemma 9. Let e ≡ (N,A, v, r), b ≡ (bi)i∈N , and C ≡
C(N,A, v). Suppose that (µv, p) ∈ Fb(e) is such that for
each C ∈ C there is D ∈ C such that there is a path from C
to D in ΓC(p) and

∑
a∈D pa = δD. Then, for each s > r,

Fb(N,A, v, s) = ∅.

Proof. Let s > r and (σ, q) ∈ F (N,A, v, s). Thus, there
is C ∈ C such that

∑
a∈C qa >

∑
a∈C pa. Let D ∈ C

be such that there is a path from C to D in ΓC(p) and∑
a∈D pa = δD. By Lemma 8,

∑
a∈D qa >

∑
a∈D pa.

Thus,
∑
a∈D qa > δD and (σ, q) 6∈ Fb(N,A, v, s).

The following is the basic step in our next algorithm.
Starting from an allocation (µv, p) ∈ Fb(N,A, v, r), we ex-
tract the maximal amount of money possible from the set of
agents who are not directly or indirectly budget constrained,
while preserving no-envy and budget constraints.6 More pre-
cisely, let the sets of agents L 6= ∅ and M 6= ∅ be a partition
of N . Let q(p, L,M) be the vector q ∈ RA defined in 1
below for the maximal ∆ for which 2-3 are satisfied.

1. For each i ∈ L, qµv(i) = pµv(i) + ∆; and for each i ∈M ,
qµv(i) = pµv(i).

2. For each i ∈ L and each j ∈M , viµ(i)−qµv(i) ≥ viµ(j)−
qµv(j).

3. For each i ∈ L, qµv(i) ≤ bµv(i).
The ∆ associated with q(p, L,M) can be directly computed
in O(n2) as the maximum satisfying conditions 2 and 3
above. By 2, (µv, q(p, L,M)) ∈ F (N,A, v, r − |L|∆). By
3, (µv, q(p, L,M)) ∈ Fb(N,A, v, r − |L|∆).
Lemma 10. Let N , A, v, and b ≡ (bi)i∈N . Then, Algo-
rithm 3 stops in polynomial time. Let r and (µv, p) be the
outcome of the algorithm. Then, (µv, p) ∈ Fb(N,A, v, r)
and for each s > r, Fb(N,A, v, s) = ∅.

Proof. The algorithm coincides with Algorithm 2 up to
Line 6. The set L decreases each time Line 13 holds. Thus,
Line 16 holds at most n times. Lines 12 and 17 can be com-
pleted each in O(n2). Since (σ, p) in Line 1 is envy-free,
(µv, p) defined in Line 8 belongs to F (N,A, v, r) where
r is defined in Line 9. By definition of ∆ in Line 7, for
each C ∈ C,

∑
a∈A(C) pa ≥ δC . Thus, (µv, p) defined

in Line 8 belongs to Fb(N,A, v, r) where r is defined in
Line 9. Since Line 17 preserves no-envy and budget con-
straints, r and (µv, p), the outcome of the algorithm, are such
that (µv, p) ∈ Fb(N,A, v, r). Since L = ∅ just before the
algorithm stops, the agents who belong to some C ∈ C such
that there is a path in ΓC(p) from C to some D ∈ C such
that

∑
a∈D pa = δD is N . By Lemma 9, for each s > r,

Fb(N,A, v, s) = ∅.

Lemma 11. LetN ,A, v, and b ≡ (bi)i∈N . Let r and (µv, p)
be the outcome of Algorithm 3. For each s ∈ R, let ps ≡
(pa + (s− r)/n)a∈A. Then,

(µv, ps) ∈ arg min
(σ,q)∈F (N,A,v,s)

max
i∈N
{0, qσ(i) − bi}.

6A similar balancing redistribution was proposed by Andersson
and Ehlers (2013) to calculate, in polynomial time, an agent opti-
mal envy-free allocation.

1: compute (σ, p) ∈ F (N,A, v, r) for some r ∈ R
2: C ← strongly connected components of Γ(σ, p)
3: for each C ∈ C do
4: δC and (µC , pC)← output of Algorithm 1 on C,

A(C), vC , and bC
5: end for
6: let µv : N → A s.t. for all i ∈ N , µv(i) = µC(i) for
C ∈ C s.t. i ∈ C

7: ∆← minC∈C(δC − pC)/|C|
8: p← (pa + ∆)a∈N
9: r ← r + n∆

10: L = N
11: while L 6= ∅ do
12: M ← set of agents who belong to some C ∈ C such

that there is a path in ΓC(p) from C to some D ∈ C
such that

∑
a∈D pa = δD

13: L← N \M
14: if L = ∅ then
15: return r and (µv, p)
16: else
17: p← q(p, L,M)
18: r ←

∑
a∈A pa

19: end if
20: end while

Algorithm 3: Maximum-rent envy-free allocation.

