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ABSTRACT
We study the problem of learning from unlabeled samples
very general statistical mixture models on large finite sets.
Specifically, the model to be learned, ϑ, is a probability dis-
tribution over probability distributions p, where each such p
is a probability distribution over [n] = {1, 2, . . . , n}. When
we sample from ϑ, we do not observe p directly, but only
indirectly and in very noisy fashion, by sampling from [n]
repeatedly, independently K times from the distribution p.
The problem is to infer ϑ to high accuracy in transportation
(earthmover) distance.

We give the first efficient algorithms for learning this mix-
ture model without making any restricting assumptions on
the structure of the distribution ϑ. We bound the quality of
the solution as a function of the size of the samples K and
the number of samples used. Our model and results have
applications to a variety of unsupervised learning scenarios,
including learning topic models and collaborative filtering.
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1. INTRODUCTION
We study the problem of learning from unlabeled sam-

ples a statistical mixture model that is a combination of
distributions over a common large discrete domain [n] =
{1, 2, . . . , n}. This is a model that has applications to a va-
riety of unsupervised learning scenarios, including learning
topic models [26, 34] and collaborative filtering [27]. For in-
stance, in the setting of topic models, we are given a corpus
of documents, where each document is a“bag of words”(that
is, each document is an unordered multiset of words). The
words in a document reflect the topics that this document
relates to. The assumption is that there is a small number
of “pure” topics, where each topic is a distribution over the
underlying vocabulary of n words, and that each document
is some combination of topics. Specifically, a K-word docu-
ment is generated by selecting a “mixed” topic from a prob-
ability distribution over convex combinations of pure topics,
and then sampling K words from this mixed topic. A good
example is the so-called latent Dirichlet allocation model
of [10], where the distribution over topic-combinations is the
Dirichlet distribution.

The mixture model. In this paper, we consider arbitrary
such mixtures (of a more general form), and our goal is to
learn the mixture distribution, which could be discrete, i.e.,
have finite support, or continuous. More precisely, the mix-
ture distribution, ϑ, is a probability distribution over proba-
bility distributions on [n]. (Equivalently, ϑ is a distribution
over the (n− 1)-simplex ∆n = {x ∈ Rn+ | ‖x‖1 = 1}.) When
we draw a sample from ϑ, we obtain a distribution p ∈ ∆n.
However, we do not observe p directly, but only indirectly
and in very noisy fashion, by sampling K times indepen-
dently from p. Thus, our sample is a string of length K over
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the alphabet [n] where each letter is an iid sample from p.
We call such a sample a K-snapshot of p. (A k-snapshot
corresponds to a document of length K in the topic-model
example.) The problem is to learn ϑ with high accuracy.

Our mixture model is more general than that in the topic-
model learning example, in that we do not assume that ϑ
is supported on the convex hull of k distributions. It is
an example of a statistical mixture model, where the prob-
ability distribution from which the learning algorithm get-
s samples (the mixed topic generating a document, in our
topic-model example) is a mixture of other probability dis-
tributions (pure topics, in our example) that are called the
mixture constituents.

Our results. We give the first efficient algorithms for learn-
ing a mixture model without placing any restrictions on the
mixture. We bound the quality of the solution as a function
of the size of the samples; clearly, larger samples give bet-
ter results. A natural way to measure the accuracy of an

estimate ϑ̃ in our general mixture model is to consider the
transportation distance (aka earthmover distance) between

ϑ̃ and ϑ (see Section 2) where the underlying metric on dis-
tributions over [n] is the L1 (or total variation) distance.

Given a mixture ϑ supported on a k-dimensional subspace,

our algorithms return an estimate ϑ̃ that is ε-close to ϑ in
transportation distance, for any ε > 0, using K-snapshot
samples for K = K(ε, k) and sample size that is poly(n)
and a suitable function of k and ε. (Note that the intersec-
tion of a k-dimensional subspace with ∆n could have exp(k)
extreme points; so saying that ϑ lies in a k-dimensional sub-
space is substantially weaker than assuming that ϑ is sup-
ported on the convex hull of k points.) Our main result
(Theorem 5.3) is an efficient learning algorithm that uses

O(k4n3 logn/ε6) 1- and 2- snapshot samples, and (k/ε)O(k)

K-snapshot samples, where K = Ω̃(k11/ε10) = poly(k, 1/ε).
We also devise algorithms with different tradeoffs between
the sample size and the aperture, which is the maximum
number of snapshots used per sample point (i.e., document
size), for some special cases of the problem. This includes,
most notably, the case where ϑ is a k-spike mixture, i.e., is
supported on k points in ∆n (Theorem 6.1). This setting has
been considered previously (see below), but our algorithm is
cleaner and fits into our more general method; and more
importantly, our bounds do not depend on distribution-
dependent parameters (see the discussion below).

To put our bounds in perspective, first notice importantly
that we consider transportation distance with respect to the
L1-metric on distributions. This yields quite strong guaran-
tees on the quality of our reconstruction, however working
with the L1-metric (instead of L2) makes the reconstruction
task much harder, both in terms of technical difficulty (see
“Our techniques” below) and the sample-size required: the
L1 distance between two distributions can be much larg-
er than their L2 distance, so it is much more demanding
to bound the L1-error. In particular, this implies that the
sample size must depend on n: as noted in [36], with aper-
ture independent of n, a sample size of Ω(n) is necessary
to recover even the expectation of the mixture distribution
with constant L1-error. The sample size needs to depend
exponentially on the dimension k because one can have an
exp(k)-spike mixture ϑ (on ∆n) lying in a k-dimensional
subspace whose constituents are Ω(1) L1-distance apart; re-
covering an ε-close estimate now entails that we isolate the

locations of the spikes reasonably accurately, which necessi-
tates exp(k) sample size. Finally, the aperture must depend
on k and ε. The dependence on k is simply because our
learning task is at least as hard as learning k-spike mixtures
for which aperture 2k− 1 is necessary [36]. The dependence
on ε is because the lower bounds in [36] show that there
are two (even single-dimensional) `-spike mixtures, where
` = Θ(1/ε), with transportation distance Ω(ε) that yield
identical K-snapshot distributions for all K < 2`− 1.

A noteworthy feature of all our results is that our bounds
depend only on n, k, and ε. In contrast, all previous re-
sults for learning topic models (including those that con-
sider only k-spike mixtures) obtain bounds that depend on
distribution-dependent parameters such as some measure of
the separation between mixture constituents [34, 36], the
minimum weight placed on a mixture constituent, and/or
the eigenvalues (or singular values) of the covariance ma-
trix (e.g., bounds on σk, or L1-condition numbers, or the
robustly simplicial condition) [31, 6, 4, 5]. The distribution-
free nature of our bounds is clearly a desirable feature; if the
desired accuracy is cruder than the distribution-dependent
parameters, then fewer samples are needed.

