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Controllability of ultracold atomic gases has reached an unprecedented level, allowing for experimental
realization of the long-sought-after Thouless pump, which can be interpreted as a dynamical quantum Hall
effect. On the other hand, Weyl semimetals and Weyl nodal-line semimetals with touching points and rings in
band structures have sparked tremendous interest in various fields in the past few years. Here, we show that
dynamical Weyl points and dynamical four-dimensional (4D) Weyl nodal rings, which are protected by the first
Chern number on a parameter surface formed by quasimomentum and time, emerge in a two-dimensional and
three-dimensional system, respectively. We find that these dynamical topological gapless phenomena lead to
a topological pump and the amount of pumped particles is not quantized and can be continuously tuned by
controlling experimental parameters over a wide range, in stark contrast with the Thouless pump with quantized
transport, which does not allow for such continuous tuning. We also propose an experimental scheme to realize
the dynamical Weyl points and dynamical 4D Weyl nodal rings and to observe their corresponding topological
pump in cold atomic gases.
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I. INTRODUCTION

Recently, topological gapless phenomena have seen a rapid
advance in three-dimensional (3D) condensed-matter sys-
tems ranging from solid-state materials [1–8] and cold atoms
[9–17] to optical and acoustic systems [18,19]. This is mainly
attributed to their powerful ability to simulate fundamental
physics [20–22]. For instance, Weyl fermions, which have
been long sought after in particle physics, have recently
been experimentally observed in condensed-matter systems
[23–27]. These fermions correspond to the gapless touching
points in the energy band with linear dispersion along all
directions. Because they are protected by the first Chern
number, they can also be viewed as the quantum Hall phase-
transition points in momentum space, leading to an anomalous
Hall effect [22]. Another celebrated example of a 3D gapless
phenomenon is the Weyl nodal ring [28–31], which has also
been experimentally observed recently [29]. Even though they
are topologically protected by the quantized Berry phase, the
anomalous Hall effect cannot occur in this system in the
absence of external magnetic fields.

On the other hand, Thouless predicted the quantized trans-
port of particles arising from a cyclic deformation of an under-
lying Hamiltonian without an applied bias voltage [32], which
has recently been observed in cold atom experiments [33,34],
thanks to rapid progress of cold atom technology. Such a
quantized transport can be interpreted as the dynamical quan-
tum Hall effect [34,35] on a surface formed by quasimomen-
tum and time. Given that the anomalous Hall effect occurs
in Weyl semimetals, a natural question to ask is whether
a dynamical Weyl point featuring a topological transport,
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which can be interpreted as a dynamical anomalous Hall
effect, exists in a two-dimensional (2D) material. Since Weyl
nodal semimetals in 3D do not support the anomalous Hall
effect, we do not expect the existence of a dynamical Weyl
nodal ring. However, in a 3D system, viewing time as a
parameter, one may wonder whether a new dynamical gapless
phenomenon featuring the topological transport appears.

In this paper, we demonstrate that the dynamical Weyl
points can be engineered in a 2D slowly periodically driven
system. Here, besides two quasimomenta, e.g., kx and ky , time
t may be regarded as an artificial parameter, taking the place
of another quasimomentum parameter kz. When the adiabatic
condition is fulfilled, the Weyl point can be characterized by
the Chern number defined on a closed surface in the space
(kx, ky, t ) enclosing the point. Alternatively, because of the
periodicity of the system, it ends up with the same state over
a cycle, implying that the system at time t is equivalent to
that at time t + T with T being the period, reminiscent of
the property of a Brillouin zone. Hence, the Chern number
can be defined on a torus (kx, t ) like in the momentum space.
In a 3D system, adding time as a parameter gives us a four-
dimensional (4D) system, and in the 4D space we propose
a new gapless ring named dynamical 4D Weyl nodal ring
protected by the first Chern number, which is different from
a Weyl nodal ring in the 3D space protected by a quantized
Berry phase [28,30,31].