Proof. Since (µv, p) ∈ Fb(N,A, v, r), the result is obvious
for s < r. Since M = N before the algorithm stops, the
set of C ∈ C(N,A, v) such that

∑
i∈C pσ(i) = δC is non-

empty. Thus, there is i ∈ N such that pσ(i) = bi. Let s ≥ r.
Since for each i ∈ N , pσ(i) ≤ bi,

max
i∈N

max{0, psi − bi} =
s− r
n

.

Since (µv, p) ∈ F (N,A, v, r), we have that (µv, ps) ∈
F (N,A, v, s). Let (σ, q) ∈ F (N,A, v, s) and ∆ ≡
maxi∈N max{0, qσ(i) − bi}. Since (σ, (qa − ∆)a∈A) ∈
Fb(N,A, v, s), by Lemma 10, s − n∆ ≤ r. Thus, ∆ ≥
(s− r)/n.

Lemma 12. LetN ,A, v, and b ≡ (bi)i∈N . Let r and (µv, p)
be the outcome of Algorithm 3. For each s ∈ R, let ps ≡
(pa + (s− r)/n)a∈A. Then, for each s ≥ r, each

(σ, q) ∈ arg min
(σ,q)∈F (N,A,v,s)

max
i∈N
{0, qσ(i) − bi},

and each i ∈ N , viσ(i) − qσ(i) = viµv(i) − psµv(i).

Proof. Let (σ, q) ∈ F (N,A, v, s) in the statement of the
lemma. By Lemma 1 it is enough to prove that q = ps.
Suppose by contradiction that q 6= ps. Since both q and ps
add up to s, there is a ∈ A such that qa > psa. Let C ∈
C(N,A, v) be such that a ∈ A(C). By Lemma 4, for each
a ∈ A(C), qa > psa. Since M = N when Algorithm 3
terminates, there is a path in ΓC(p) from C to some D ∈ C
such that

∑
a∈A(D) pa = δD. Since for each a ∈ A(C),

qa > psa, by Lemma 8,
∑
a∈A(D) qa >

∑
a∈A(D) p

s
a. By

Lemma 4, for each a ∈ A(D), qa > psa. By definition of ps,



∑
a∈A(D) p

s
a = δD + |D|(s − r)/n. Thus,

∑
a∈A(D) qa −

|D|(s− r)/n > δD. From our proof of Lemma 11 we know
that,

min
(σ,q)∈F (N,A,v,s)

max
i∈N
{0, qσ(i) − bi} = (s− r)/n.

Thus, (σ, (qa − (s − r)/n)a∈A) ∈ Fb(N,A, v, r). Thus,
(σD, qA(D)) ∈ FbD (D,A(D), vD, t) for t > δD. This is
a contradiction.

1: r̂ and (µv, p)← outcome of Algorithm 3 on N , A, v
2: p← (pa + (r − r̂)/n)a∈A
3: if r < r̂ then
4: (µv, p)← outcome of Algorithm 2 on (N,A, v, r)
5: end if
6: return (µv, p)

Algorithm 4: Optimal envy-free allocation among minimiz-
ers of maximal budget violation.

Proof of Theorem 4. Each step in Algorithm 4 runs in poly-
nomial time. Let (µv, p) be its outcome on e ≡ (N,A, v, r).
If Line 4 does not hold, by Lemma 12 the subset of allo-
cations in F (e) that minimize the maximal budget viola-
tion penalty are all welfare equivalent. Thus, (µv, p) trivially
maximizes

min
s∈[t]

fs
(
v1σ(1) − pσ(1), . . . , vnσ(n) − pσ(n)

)
on this set. If Line 4 holds, the result follows from Theo-
rem 1.

B Maxmin envy-free allocations
When the additional criteria of justice is to maximize the
minimum utility among agents, Line 4 in Algorithm 4 can be
substituted with a combinatorial subroutine that dispenses
altogether of linear programming and runs in O(n3).

Lemma 13. Let e ≡ (N,A, v, r), b ≡ (bi)i∈N such that
Fb(e) 6= ∅, and C ≡ C(N,A, v). Suppose that (µv, p) ∈
Fb(e) is such that for each C ∈ C there is a path in ΓC(p)
from C to some D ∈ C such that either

∑
a∈D pa = δD or

there is i ∈ D with i ∈ arg mini∈N viµv(i) − pµv(i). Then,

(µv, p) ∈ arg max
(σ,q)∈Fb(e)

min
i∈N

viσ(i) − qσ(i).

Proof. Let (µv, p) ∈ Fb(e) satisfy the conditions in the
lemma. Suppose by contradiction that there is (σ, q) ∈
Fb(e) such that mini∈N viσ(i) − qσ(i) > mini∈N viµv(i) −
pµv(i). Let D be such that there is i ∈ D such that i ∈
arg mini∈N viµv(i) − pµv(i). Then,

min
i∈D

viµv(i) − pµv(i) < min
i∈D

viµv(i) − qµv(i).