Our techniques. The main result (Theorem 5.3) is derived
as follows. First, we use spectral methods to compute from
1- and 2-snapshot samples a basis B for a subspace Span(B)
of dimension at most k that nearly contains the support of
ϑ, and such that learning the projection ϑB of ϑ on Span(B)
suffices to learn ϑ (Section 4). We need to choose B careful-
ly so as to overcome various technical challenges that arise
because we work with transportation distance in the L1-
metric. Specifically, we need to move between the L1 and
L2 metrics at various points (the rotational invariance of the
L2-metric makes it easier to work with L2), and to avoid a√
n-factor distortion due to this movement, we need to es-

tablish that an L1-ball in Span(B) is close to being an L2-
ball in Span(B) (see Lemma 4.5). This allows one to argue
that: (a) ϑB is supported in an L2-ball of radius O

(
1√
n

)
,

which makes it feasible to learn it within L2-error ε√
n

(and

hence L1-error ε); and (b) projecting this reconstructed mix-
ture to ∆n preserves the L1-error (up to a poly

(
k, 1

ε

)
factor).

We remark that the standard SVD technique does not suf-
fice for our purpose, since the resulting subspace need not
satisfy the above “spherical” property of L1-balls (see also
the discussion in Section 4). Next, we define a projection of
the K-snapshot samples using B. We compute the estimate

ϑ̃B of ϑB by averaging the projections and transforming the
result to Span(B) (see Section 5). The proof relies on large
deviation bounds. One can show that ϑ is close to ϑB . The
output ϑ̃B converges to this projection as the number of
samples grows. The rate of convergence can be bounded
using tools from approximation theory.

The result for the special case of k-spike mixtures (i.e., ϑ
is supported on k distributions) uses a three-step approach
analogous to the argument in [36], but the implementation
of each step is different). The first step finds B as in the
general case. In the second step, the algorithm projects the
sample data onto the basis vectors in B. From this data, the
algorithm computes a good approximation to the projection
of ϑ onto each axis. The idea is to use linear programming to
compute a piecewise constant discretization of the projected
measure such that the first K moments are close to the em-
pirical moments derived from the samples of K-snapshots.
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The analysis uses a classical result in approximation theory
due to Jackson that estimates the error in approximating a
1-Lipschitz function on [0, 1] by the first K Chebyshev poly-
nomials. (In fact, this step, too, does not use the special
structure of the mixture. It works in the case of an arbi-
trary measure ϑ, and our error estimates are asymptotically
optimal in general.) In the third step, we use the approxi-
mate projected measures to compute a good approximation
for the projection of ϑ on Span(B), giving our algorithm’s
output. The main idea here is similar to that of the second
step. We discretize the projection and use a linear program
to compute a discretized measure whose projections onto the
axes used in the second step give a good match to the com-
puted approximations on those axes. The analysis of this
algorithm uses Yudin’s multidimensional generalization of
Jackson’s theorem [42]. Both the second step and the third
step use Kantorovich-Rubinstein duality to relate the results
from approximation theory to the approximation guarantees
in terms of the transportation distance.

Related work. Generally speaking, our problem is an ex-
ample of learning a mixture model. Unlike our case, other
mixture learning problems, such as learning a mixture of
Gaussians (see [18, 9, 32]), assume a special structure of the
distributions that contribute to the mixture. We discuss this
related literature below.

A few previous papers consider the problem of learning a
topic model [6, 3, 4, 36]. They all make limiting assump-
tions on the structure of the mixture model. The only paper
that considers an arbitrary distribution ϑ over combinations
of topics is [6]. However, this paper assumes that the pure
topics are ρ-separated, which means that each topic has an
anchor word that has probability at least ρ in this topic, and
probability 0 in any other topic. In the case of an arbitrary ϑ
(over such topics), the paper [6] learns the correlation matrix
for pairs of pure topics and not ϑ. In the special case of la-
tent Dirichlet allocation, the paper also reconstructs ϑ. The
latent Dirichlet allocation setting is also considered in [3].
For this special case, they relax the condition in [6] to the
requirement that the matrix whose columns are the word
distributions of the k pure topics has full rank k. The con-
straints on the model that are imposed in [6, 3] allow them
to achieve their learning goals using documents of constant
size that is independent of the number of pure topics k and
the desired accuracy ε. As we show in this paper, this is
impossible in the general case. The remaining two papers
mentioned above [4, 36] consider only the case where each
document is generated from a single pure topic, so ϑ is a
discrete distribution with support of size k. The first pa-
per [4] imposes on the pure topics the same rank condition
as in [3], and thus is able to learn the model from constant
size documents. The second paper [36] studies the gener-
al pure topic documents case and shows how to learn the
model from documents of size 2k − 1, which is a tight re-
quirement. Notice that in this case, the document size is
independent of the desired accuracy. Our results specialized
to this case are motivated by the techniques in [36]. They
give a simpler and cleaner proof that roughly matches the
results there (in particular, the mixture model is recovered
using K-snapshots for K = 2k − 1, which is optimal).

Learning statistical mixture models has been studied in
the theory community for about twenty years. The defining
problem of this area was the problem of learning a mixture

of high-dimensional Gaussians. Starting with the ground-
breaking result of [18], a sequence of improved results [19,
7, 40, 29, 1, 23, 12, 28, 9, 32] resolved the problem. Be-
yond Gaussians, various recent papers analyze learning oth-
er highly structured mixture models (e.g., mixtures of dis-
crete product distributions) [30, 25, 16, 8, 33, 17, 24, 29, 13,
15, 14, 20]. An important difference between this work and
ours is that the structure of the mixtures that they discuss
enables learning using samples that consist of a 1-snapshot
of a random mixture constituent (which is impossible in our
setting). Since Gaussians and other structured mixtures can
be learned from 1-snapshot samples, the issue of the sam-
ples themselves being generated from a combination of the
mixture constituents does not arise there. Our problem is
unique to learning from multi-snapshot samples.

2. PRELIMINARIES AND NOTATION
Let T : X → Y be a transformation from a normed space

X (with norm ‖·‖X) to a normed space Y (with norm ‖·‖Y ).
Let µ be a measure defined over X. We use µ◦T−1 to denote
the image measure (or pushforward measure) defined over
Y : µ ◦ T−1(U) = µ(T−1(U)) for all measurable U ⊂ Y . It
is a simple fact that (see e.g., [22]) that for any measurable
function f , ∫

Y

f d(µ ◦ T−1) =

∫
X

f ◦ T dµ. (1)

For ease of notation, we sometimes write Tµ to denote the
image measure µ◦T−1. For a vector v, we use ‖v‖ to denote
its L2 norm, and for an operator T , we use ‖T‖X→Y to
denote its operator norm (i.e., ‖T‖X→Y = sup{‖Tx‖Y | x ∈
X, ‖x‖X = 1}). For ease of notation, we use ‖T‖ to denote
the L2 → L2 operator norm of T .

Transportation Distance. Let (X, d) be a separable met-
ric space. Recall that for any two distributions P and Q on
S, the transportation distance Tran(P,Q) (also called Ru-
binstein distance, Wasserstein distance or earth mover dis-
tance in literature) is defined as

Tran(P,Q) := inf

{∫
d(x, y) dµ(x, y) : µ ∈M(P,Q)

}
(2)

where M(P,Q) is the set of all joint distributions (also called
coupling) onX×X with marginals P andQ. For the discrete
case (say X is a finite set of discrete points v1, . . . , vn), (2)
is in fact the following familiar transportation LP:

min
∑
i,j

d(vi, vj)xij s.t.
∑
j

xij = P ({vi}) ∀i ∈ [n],

∑
i

xij = Q({vj}) ∀i ∈ [n], xij ∈ [0, 1] ∀i, j ∈ [n].