Remarkably, we find that the dynamical Weyl points and
the dynamical 4D Weyl nodal rings give rise to a nonquantized
topological pump [as schematically illustrated in Fig. 1(a)]
and the number of pumped particles can be continuously
tuned by controlling the experimental parameters, similar to
the classical Archimedes screw that can be tuned by tilting
the screw, even though the physics underlying our system
is quantum mechanics and topology. Finally, we propose an
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FIG. 1. Schematic of 2D pumping and locations of dynamical
Weyl points and dynamical 4D Weyl nodal rings. (a) Sketch of
pumping particles in 2D by slowly varying parameters of a system
without a bias, where the average displacement of a cloud of atoms
over an entire cycle is denoted by x0. (b), (c) Distribution of the
Chern number defined in the (kx, ωt ) plane as a function of ky in
2D and cos(ky ) + cos(kz ) in 3D, respectively. The Chern number is
−1 in the light orange regions and 0 in other regions. The green
points in panels (b) and (c) represent the dynamical Weyl points
and dynamical 4D Weyl nodal rings [shown in the inset in panel
(c)], respectively; they separate the topological trivial and nontrivial
phases. In panel (b), λ = 1 and M0 = 2. In panel (c), λ = 1 and
M0 = 3.

experimental scheme to realize the dynamical Weyl points
and dynamical 4D Weyl nodal rings and to observe their
corresponding tunable topological pump in cold atomic gases.

II. MODEL HAMILTONIAN

Consider a toy model that is described by the following
time-dependent Hamiltonian in momentum space:

H (k, t ) = − sin (kx )σx + λ cos(ωt )σy

+ [M + cos(kx ) + λ sin(ωt )]σz, (1)

where kx is the quasimomentum in the x direction, σν with
ν = x, y, z are the Pauli matrices, and λ is a real parameter
(we take λ > 0 for simplicity). Here, M = M0 + cos(ky ) with
M0 being a real parameter in 2D and M = M0 + cos(ky ) +
cos(kz) in 3D, where ky and kz are the quasimomenta in the y

and z directions, respectively. The unit of energy and length is
taken to be 1. The Hamiltonian is time dependent and periodic
with H (k, t + T ) = H (k, t ) and T = 2π/ω.

Provided M = M0, this Hamiltonian is a typical model of
a Chern band [36] in the (kx, ky) space if ωt is replaced with
ky . Instead, we define the Chern number in (kx, t) space for
the nth instantaneous band as

Cn(M ) = 1

2π

∫ π

−π

dkx

∫ T

0
dt�n(kx, t ), (2)

where t takes the place of a quasimomentum, and the Berry
curvature [37] is �n(kx, t ) = −2Im(〈∂kx un(kx, t)|∂tun(kx, t)〉)

with |un(kx, t )〉 being the nth instantaneous eigenstate of
H (k, t ), i.e., H (k, t )|un(kx, t )〉 = En(kx, t )|un(kx, t )〉.

By straightforward calculation, we find C1 = 1 if −(1 +
λ) < M < −|1 − λ|, C1 = −1 if |1 − λ| < M < 1 + λ, and
zero otherwise. In 2D, the Chern number changes abruptly
with respect to ky , implying a transition between different
dynamical quantum Hall phases in the momentum space.
The transition point may therefore be called the dynami-
cal Weyl point. These points are located at [kW

x = 0, kW
y =

α arccos(−1 − M0 ∓ λ), ωt = ±π/2] with α = ±1 when
−2 ∓ λ < M0 < ∓λ, and at [kW

x = π, kW
y = α arccos(1 −

M0 ∓ λ), ωt = ±π/2] when ∓λ < M0 < 2 ∓ λ. For in-
stance, when λ = 1 and M0 = 2, with the second condition
being satisfied, there appear two gapless points located at
(kW

x = π, kW
y = ±π/2, ωt = 3π/2), as shown in Fig. 1(b).

These points correspond to the abrupt change of the Chern
number along ky , i.e., C1 = −1 when |ky | > π/2 and C1 = 0,
otherwise, as displayed in Fig. 1(b). Alternatively, one may
choose a closed surface enclosing the point and find its Chern
number equal to ±1.