By Lemma 4,
∑
a∈D pa >

∑
a∈D qa. Thus, there is H ∈ C

such that
∑
a∈H pa <

∑
a∈H qa. Let F ∈ C be such that

there is a path from H to F in ΓC(p) and either
∑
a∈F pa =

δF or there is i ∈ F with i ∈ arg mini∈N viµvD(i) − pµv(i).

1: L = N
2: while L 6= ∅ do
3: M ← the set of agents in a C ∈ C s.t. there is a path

in ΓC(p) from C to some D ∈ C
s.t. D ∩ arg mini∈N viµv(i) − pµv(i) 6= ∅

4: K ← the set of agents, not in M , and in a C ∈ C
s.t. there is a path in ΓC(p) from C to some
D ∈ C s.t.

∑
a∈D pa = δD

5: L← N \ (M ∪K)
6: if L = ∅ then
7: return (µv, p)
8: else
9: p← qm(p, L,K,M)

10: end if
11: end while
Algorithm 5: Optimal envy-free allocation subject to budget
constraints.

A standard argument (Velez 2017, Lemma 3) shows that∑
a∈F qa >

∑
a∈F pa = δF . Thus, either

min
i∈N

viσ(i)−qσ(i) ≤ min
i∈F

viσ(i)−qσ(i) ≤ min
i∈N

viµv(i)−pµv(i)

or (σ, q) 6∈ Fb(e). This is a contradiction.

Our basic step is, starting from an allocation (µv, p) ∈
Fb(N,A, v, r), to extract the maximal possible amount of
money from a set of agents who are not directly or in-
directly budget constrained, and give it to another set of
agents preserving no-envy and increasing the minimum util-
ity among all agents. More precisely, let the sets of agents
L 6= ∅, K, and M 6= ∅ be a partition of N such that
arg minj∈N vjµ(j) − pj ⊆ M . Let qm(p, L,K,M) be the
allocation q defined in 1 below for the maximal ∆ for which
2-4 are satisfied.

1. For each i ∈ L, qµv(i) = pµv(i) + ∆; for each i ∈ K,
qµv(i) = pµv(i); and for each i ∈ M , qµv(i) = pµv(i) −
∆|L|/|M |.

2. For each i ∈ L,
(a) for each j ∈ K∪M , viµv(i)−qµv(i) ≥ viµv(j)−qµv(j);
(b) viµv(i) − qµv(i) ≥ minj∈M vjµv(j) − qµv(j).

3. For each i ∈ K,
(a) for each each j ∈M , viµv(i)−qµv(i) ≥ viµv(j)−qµv(j).
(b) viµv(i) − qµv(i) ≥ minj∈M vjµv(j) − qµv(j).

4. For each i ∈ L, qµv(i) ≤ bi.
The ∆ associated with qm(p, L,K,M) can be directly com-
puted in O(n2) as the maximum satisfying conditions 2, 3,
and 4 above.7 By 2(a) and 3(a), (µv, qm(p, L,K,M)) ∈
F (N,A, v, r). By 4,

(µv, qm(p, L,K,M)) ∈ Fb(N,A, v, r). (2)

By 2(b) and 3(b),
arg minj∈N vjµv(j) − pµv(j) ⊆

arg minj∈N vjµv(j) − qm(p, L,K,M)µv(j).
(3)

7Note that conditions 2(b) and 3(b) can be written as viµv(i) −
pµv(i) ≥ minj∈M vjµv(j) − pµv(j) + ∆(1 + |L|/|M |).



If Line 4 in Algorithm 4 holds, the allocation (µv, p)
calculated in Line 2 is envy-free and satisfies budget con-
straints. Algorithm 5 transforms (µv, p) into a maximin
budget-constrained envy-free allocation.
Lemma 14. Let e ≡ (N,A, v, r), b ≡ (bi)i∈N , C ≡
C(N,A, v), (δC)C∈C , and (µv, p) ∈ Fb(e). Then, Algo-
rithm 5 runs in O(n3). Its outcome maximizes the minimum
utility among agents among all allocations in Fb(e).

Proof. By (3) the set M weakly increases every time Line 3
holds. Thus, the set L weakly decreases every time Line 5
holds. If the set L does not decrease when Line 5 holds,
then the set M increases. Thus, Line 2 holds O(n) times.
Since each step runs in O(n2), the algorithm runs in O(n3).
By (2), (µv, p) calculated in Line 9 belongs to Fb(e). Since
L = ∅, i.e., M ∪ K = N , when the algorithm terminates,
Lemma 13 guarantees its outcome maximizes the minimum
utility among agents among all allocations in Fb(e).