Any feasible solution {xij}i,j to the above LP is in fact a
coupling of P and Q, since it can be interpreted as a join-
t distribution over X × X, and the constraints of the LP
dictate the first marginal of {xij} is P and the second is Q.

Suppose µ is a measure on some metric space (X, d). Let
T : X → X be an operator. T naturally defines a coupling
W between µ and the image measure Tµ: for any R ⊆ X ×
X, let W (R) = µ({x | (x, Tx) ∈ R}) (so for any measurable
S ⊆ X, W (S × T (S)) = µ(S)). For ease of description, for
such a coupling, we often say“we couple x with Tx together”.

Let 1-Lip be the set of 1-Lipschitz functions on X, i.e.,
1-Lip := {f : X → R | |f(x)− f(y)| ≤ d(x, y) for any x, y ∈
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X}. We need the following important theorem by Kan-
torovich and Rubinstein (see e.g., [22]):

Tran(P,Q) = sup

{∣∣∣∣∫ fd(P −Q)

∣∣∣∣ : f ∈ 1-Lip

}
. (3)

In the discrete case, Kantorovich-Rubinstein theorem is ex-
actly LP-duality: the dual of the aforementioned LP is

max
∑
i

fi(P ({vi})−Q({vi})) s.t. fi−fj ≤ d(vi, vj) ∀i, j ∈ [n].

It is important to notice the transportation distance and
the Lipschitz condition are associated with the same met-
ric d(x, y). We use Tran1 and Tran2 to denote the trans-
portation distance for L1 and L2 metrics respectively. In
1-dimensional space, L1 and L2 are the same and we sim-
ply use Tran. The following simple lemma will be useful in
several places. The proofs are standard and deferred to the
full version.

Lemma 2.1. (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two normed
spaces. We are given two probability measures µ, ν defined
over X such that Tran(µ, ν) ≤ ε.
(i) Suppose T : X → Y is a transformation from X to Y .

Tran(Tµ, Tν) ≤ ε · ‖T‖X→Y .
(ii) Furthermore, if both µ and ν are supported on a sub-

space V ⊂ X, then Tran(Tµ, Tν) ≤ ε · ‖T‖V , where
‖T‖V = supx∈V ‖Tx‖Y /‖x‖X .

(iii) We are given two operators T and T ′ such that ‖T −
T ′‖X→Y ≤ ε. Suppose ‖T‖X→Y = O(1) and ‖x′‖X =
O(1) for all x′ ∈ Support(ν). Then, we have that
Tran(Tµ, T ′ν) ≤ O(ε).

We state the following standard Chernoff-Hoeffding bound
and Bernstein inequality.

Proposition 2.2. Let {Xi}i∈[n] be independent random
variables. Let X =

∑n
i=1 Xi, and t > 0 be arbitrary.

(i) Suppose Xi ∈ [0, 1] for all i. Then, we have that
Pr
[
|X − E[X]| > t

]
< 2 exp(−2t2/n).

(ii) Suppose |Xi| ≤ 1, E[Xi] = 0 for all i. Let σ2 = Var[X] =∑n
i=1 Var[Xi]. Then, Pr

[
|X| > t

]
≤ 2 exp

(
− t2

2(σ2+t/3)

)
.

We will use the following results from the matrix pertur-
bation and random matrix theory.

Theorem 2.3. (Wedin’s theorem, see e.g., [38, pp.261])

Let A, Ã ∈ Rm×n with m ≥ n be given. Let the singular

value decompositions of A and Ã be

(U1, U2, U3)TA(V1, V2) =

 Σ1 0
0 Σ2

0 0

 ,

(Ũ1, Ũ2, Ũ3)T Ã(Ṽ1, Ṽ2) =

 Σ̃1 0

0 Σ̃2

0 0


Let Φ be the matrix of canonical angles between Span(U1)

and Span(Ũ1) and Θ be that between Span(V1) and Span(Ṽ1).

If there exists δ, α > 0 such that mini σi(Σ̃1) ≥ α + δ and

maxi σi(Σ2) ≤ α, then max{‖ sin Φ‖, ‖ sin Θ‖} ≤ ‖A−Ã‖
δ

.
Moreover, ‖ΠA −ΠÃ‖ = ‖ sin Φ‖ (see e.g., [38, pp.43]).

Theorem 2.4 ([41]). For every constant c > 0, there
is a constant C > 0 such that the following holds. Let A be
a symmetric with entries aij = aji = Xij, where Xij, 1 ≤
i ≤ j ≤ n are independent random variables. Suppose each
Xij is such that |Xij | < K, E[Xij ] = 0 and Var[Xij ] ≤ σ2

where σ ≥ C2K ln2 n/
√
n. Then, it holds that

Pr[‖A‖ ≤ 2σ
√
n+ C(Kσ)1/2n1/4 lnn] ≥ 1− 1/nc.

The Chebyshev polynomial (of the first kind) is defined
as the polynomial satisfying Tn(cos(x)) = cos(nx). An e-
quivalent recursive definition is: T0(x) = 1, T1(x) = x and
Tn+1(x) = 2xTn(x) − Tn−1(x). We need the classical Jack-
son’s theorem (see e.g., [37]) in approximation theory (spe-
cialized to our setting) and a multidimensional generaliza-
tion of Jackson’s theorem established by Yudin [42] (Theo-
rem 2.6).

Theorem 2.5 (Jackson’s Theorem). It is possible to
approximate any function on [0, 1] in 1-Lip within L∞ er-
ror O(1/K) using Chebyshev polynomials (or equivalently
trigonometric polynomials) of degree at most K, i.e., there

exist {ti}i∈[K] such that f(x) =
∑K
i=0 tiTi(x)±O(1/K) ∀x ∈

[0, 1]. Moreover, |ti| ≤ poly(K) for all i = 0, . . . ,K.

Theorem 2.6. We use Bh2 (R) to denote the sphere {x ∈
Rh | ‖x‖2 ≤ R}. For any function f : Bh2 (1) → C which
is 1-Lip (in L2 distance), there exists complex numbers c(t′)
for t′ ∈ Zh ∩ Bh2 (R), such that |c(t′)| ≤ exp(O(h))1 and for
all x ∈ Bh2 (1),∣∣∣f(x)−

∑
t′∈Zh∩Bh

2 (R)

c(t′)ei〈t′,x〉
∣∣∣ ≤ O( h

R

)
.

3. LEARNING SINGLE-DIMENSIONAL MIX-
TURES: THE COIN PROBLEM

In this section, we consider the problem of learning a mix-
ture ϑ supported on [0, 1], which we call the coin problem.
Using results in [36], these results carry over to the setting
where ϑ supported on a line segment in the (n− 1)-simplex
∆n = {x ∈ Rn≥0, ‖x‖1 = 1}. We first consider an arbitrary
(even continuous) ϑ in [0, 1]; in Section 3.1, we consider the
case where ϑ is a k-spike mixture.