In 3D, viewing t as a parameter, we have a 4D space char-
acterized by (k, t ). We find gapless rings lying in the (kW

x =
0, ωt = ±π/2) plane when −3 ∓ λ < M0 < 1 ∓ λ or in the
(kW

x = π, ωt = ±π/2) plane when −1 ∓ λ < M0 < 3 ∓ λ.
For example, when λ = 1 and M0 = 3, a single gapless ring
appears in the (ky, kz) plane corresponding to kx = π , ωt =
3π/2, and cos(ky ) + cos(kz) = −1, as illustrated in Fig. 1(c).
Compared to a Weyl nodal ring that is protected by the
quantized Berry phase [28,30,31], this ring is characterized by
the first Chern number over a 2D closed surface that encloses a
single gapless point on the ring. For instance, by fixing kz = π

for the ring shown in Fig. 1(c), we reduce the Hamiltonian
from the 4D space to a 3D one that is identical to the case
shown in Fig. 1(b) and hence choosing a 2D closed surface
to wrap up a single gapless point yields a quantized Chern
number. We dub the gapless ring a dynamical 4D Weyl nodal
ring. In Fig. 1(c), we also show that the ring corresponds to
the topological phase transition of dynamical quantum Hall
effects. Inside a ring for a fixed (ky, kz), the Chern number
over the (kx, ωt ) torus is −1; outside the ring, it is 0.

III. TOPOLOGICAL PUMP

With the dynamical Weyl points and dynamical 4D Weyl
nodal rings, we are now ready to study the topological pump
in these systems. The number of pumped particles per unit
length in 2D or per unit area in 3D is given by [37]

Np =
∑

n

∫ T

0
dt

∫
BZ

dk

(2π )d
〈ψn(k, t )|v̂x |ψn(k, t )〉, (3)

where v̂x = ∂kx
H (k, t ) is the velocity operator, d is the di-

mension of a system, and |ψn(k, t )〉 is the evolution of a state
initialized to the nth eigenstate of H (k, 0); the integral in
the momentum space is over a Brillouin zone and

∑
n is the

summation over the filled bands.
With the assumption of the adiabatic condition (i.e., ω is

sufficiently small), by time-dependent perturbation theory, the
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FIG. 2. Amount of pumped particles. Amount of pumped par-
ticles (a) per unit length in 2D and (b) per unit area in 3D with
respect to λ and M0. The results are obtained under the adiabatic
condition. Amount of pumped particles (c) per unit length in 2D and
(d) per unit area in 3D for λ = 1, which are numerically calculated
for ω = 0.001, 0.01, 0.1. The exact result corresponds to the case
with ω → 0. The inset in panel (c) plots the results for ω = 0.01 and
the dephasing rate γ = 0, 0.05, 0.1, 0.15 as the green, black, blue,
and red lines, respectively.

formula above can be reduced to

Np = −
∑

n

∫
BZ′

dk′

(2π )d−1
Cn(k′), (4)

where the integration is performed over the momentum space
except kx . In one dimension (1D), it corresponds to the cele-
brated result obtained by Thouless [32]. In higher dimensions,
the formula indicates that the amount of pumped particles is
dictated by the length in 2D (area in 3D) with corresponding
Chern numbers. As a consequence, the amount is not neces-
sarily quantized and its value can be tuned by changing the
length in 2D and area in 3D. In our toy model, it is determined
by M0 and λ. For example, in 2D, the amount depends on the
distance between two dynamical Weyl points along ky .

To demonstrate how the pump can be tuned, we plot the
amount of pumped particles per unit length in 2D and per
unit area in 3D over a cycle with respect to M0 and λ in
Fig. 2. In the ideal case with an infinitesimal ω, the amount
can be tuned from −1 to 1 in 2D and from −0.63 to 0.63
in 3D. It is symmetric and antisymmetric with respect to
λ = 0 and M0 = 0, respectively; the antisymmetry reflects
the flip of the charge of the dynamical Weyl points and
dynamical 4D Weyl nodal rings. Because of the presence of
these gapless points (or rings), one may wonder whether the
excitation near the gapless regions would compromise our
results. To check this, we perform the numerical calculation
of the amount of pumped particles by using distinct finite ω

for λ = 1, based on Eq. (3), where |ψn(k, t )〉 is calculated

by solving the Schrödinger equation supposing that the states
are initialized to the ground states of H (k, 0). The results are
plotted in Figs. 2(c) and 2(d), showing that the influence on
the transport over a cycle is very small in most parts except
in the vicinity of M0 = ±1, ±3, where Np = ±1, 0 in 2D,
and in almost the whole region in 3D, even when ω = 0.1.
The nonadiabaticity effects are directly related to the prob-
ability that particles are excited to the higher band near the
gap-closing region. Around these regions, the Hamiltonian is
approximated by H = − sin(kx )σx + [M ± 1 + cos(kx )]σz ∓
ωδtσy , where δt is measured with respect to t = ±π/(2ω).
According to the Landau–Zener formula, the total number
of excited particles into a higher band is given by Ne ≈∫ ∞