Let Bi,K(x) =
(
K
i

)
xi(1−x)K−i. Let NK denote the num-

ber of K-snapshots we take from ϑ. For 0 ≤ i ≤ K, define
fqi(ϑ) :=

∫
Bi,K(x)dϑ. We call fq(ϑ) := {fqi(ϑ)}0≤i≤K the

frequency vector corresponding to ϑ. We use f̃qi to denote
the fraction of sampled coins that showed “heads” exactly

i times and let f̃q := {f̃qi}0≤i≤K be the empirical frequen-

cy vector. It is easy to see that fq(ϑ) = E[f̃q]. If we take
enough samples, the frequency vector corresponding to the

empirical measure ϑ̃ should be sufficiently close to that of ϑ.

Lemma 3.1. By taking NK = κ−2 log(K/δ) samples, with

high probability 1− δ, we have that ‖ fq(ϑ)− f̃q ‖∞ ≤ κ.

Theorem 3.2. There exists an algorithm, with running
time polynomial in K, that gets as input m = poly(K) coins

1In Yudin’s theorem, c(t′) is in fact f̂(t′)λ(t′/R), where f̂(t′) =
1

(2π)h

∫
x∈[−π,π]d f(x)e−i〈t′,x〉 dx is the Fourier coefficient, λ(x) =

(φ ∗ φ)(x), φ(x) is the first normalized eigenfunction of a PDE
known as Helmholtz equation, and ∗ is the convolution.
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from a mixture ϑ, each tossed K times, and output a mixture

ϑ̂ such that Tran(ϑ, ϑ̂) ≤ O(1/
√
K) with high probability.

Theorem 3.2 can be proved by a simple application of

Chernoff bound (where we set ϑ̂({ i
K
}) = f̃qi), which we omit

here. We provide an alternative proof based on Bernstein
polynomials later. It is a natural question to ask whether
O(1/

√
K) in Theorem 3.2 achieves the optimal aperture-

transportation distance tradeoff. In [36], it is shown that
recovering a K-spike mixture within transportation distance
O(1/K) using c(2K−1) (for any constant c ≥ 1) aperture re-
quires exp(Ω(K)) samples. The following theorem provides
a matching upper bound.

Theorem 3.3. There exists an algorithm, with running
time polynomial in K, that gets as input m = exp(O(K))
coins from a mixture ϑ, each tossed K times, and outputs a

mixture ϑ̂ such that Tran(ϑ, ϑ̂) ≤ O(1/K) with high proba-
bility.

To prove Theorem 3.3, we make a crucial observation
(Lemma 3.4) that links the transportation distance, the fre-
quency vector and the coefficients of Bernstein polynomial
approximation. Lemma 3.6 bounds these coefficients using
the relation between Bernstein polynomial basis and Cheby-
shev polynomial basis. We then provide a simple LP-based
algorithm to reconstruct ϑ.

Lemma 3.4. Suppose for any f ∈ 1-Lip[0, 1], there exist
K + 1 real numbers c0, . . . , cK ∈ [−C,C], for some value
C > 0 and λ > 0, such that f =

∑
i ciBi,K ± O(λ). Then

for any two distributions P and Q on [0, 1], Tran(P,Q) ≤
C · ‖ fq(P )− fq(Q) ‖1 +O(λ).

Proof. We have fqi(P ) =
∫
Bi,K dP . For any f ∈ 1-Lip

such that f(x) ∈ [0, 1] for all x ∈ [0, 1], we have∣∣∣∣∫ fd(P −Q)

∣∣∣∣ =

∣∣∣∣∣
K∑
i=0

ci

∫
Bi,K d(P −Q)

∣∣∣∣∣+O(λ)

=

∣∣∣∣∣
K∑
i=0

ci(fqi(P )− fqi(Q))

∣∣∣∣∣+O(λ)

≤ C · ‖fq(P )− fq(Q)‖1 +O(λ).

Taking supremum over f on both sides of the above inequal-
ity yields the lemma.

Lemma 3.5. For any function f ∈ 1-Lip[0, 1], there exists
K+1 real numbers c0, . . . , cK ∈ [−C,C] with C = O(1) such

that f(x) =
∑K
i=0 ciBi,K(x)±O(1/

√
K) for all x ∈ [0, 1].

Lemma 3.6. For any function f ∈ 1-Lip[0, 1], there exists
K+1 real numbers c0, . . . , cK ∈ [−C,C] with C = poly(K) ·
2K such that f(x) =

∑K
i=0 ciBi,K(x) ± O(1/K) for all x ∈

[0, 1].

Proof. By Jackson’s theorem (Theorem 2.5) in approx-
imation theory, for any function f ∈ 1-Lip[0, 1], there exist

tis (with |ti| ≤ poly(K)) such that f(x) =
∑K
i=0 tiTi(x) ±

O(1/K) for all x ∈ [0, 1], where Tis are Chebyshev polyno-
mials of degrees at most K. Let M be the linear transforma-
tion from the {Ti}i∈[K] basis to the {Bi,K}i∈[K] basis. For
an arbitrary polynomial P (x) of degree at most K, we can

write P (x) =
∑K
i=0 ciBi,K(x) =

∑K
i=0 tiTi(x), where ci =

∑K
k=0 Miktk. Using t = (t0, . . . , tK)T and c = (c0, . . . , cK)T ,

we have that c = Mt. It is known that |Mij | ≤ |MiK | for
all i, j and |MiK | = (2K − 1)!!/(2i − 1)!!(2K − 2i − 1)!!
where n!! = n(n − 2)(n − 4) . . . (4)(2) for even n and n!! =
n(n−2)(n−4) . . . (3)(1) for odd n [35]. Hence, we have that

‖c‖∞ ≤ ‖M‖∞→∞‖t‖∞ =

(
max

0≤j≤K

K∑
i=0

|Mij |

)
‖t‖∞

≤ K · (2K − 1)!!

(2i− 1)!!(2K − 2i− 1)!!
≤ poly(K) · 2K .

This implies that for any f ∈ 1-Lip, we can also get cis
with |ci| ≤ poly(K)2K such that f(x) =

∑K
i=0 tiTi(x) ±

O(1/K) =
∑K
i=0 ciBi,K(x)±O(1/K) for all x ∈ [0, 1].

Reconstructing ϑ. Suppose we have a good empirical fre-

quency vector f̃q which satisfies ‖f̃q− fq(ϑ)‖1 ≤ λ/C, where
λ and C are as in Lemma 3.4 Now, we show how to recon-
struct the mixture ϑ approximately. We propose a simple
LP-based algorithm as follows.

We approximate each Bi,K by a piecewise constant func-
tion Bi,K in [0, 1] such that ‖Bi,K − Bi,K‖∞ ≤ ε′ for ε′ =
O(κ) (κ in Lemma 3.1). It is easy to see that O(1/ε′) pieces
suffice (since Bi,K is either monotone or unimodal). We
can divide [0, 1] into h = O(K/ε′) small intervals [a0 =
0, a1), [a1, a2), . . . , [ah−1, ah = 1] such that in each small in-
terval Bi,K is a constant for all 0 ≤ i ≤ K. We use bi,j
to denote the value of Bi,K in interval [aj , aj+1). For each
small interval [aj , aj+1), define an variable zj (think of zj as
the approximation of ϑ([aj , aj+1))). Consider the following
linear program LP:

z ≥ 0,

h−1∑
j=0

zj = 1,

h−1∑
j=0

bi,jzj = f̃qi±ε
′ for all i = 0, . . . ,K.

It is easy to see that, by Lemma 3.1, zj = ϑ([aj , aj+1)) de-
fined by the original mixture measure ϑ is a feasible solution
for LP.

On the other hand, any feasible solution of LP produces a

frequency vector that is close to f̃q: Suppose z? is an arbi-

trary feasible solution of LP and ϑ̂ is any distribution sup-

ported on [0, 1] that is consistent with z? (i.e., ϑ̂([aj , aj+1)) =
z?j ), we have that

fqi(ϑ̂) =

∫
Bi,Kdϑ̂ = ±ε′ +

∫
Bi,Kdϑ̂

= ±ε′ +
∑
j

bi,j

∫
[aj ,aj+1)

dϑ̂ = ±ε′ +
∑
j

bi,jz
?
i = f̃qi ± 2ε′.

Proof of Theorem 3.3. Combining the above bound with
Lemma 3.1, we have that

‖fq(ϑ̂)− fq(ϑ)‖1 ≤ K‖fq(ϑ̂)− fq(ϑ)‖∞
≤ K(‖fq(ϑ̂)− f̃q‖∞ + ‖f̃q− fq(ϑ)‖∞) ≤ O(Kκ).

Then, taking κ = O(1/CK2) (recall that C = poly(K)2K),

using Lemma 3.1 with 2O(K) samples, we can make ‖ fq(ϑ̂)−
fq(mix) ‖1 ≤ 1/CK. So by Lemma 3.6, we finally have that

Tran(ϑ̂, ϑ) ≤ C‖fq(ϑ̂)− fq(ϑ)‖1 +O(1/K) ≤ O(1/K)

Proof of Theorem 3.2. The proof is the same as that
of Theorem 3.3, except that we use Lemma 3.5 instead. In
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this case, it suffices to use only poly(K) samples to ensure

that ‖ fq(ϑ̂)− fq(ϑ) ‖1 ≤ O(1/K).

3.1 Learning k-spike mixtures
We now consider the case where ϑ is a k-spike mixture

supported in [0, 1], i.e., is supported on k points in [0, 1].
This result will be useful later when we consider mixtures in
higher dimensions. We now use K-snapshots only for K =
2k − 1. Let the i-th moment of ϑ be gi(ϑ) =

∫
xiϑ(dx) =∑k

j=1 pjα
i
j . The algorithm is based on an identifiability

lemma proved in [36] (Lemma 3.7) and its converse (Lem-
ma 3.8).

Lemma 3.7 ([36]). For any two k-spike distributions ϑ1, ϑ2

supported on [0, 1], ‖g(ϑ1)− g(ϑ2)‖2 ≥
(

Tran(ϑ1,ϑ2)
k

)O(k)

.

Lemma 3.8. For any two distributions ϑ1, ϑ2 supported
on [0, 1], and i ∈ [K], |gi(ϑ1)− gi(ϑ2)| ≤ i · Tran(ϑ1, ϑ2)).

Recall the frequency vector fqi(ϑ) =
∫ (

K
i

)
xi(1−x)K−iϑ(dx)

=
∑k
j=1 pj

(
K
i

)
xi(1−x)K−i. Define the normalized frequency

vector to be nfqi(ϑ) =
∫
xi(1−x)K−iϑ(dx) =

∑k
j=1 pjx

i(1−
x)K−i. Let Pas be the 2k × 2k lower triangular Pascal
triangle matrix with non-zero entries Pasij =

(
K−i
j−1

)
for

0 ≤ i ≤ K and i ≤ j ≤ K. It is not difficult to verify
that g(ϑ) = Pas nfq(ϑ) . It is known that ‖Pas‖ ≤ 4k/

√
3.

By Lemma 3.1, using O((k/ε)O(k)) samples, the empirical

frequency vector f̃q satisfies that ‖f̃q − fq(ϑ)‖2 ≤ (ε/k)O(k)

with probability 0.99. Let ñfqi = f̃q/
(
K
i

)
. Let g̃ = Pas ñfq

be the empirical moment vector.

If we can find a distribution ϑ̃ such that ‖g(ϑ̃)− g(ϑ)‖2 ≤
(ε/k)Ω(k), we know, by Lemma 3.7, that Tran(ϑ̃, ϑ) ≤ ε.

In order to find such a ϑ̃, we do the following. ϑ̃ is a k-
spike distribution supported on the set of discrete points

{0, τ, 2τ, . . . , 1} where τ = (ε/k)Ω(k). First, we guess the

support of ϑ̃ (there are
(

1/τ
k

)
choices). Then, we solve the

following linear program LP1, where xj represents the prob-

ability mass placed at point jτ ∈ Support(ϑ̃):

LP1 :
∣∣∣∑
j

xj(jτ)i − g̃i
∣∣∣ ≤ O(Kτ), for all i ∈ [K],

∑
j

xj = 1, xj ∈ [0, 1], for all j

Theorem 3.9. Using (k/ε)O(k) log(1/δ) many (2k − 1)-
snapshot samples, the above algorithm produces an estima-

tion ϑ̃, such that Tran(ϑ̃, ϑ) ≤ ε with probability 1− δ.
Proof. We know there is a k-spike measure ϑ′ support-

ed on {0, τ, 2τ, . . . , 1} such that Tran(ϑ, ϑ′) ≤ τ . Hence,
|gi(ϑ′)− gi(ϑ)| < iτ for all i, by Lemma 3.8. Also,

‖g̃ − g(ϑ)‖2 ≤ ‖Pas‖‖ñfq− nfq(ϑ)‖2 ≤ ‖Pas‖‖f̃q− fq(ϑ)‖2

which is at most
(
ε
k

)Ω(k)
. Therefore, we have

|gi(ϑ′)− g̃i| ≤ |gi(ϑ′)− gi(ϑ)|+ |gi(ϑ)− g̃i| ≤ O(iτ).

Thus, LP1 is feasible. Since ϑ̃ is a feasible solution of LP1,

we have ‖g(ϑ̃) − g̃‖2 ≤ O(K3/2τ). So ‖g(ϑ̃) − g(ϑ)‖2 is at
most

‖g(ϑ̃)− g̃‖2 + ‖g(ϑ)− g̃‖2 ≤ O(K3/2τ) ≤
( ε
k

)Ω(k)

.

This implies the theorem, by Lemma 3.7.