0 dED(E)P (E), where D(E) is the density of states and
P (E) = e−πE2/ω. In 2D, when M0 = 1 or M0 = 3, with E ≈
[δk2

x + (δk2
x ± δk2

y )2/4]1/2 near the gapless points, we can
qualitatively assume E ≈ (δk2

x + δk4
y/4)1/2 (which is fulfilled

when δky 	 δkx) and find D(E) ∝ √
E. Yet, in other regions,

E ≈ [δk2
x + sin(kW

y )2δk2
y]1/2 and D(E) ∝ E. Apparently, the

number of excited particles in the former case is larger than
that in the latter near zero energy because of higher density
of states, leading to the manifest nonadiabaticity effects. For
a dynamical 4D Weyl nodal ring in a 3D system, the nonadia-
baticity effects are also small since D(E) ∝ E.

IV. DEPHASING EFFECT

In a realistic cold atom experiment, a dephasing may ap-
pear naturally due to laser noise. To see whether the topolog-
ical pump is stable against dephasing, which randomizes the
coherent superposition of excited and ground states, we solve
a minimal pure-dephasing model described by the following
master equation in the Lindblad form [38]:

ρ̇k = −i[H (k, t ), ρk] + γ (σ̄z(t )ρkσ̄z(t ) − ρk ), (5)

where ρk is the density matrix, γ is the dephasing rate, σ̄z(t ) =
d(t ) · σ/d(t ) if the Hamiltonian is written as H = d(t ) · σ .
Here, we have adopted a simplest pure-dephasing model
where the Lindblad operator σ̄z(t ) is assumed to always com-
mute with the Hamiltonian H (k, t ). In the inset of Fig. 2(c),
we plot the amount of pumped particles per unit length over
a cycle in the 2D case as a function of M0 for λ = 1. The
transport is only slightly reduced for small dephasing rates in
most parts and this reduction increases with γ as dephasing
decreases the transported amount in each 1D insulator with
a fixed ky [39]. The reduction is especially manifest around
M0 = 1, where more particles near the gapless point are
excited to the higher band; these particles lose their coherence
by dephasing and lead to strong suppression of the transport.

V. EXPERIMENTAL REALIZATION

To realize the dynamical Weyl points and dynamical 4D
Weyl nodal rings and their corresponding tunable topological
pump, we consider the following continuous model:

HC = p2

2m
−

∑
ν

Vν cos2(kLνrν ) + hzσz + VNσy, (6)
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FIG. 3. Laser configurations. Sketch of laser configurations to
realize (a), (b) dynamical Weyl points and (c), (d) dynamical 4D
Weyl nodal rings. The laser beams denoted by the same color arrows
possess the same frequency. The laser beam denoted by the green
arrow is generated by applying an acoustic-optical modulator (AOM)
to the other laser beam. The double arrows describe the linear
polarization direction of laser beams. B is the magnetic field and δ

is the double photon detuning. In panel (c), the laser beams with the
light colors correspond to those with Rabi frequencies �̃n and �̃′

n

with n = 1, 2. In panel (d), the configuration of these lasers is the
same as those plotted and thus neglected for clarity.

where m is the mass of atoms, p = −ih̄∇ is the momentum
operator, hz is the Zeeman field, Vν > 0 with ν = x, y in 2D
(ν = x, y, z in 3D) denote the strength of optical lattices with
the lattice constants being aν = π/kLν , and VN = VSO + VZy

with VSO = �SO sin(kLxrx ) cos(kLyry ) and VZy =
−VZy0 cos(kLyry ) cos(kLxrx ) in 2D [VSO = �SO sin(kLxrx )
cos(kLyry ) cos(kLzrz) and VZy = −VZy0 cos(kLyry )
cos(kLxrx ) cos(kLzrz) in 3D]. This model gives us the
tight-binding Hamiltonian in momentum space (see Methods
for details)

H (k) = (hz + ht )σz − 2JSO sin(kxax )σx + hyσy, (7)

where ht = 2
∑

ν Jν cos(kνaν ) with ν being summed over x

and y in 2D (x, y, and z in 3D). By slowly driving the Hamil-
tonian according to hy = λ cos(ωt ) and hz = M0 + λ sin(ωt ),
we achieve the toy model in Eq. (1).