4. LEARNING MULTIDIMENSIONAL MIX-
TURES ON ∆N: A REDUCTION

We now consider the setting where the mixture ϑ (on ∆n)
is an arbitrary distribution supported in a k-dimensional
subspace in Rn. In this section, we use Tran1 and Tran2 to
denote the transportation distances measured in L1 and L2

norm respectively. For a point v and a set S, we use ΠS(v)
to denote the projection of v to S, i.e., the point in S that is
closest to v. We always assume the projection is with respect
to L2 distance, unless specified otherwise. For any arbitrary
measure ϑ supported on Rn, we use ΠS(ϑ) to denote the
projected measure defined as ΠS(ϑ)(T ) = ϑ(Π−1

S (T )) for
any measurable T ⊆ S.

This section provides a reduction from the original learn-
ing problem to to the problem of learning the projected
measure in a specific subspace Span(B). Sections 5 and 6
complement this reduction by devising algorithms for learn-
ing the projected measure ϑB := ΠSpan(B)(ϑ) (for arbi-
trary k-dimensional ϑ and k-spike ϑ respectively); combin-
ing these algorithms with the reduction of this section yields
algorithms for learning ϑ. The space Span(B) will satis-
fy several useful properties (Lemma 4.5). One particular-
ly useful property is that any unit vector v ∈ Span(B) has
‖v‖∞ ≤ O(1/

√
n) (ignoring factors depending ε and k). This

implies that L1 norm and L2 norm in Span(B) are quite close
up to scaling, hence allow us to convert bounds between L1

and L2 distances without losing a factor depending on n
(otherwise, we typically lose a factor of

√
n). Furthermore,

we can show we do not lose too much by working in Span(B)
as most of the mass of ϑ is very close to Span(B). Suppose
we can learn the projected measure ϑB well. If we can show
ϑB is close to the original mixture ϑ in Tran1 distance, then

ϑ̃B , a good estimation of ϑB , would be a good estimation of
ϑ as well. However, we are not able to show ϑB and ϑ are
close enough in general. Nevertheless, we can prove that a
projection of ϑB to a smaller polytope is close to ϑ. Finally,
we need to make some small adjustments in order to ensure

that our estimation ϑ̃ is a valid mixture, as well as a good
approximation of ϑ (see Reduction 1).

Before we delve into the details of our reduction, we pro-
vide some intuition for why we require the subspace Span(B)
to satisfy the above-mentioned properties and why the stan-
dard SVD method does not suffice. For ease of discussion,
we treat ε and k as constants, but n as a parameter that
can be very large. Our goal is to obtain Span(B) of dimen-
sion at most k so that if we can learn the projected mixture
ϑB within Tran1-distance at most ε1, then we can learn ϑ
within Tran1-distance at most ε. We would like ε1 to be
independent of n so that the number of K-snapshot samples
required to estimate ϑB within Tran1-distance at most ε1 is
independent of n (as is the case in Theorems 5.3 and 6.1).

Suppose first that we know A exactly and we simply use
Span(A) as the subspace. In fact, it is not difficult to learn
ϑ =

∏
A ϑ within L2-transportation distance ε1 using a

sample size independent of n. This is mainly due to the
rotationally-invariant nature of L2, which makes this equiv-
alent to a learning problem in Rk. However, the same is not
true for the L1 distance. Note that we place no assumptions

on A, so in order to obtain an estimate ϑ̃ with Tran1(ϑ̃, ϑ) ≤
ε1, we essentially need to ensure that Tran2(ϑ̃, ϑ) ≤ ε1/

√
n;

however, this would require a sample size depending on n.
It is precisely to prevent this

√
n-factor loss that we re-
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quire that an L2-ball in our subspace Span(B) be close to
an L∞-ball (and hence, an L1-ball is “nearly spherical”).
This ensures that ϑB is supported in an L2-ball of radius
L = O(1/

√
n), which makes it possible to learn ϑB within

Tran2-distance ε1/
√
n with sample size independent of n, s-

ince the desired error is O(L). The standard SVD method
would typically return the subspace spanned by the first few
eigenvectors of A; but this suffers from the same problem as
when we use the subspace Span(A), since there is no guar-
antee that an L2-ball in this subspace is close to an L∞-ball
in this subspace.

We now state the main result of this section. We use the
following parameters throughout the paper. The polynomial
in the definition of C below depends on the specific problems
and we will instantiate it later.

C = poly
(
k, 1

ε

)
, L = O

(√
k
n
· C
ε

)
, ε1 = O

(
ε2√
kC

)
. (4)

Theorem 4.1. Let ϑ be an arbitrary mixture on Span(A)∩
∆n where Span(A) is a k-dimensional subspace. We can
find a subspace Span(B) of dimension h ≤ k in polytime
such that:
(i) Span(B) satisfies all properties stated in Lemma 4.5 (see

below); and

(ii) If we can learn an approximation ϑ̃B, supported on Span(B),
of the projected measure ϑB = ΠSpan(B)(ϑ) such that

Tran1(ϑB , ϑ̃B) ≤ ε1 using N1(n), N2(n) and NK(n) 1-,
2-, and K-snapshot samples, then we can learn a mix-

ture ϑ̃ such that Tran1(ϑ, ϑ̃) ≤ ε using O(N1(n/ε) +
n logn/ε3), O(N2(n/ε)+O(k4n3 logn/ε6)) and O(NK(n/ε))
1-, 2-, and K-snapshot samples respectively.

The reduction and its analysis. Let r be the vector encod-
ing the 1-snapshot distribution of ϑ, i.e., ri =

∫
xiϑ(dx) =

Pr[ the 1-snapshot sample is i ]. We say that the mixture ϑ
is isotropic, if ri ∈ [1/2n, 2/n]. Using O(n logn) 1-snapshot
samples, we can get sufficiently accurate estimates of ris
with high probability.

Lemma 4.2 ([36]). For any σ > 0, we can use O( 1
σ3 n logn)

independent 1-snapshot samples to get r̃i such that, with
probability at least 1− 1/n2, for all i ∈ [n],

r̃i ∈ (1±σ)ri if ri ≥ σ/2n, r̃i ≤ (1+σ)σ/2n if ri < σ/2n.

Next, we show it is without loss of generality to assume
that the given mixture is isotropic, at the expense of a small
additive error. The argument essentially follows that of [36],
but is simpler.

Lemma 4.3. Suppose we can learn with probability 1 − δ
an isotropic mixture on [n] within L1 transportation distance
ε using N1(n), N2(n) and NK(n) 1-, 2-, and K-snapshot
samples respectively. Then we can learn, with probabili-
ty 1 − O(δ), an arbitrary mixture within L1 transportation
distance 2ε using O( 1

σ3 n logn+N1(n/σ)), O(N2(n/σ)) and
O(NK(n/σ)) 1-, 2-, and K-snapshot samples respectively,
where σ < ε/4.

From now on, we assume that the given mixture ϑ is
isotropic. Let A be the n × n symmetric matrix encod-
ing the 2-snapshot distribution of ϑ; i.e., Aij is the prob-
ability of obtaining a 2-snapshot (i, j). It is easy to see

that A =
∫

∆n xx
Tϑ(dx). Note that the support Support(ϑ)

of the mixture ϑ is contained in the subspace, Span(A), s-
panned by the columns of A. For ease of exposition, we first
assume that we know A exactly. This assumption can be
dropped via somewhat standard matrix perturbation argu-
ments, which we sketch at the end of this section. Consider
the hypercube H = [−C/n,C/n]n in Rn (C only depends
on k and ε, and is fixed later). We now have all the notation
to give a detailed description of the reduction.

Reduction 1.

Constructing the basis B. Input: Matrix A. Output: A
basis B satisfying Lemma 4.5.

Consider the centrally symmetric polytope P = H ∩ Span(A)
and the John ellipsoid E inscribed in P. It is well known that E ⊆
P ⊆

√
kE. Suppose the principle axes of

√
kE are {e1, . . . , ek},

sorted in nondecreasing order of their lengths. We choose the

orthonormal basis B to be B =
{
bi = ei

‖ei‖2
: ‖ei‖2 ≥ ε√

n

}
.

Final adjustment. Input: Matrix B, ϑ̃B (which is an approx-
imation of ϑB and supported on Span(B)).

Output: The final estimation ϑ̃ of the original mixture ϑ.

1. Define the polytope Q =
(
∆n + Bn1 (ε)

)
∩ Span(B). Here

Bn1 (ε) denotes the L1-ball in Rn with radius ε, and the Minkows-
ki sum A+B of sets A and B is the set {a+b | a ∈ A, b ∈ B}.
Essentially, Q is the set of points in Span(B) with L1 norm
within [1− ε, 1 + ε].

2. Let ϑ̃Q = ΠQ(ϑ̃B) be the measure ϑ̃B projected to Q, i.e.,

ϑ̃Q(S) = ϑ̃B(Π−1
Q (S)) for any S ⊆ Q.

3. Notice that ϑ̃Q may not be a valid mixture since some points

in ϑ̃Q may not be in ∆n. In this final step, we L1-project

ϑ̃Q back into ∆n and obtain a valid mixture ϑ̃ (i.e., for each
point in Q, we map it to its L1-closest point in ∆n), which
is our final estimation of ϑ.

Lemma 4.4 shows that for large enough C, H contains (1−
ε) unit of mass of ϑ. Lemma 4.5 proves various properties
about Span(B), which we exploit to prove that the final
adjustment procedure returns a good estimate of ϑ.

Lemma 4.4. For any ε > 0, the following hold. (i) Sup-
pose ϑ is a k-spike distribution. For C ≥ 3k/ε, ϑ(H) ≥ 1−ε.
(ii) Suppose ϑ is an arbitrary distribution supported in a k-
dimensional subspace. For C ≥ 5k2/ε, ϑ(H) ≥ 1− ε.

Proof. For part (i), suppose ϑ =
∑k
i=1 piδαi where δαi

is the Dirac delta at point αi. We use αij to denote the
jth coordinate of αi. Since ϑ is isotropic, we know that∑k
i=1 piαij = rj ∈ [1/2n, 2/n]. So, if αij > C/n for some

j (or equivalently αi /∈ H), we have pi ≤ 2/C. The lemma
thus follows since there can be at most k such points.

To show part (ii), consider the two convex polytopes Ps =
Span(A)∩ 1

k
H and P = Span(A)∩H, where 1

k
H =

[
− C
kn
, C
kn

]n
.

Both P1 and P2 are symmetric k-dimensional bodies. By a
classical result from convex geometry2, we can find a linear
transformation K of the unit hypercube [−1,+1]k, such that
K ⊂ Span(A) and Ps ⊆ K ⊆ kPs = P.

Now, we confine ourselves to Span(A). K has 2k faces of
codimension 1. For each such face F , consider the polyhe-
dron

CF = {x | x = αy, for some α ≥ 1 and y ∈ F}.
2This can be seen either from John’s theorem, or the fact that
Banach-Mazur distance between any two norms in Rk is at most
k (see, e.g., [39]).
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In other words, F separates the cone generated by F into
two parts and CF is the unbounded part. We claim that
ϑ(CF ) ≤ 2k/C for any face F . Consider the normalized
vector rF =

∫
CF
xϑ(dx)/ϑ(CF ). Since rF is a convex com-

bination of vectors in CF and CF is convex, rF is in CF .
Moreover, it is easy to see Ps ∩ CF = ∅. So there must be
a coordinate of rF whose value is larger than C/nk. Since
r =

∫
xϑ(dx) ≥ ϑ(CF )rF , we must have ϑ(CF ) ≤ 2k/C. All

such CF s together fully cover the region outside P, and there
are at most 2k such CF s. So the total mass outside P is at
most 4k2/C.

Lemma 4.5. Let L = O
(√

k/n · C/ε
)

. Let P = Span(A)∩
H. Let v ∈ Span(B). Then, (i) If ‖v‖2 = 1 then ‖v‖∞ ≤ L.
(ii) If ‖v‖1 = 1 then 1√

n
≤ ‖v‖2 ≤ L.

(iii) If x ∈ Rn with ‖x‖1 = 1, then ‖ΠB(x)‖2 ≤ L.
(iv) For every point w ∈ P, ‖w −ΠB(w)‖2 ≤ ε/

√
n.

Proof. Suppose |B| = h. Consider the ellipsoid EB =√
kE∩Span(B). Clearly, the principle axes of EB are e1, . . . , eh.

Suppose u is an arbitrary point in the boundary of EB and
v = u/‖u‖2 is a unit vector in Span(B). Obviously, ‖u‖∞ ≤
C
√
k/n (as u ∈

√
kE ⊆

√
kH) and ‖u‖2 ≥ ε/

√
n. Hence,

‖v‖∞ = ‖u‖∞/‖u‖2 ≤ L, which proves part (i).
Now we show part (ii). The first inequality, 1√

n
≤ ‖v‖2, is

always true. To see the second inequality, we use the Hölder
inequality:

‖v‖22 = 〈v, v〉 ≤ ‖v‖1‖v‖∞ =
‖v‖∞
‖v‖2

· ‖v‖2 ≤ L‖v‖2.

To prove part (iii), use the Hölder inequality again:

‖ΠB(x)‖2 =
〈x,ΠB(x)〉
‖ΠB(x)‖2

≤ ‖x‖1‖ΠB(x)‖∞
‖ΠB(x)‖2

≤ L.

For part (iv), consider an arbitrary point w ∈ P = Span(A)∩
H. We can see that w ∈

√
kE . By the construction of B,

any point in
√
kE has an L2 distance at most ‖eh+1‖2 from

Span(B), so does w.

We now prove part (ii) of Theorem 4.1. Let ϑ̃B supported

on Span(B) be such that Tran1(ϑB , ϑ̃B) ≤ ε1. Define ϑQ =
ΠQ(ϑ) to be the original measure ϑ projected to Q.

Lemma 4.6. We have that Tran1(ϑQ, ϑ) ≤ O(ε).