To engineer the continuous model in Eq. (6) in exper-
iments, we can apply the current experimental technology
that implements the 2D spin-orbit coupling in cold atomic
gases [40–42], where the spin is represented by two hyper-
fine states of alkali-metal atoms such as 40K [43,44] and
87Rb [40,41]. In Figs. 3(a) and 3(b), we plot a schematic
of a simple and feasible laser configuration scheme for real-
ization of the dynamical Weyl points exhibiting the tunable
topological pumping in a 2D system. Here, two independent
sets of linearly polarized Raman laser beams that couple two
states are applied to create the off-diagonal spin-dependent
optical lattices. These lasers have the Rabi frequencies

[�1 = �10 sin(kRrx ), �2 = −i�20 cos(kRry )], with kR being
the wave vector of the lasers, and [�′

1 = �′
10 cos(kRry ), �′

2 =
i�′

20 cos(kRrx )], respectively, yielding �SO = �∗
10�20/�e

and VZy0 = �′∗
10�

′
20/�e through Raman processes. In ad-

dition, due to the Stark effects, these laser beams gener-
ate the spin-independent optical lattices: −Vx cos2(kRrx ) and
−Vy cos2(kRry ) with Vx = (|�′

20|2 − |�10|2)/|�e| and Vy =
(|�20|2 + |�′

10|2)/|�e|. In an experiment, one may choose
40K atoms and use a red-detuned laser beam with wavelength
773 nm [43], yielding the recoil energy ER = h̄2k2

R/2m =
2π × 8.3 kHz. Taking |�20| = |�′

20| = 2π × 0.244 GHz and
|�10| = |�′

20|/3, we have Vx = 4.9ER , Jx = 0.08ER , and
hy = −0.72VZy0. To implement the pump, we should vary
hy and hz according to hy = 2Jx cos(ωt ) and hz = M0 +
2Jy sin(ωt ) by controlling the strength of the lasers and plug-
ging a π phase appropriately by an acoustic-optical modulator
(AOM), and by controlling the frequency of the lasers repre-
sented by the green arrows in Fig. 1 as hz = δ/2, respectively.
Note that, when hy = 2Jx , we have �′

10 = 0.045�20 and
hence Vy = 4.9ER (its slight change due to the variation of
�′

10 is negligible). For observation, one can measure the in
situ shift of a cloud of atoms [33,34,45,46] over a cycle,
which takes 75 ms if ω = 0.01, much shorter than the lifetime
(several seconds) of the achieved topological gases in the
experiment [41].

In the 3D case, we can apply two independent sets of
the setup proposed in Ref. [30] to realize a Weyl nodal
ring. Here, the scheme is optimized by using the lin-
early polarized laser beams as shown in Figs. 3(c) and
3(d). In the first set, two pairs of Raman processes are
utilized to generate the off-diagonal optical lattices. One
pair has the Rabi frequencies [�̄1 = �̄10 cos(kLyry )e−ikLzrz/2,
�̄2 = −i�̄20 sin(kLxrx )eikLzrz/2], and the other pair [�̄′

1 =
�̄10 cos(kLyry )eikLzrz/2, �̄′

2 = −i�̄20 sin(kLxrx )e−ikLzrz/2]. In
the second set, two pairs of Raman laser beams are employed
to engineer the other off-diagonal optical lattices. The Rabi
frequencies for one pair are [�̃1 = �̃10 cos(kLyry )e−ikLzrz/2,
�̃2 = i�̄10 cos(kLxrx )eikLzrz/2], while for the other pair [�̃′

1 =
�̃10 cos(kLyry )eikLzrz/2, �̃′

2 = i�̄10 cos(kLxrx )e−ikLzrz/2]. In an
experiment, by taking �̄10 = 2π × 0.14 GHz and �̄20 =
�̄10/4, we have Vx ≈ Vy ≈ 3.2ER . Another laser beam is
required to create an optical lattice along z with Vz =
3.2ER . Using the geometry of lasers with kLx = kLy = kLz =√

4/5kR , we have Jx = 0.07ER and hy = −0.57VZy0. Similar
to the 2D scenario, the dynamical 4D Weyl nodal ring with the
topological pumping can be implemented by tuning hy and hz

with a period of 86 ms if ω = 0.01.

VI. DISCUSSION AND CONCLUSION

Dynamical Weyl points and dynamical 4D Weyl nodal
rings may also be implemented in solid-state materials by
applying circularly polarized lights to 2D Dirac materials
or 3D nodal-line semimetals, respectively. It allows us to
engineer an effective time-independent Hamiltonian obtained
by removing the fast-oscillating terms, when the frequency of
the light is much larger than other energy scales; this method
has been proposed to generate Weyl points from Weyl nodal-
line semimetals [47]. Additionally, slowly varying the light in-
tensity allows us to control the Hamiltonian for observation of
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the topological pump. Despite the possibility, we have to say
that a very exquisite protocol is required to realize dynamical
Weyl points and dynamical Weyl nodal rings in solids.

Versatile controllability of cold atoms also manifest in
tuning the short-range interactions by Feshbach resonances,
which can be tuned to zero. For weak interactions, a mean-
field estimate suggests that the interaction may induce a σz

term [15], thereby shifting the locations of dynamical Weyl
points and dynamical 4D Weyl nodal lines and changing
the amount of pumped particles. For strong interactions, a
previous study suggests that a Weyl point may become Mott
gapped while preserving a gapless collective excitation [48].
Whether the value of pumped particles is strongly compro-
mised depends on the density of states around zero energy,
which deserves future exploration.

In summary, we have demonstrated the existence of a
dynamical Weyl point and dynamical 4D Weyl nodal ring
in 2D and 3D systems, respectively. We find that these sys-
tems give rise to the nonquantized topological pump and the
amount of transported particles can be tuned continuously by
controlling experimental parameters, in stark contrast with the
Thouless pump with quantized transport. We finally propose
an experimental scheme to realize the dynamical Weyl point
and dynamical 4D Weyl nodal ring and to observe their
corresponding tunable pump, which paves the way for their
future experimental observation. Our finding opens a field for
studying dynamical gapless phenomena; future direction may
include seeking other dynamical gapless phenomena, such as
dynamical Yang monopoles.
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APPENDIX: DERIVATION OF TIGHT-BINDING MODEL

To derive the tight-binding model, let us write down the
Hamiltonian in the second quantization language

HII =
∫

drψ̂†(r)HCψ̂ (r), (A1)

where ψ̂ (r) = [ψ̂↑(r), ψ̂↓(r)]T with ψ̂σ (r) [ψ̂†
σ (r)] being

an annihilation (creation) operator for spin σ (σ =↑,↓),
which satisfies the anticommutation or commutation relation
[ψ̂σ (r), ψ̂†

σ ′ (r′)]± = δσσ ′δ(r − r′) for fermionic atoms (+) or
bosonic atoms (−), respectively. The field operator can be
approximated by

ψ̂σ (r) ≈
∑
x,σ

Wxĉx,σ , (A2)

where Wx is the Wannier function for hz = VN = 0 located at
the site x = ∑

ν jνaνeν with ν = x, y in 2D (ν = x, y, z in
3D) for the lowest band, and ĉx,σ is the operator annihilating
a particle with spin σ at a site x.

Substituting Eq. (A2) into Eq. (A1) and keeping only
the nearest-neighbor hopping terms yields the tight-binding
Hamiltonian,

HTB =
∑

x

[
−

∑
ν

(Jνĉ
†
xĉx+aνeν

+ H.c.) + hzĉ
†
xσzĉx

]

+
∑

x

gx(−JSOĉ†xσyĉx+axex
+ H.c. + hyĉ

†
xσyĉx ),

(A3)

where ĉ
†
x = (ĉ†x,↑, ĉ

†
x,↓) and gx = (−1)jx+jy in 2D [gx =

(−1)jx+jy+jz in 3D]. For more details, we refer to
Refs. [15,30] for a derivation of the model and verification of
its validity. Using the transformation âx↑ = gxĉx↑ and âx↓ =
ĉx↓, we recast the model into the form

HTB =
∑

x

[(∑
ν

Jνâ
†
xσzâx + aνeν

+ iJSOâ†
xσxâx + axex

+ H.c.

)

+ hzâ
†
xσzâx + hyâ

†
xσyâx

]
. (A4)

This Hamiltonian can be written in momentum space as
HTB = ∑

k â
†
kH (k)âk, where H (k) is given in Eq. (7).
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