Proof. For any measure µ and subset S ⊂ Rn, let µ|S
be the measure A restricted to S. It is easy to see that

Tran1(ϑ, ϑQ) ≤ Tran1(ϑ|H,ΠQ(ϑ|H))+Tran1(ϑ|H,ΠQ(ϑ|H))

where H = [−C/n,C/n]n (the hypercube used in Lem-
ma 4.4). Note that even though the transportation distance
is measure in L1, the projection is with respect to L2 dis-
tance in this lemma. We first bound Tran1(ϑ|H,ΠQ(ϑ|H))
by coupling every point p ∈ ∆n and ΠQ(p) together. By
Lemma 4.5 (iv), the L2 distance from every point in P =
Span(A) ∩∆n ∩ H is at most ε/

√
n from Span(B). Hence,

‖p − ΠB(p)‖1 ≤
√
n‖p − ΠB(p)‖2 ≤ ε and ‖ΠB(p)‖1 ≤

‖p‖1 + ‖p−ΠB(p)‖1 ≤ 1 + ε, which implies ΠQ(p) = ΠB(p).
Thus the first term is at most ε.

Now, we bound the second term. For any point p ∈
∆n, it is easy to see the L1 distance from p to ΠQ(p) is
at most 2 + ε. Since the total mass in ϑ|H is at most ε,
Tran1(ϑ|H,ΠQ(ϑ|H)) is at most (2 + ε)ε < 3ε.

Lemma 4.7. Let ε1 = O(ε2/
√
kC). Let ϑ̃Q be as defined

in Reduction 1 and suppose ϑ̃B is such that Tran1(ϑB , ϑ̃B) ≤
ε1. Then, it holds that Tran1(ϑQ, ϑ̃Q) ≤ O(ε).

Proof. First, notice that ϑQ = ΠQ(ϑ) = ΠQ(ΠSpan(B)(ϑ))
= ΠQ(ϑB). So, we have

Tran2(ϑQ, ϑ̃Q) = Tran2(ΠQ(ϑB),ΠQ(ϑ̃B)) ≤ Tran2(ϑB , ϑ̃B),

where the last inequality holds since L2-projection to a con-
vex set is a contraction and Lemma 2.1 (i). Lemma 4.5 (ii),

we have Tran2(ϑB , ϑ̃B) ≤ L · Tran1(ϑB , ϑ̃B). Therefore,

Tran1(ϑQ, ϑ̃Q) ≤
√
nTran2(ϑQ, ϑ̃Q) ≤

√
n·L·Tran1(ϑB , ϑ̃B).

Plugging in the value L = O(
√
k/n · C/ε), we prove the

lemma.

Proof of part (ii) of Theorem 4.1. By Lemmas 4.6

and 4.7, we have Tran1(ϑ, ϑ̃Q) ≤ Tran1(ϑ, ϑQ)+Tran1(ϑQ, ϑ̃Q)
≤ O(ε). By considering the coupling between all points

in Q and the corresponding points in Support(ϑ̃), we can

see that ϑ̃ is the probability measure supported in ∆n that

has the closest L1-transportation distance to ϑ̃Q. Hence,

Tran1(ϑ̃, ϑ̃Q) ≤ Tran1(ϑ, ϑ̃Q) ≤ O(ε). We conclude by

noting that Tran1(ϑ, ϑ̃) ≤ Tran1(ϑ, ϑ̃Q) + Tran1(ϑ̃Q, ϑ̃) ≤
O(ε).

A is unknown. We now remove the assumption that A
is known. First, we obtain a close approximation of A using
O(k4n3 logn/ε6) 2-snapshot samples as follows. We choose a
Poisson random variable N2 with E[N2] = O(k4n3 logn/ε6),
choose N2 independent 2-snapshots, and construct a sym-

metric n × n matrix Ã where Ãii is the frequency of the

2-snapshot (i, i), for all i ∈ [n], and Ãij = Ãji is half of
the total frequency of the 2-snapshots (i, j) and (j, i), for all
i 6= j.

Lemma 4.8. The matrix Ã obtained above with E[N2] =

O
(
k4n3 logn

ε6

)
satisfies ‖A− Ã‖ ≤ O

(
ε3

k2n3/2

)
.

We find the basis B̃ as described in Reduction 1, except

that we use Ã instead of A. Since B̃ satisfies all properties in
Lemma 4.5, the algorithms and analysis in Sections 5 and 6

continue to work. Suppose that we have an estimate ϑ̃B̃ of

ϑB̃ = ΠB̃(ϑ) such that Tran1(ϑ̃B̃ , ϑB̃) ≤ ε1. We project ϑ̃B̃
to Q̃ = (1+ε)∆n∩Span(B̃) to obtain ϑ̃Q̃. The same proof as

that of Lemma 4.7 shows that Tran1(ϑQ̃, ϑ̃Q̃) ≤ O(ε). So the
only remaining task is to prove an analogue of Lemma 4.6
showing that ϑQ̃ is close to the original mixture ϑ.

Lemma 4.9. We have that Tran1(ϑQ̃, ϑ) ≤ O(ε).

5. LEARNING ARBITRARY MIXTURES IN
A K-DIMENSIONAL SUBSPACE

Suppose that ϑ is an arbitrary distribution supported on
a k-dimensional subspace Span(A) in Rn. It is known that
in order to learn ϑ within transportation distance ε, it is
necessary to use K-snapshot samples with K = Ω(1/ε) [36],
even in the 1-dimensional case. In this section, we gener-
alize the result to higher dimensions. By the reduction in
Theorem 4.1, we only need to specify how to learn a good ap-

proximation ϑ̃B of ϑB such that Tran1(ϑB , ϑ̃B) ≤ ε1. This
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can be done as follows. B = {b1, . . . , bh} is an n× h matrix
(Recall that B is an orthonormal basis for Span(B)). Let
b′1, . . . , b

′
n be columns of BT . We use the following parame-

ters in this section: C = O(k2/ε) as suggested in Lemma 4.4,
ε1 and L are as in (4), and

ε2 =
ε1
L
√
n

=
( ε
k

)5

, K = O

(
h

ε22
log

h

ε2

)
, N = O

(
1

ε2

)h
.

Suppose we take a K-snapshot sample s = {`1, . . . , `K}
from ϑ, where `i ∈ [n] for i = 1, . . . ,K. Let µ̃(s) = 1

K

∑K
i=1 b

′
`i

(which is an h-vector). Suppose we have N K-snapshot
samples {s1, . . . , sN}. We define the empirical measure µ̃ =
1
N

∑N
i=1 δ(µ̃(si)), where δ() is the Dirac delta measure. Our

estimation for ϑB is ϑ̃B = Bµ̃ = 1
N

∑N
i=1 δ(Bµ̃(si)). Note

that ϑ̃B is indeed a discrete measure supported on Rn as

Bµ̃(si) is an n-vector. We can also see that µ̃ = BT ϑ̃B since
BTB = I.

Analysis. First, we define µ to be the measure ϑB , repre-
sented in basis B. Hence, µ is supported over Rh. Formal-
ly, µ = BTϑB = BTΠBϑ = BTBBTϑ = BTϑ. Now, we
show that µ̃ is a good estimation of µ. For this purpose, we
introduce an intermediate measure µN defined as follows:
Suppose the K-snapshot sample si is obtained from distri-
bution si ∈ Span(A) ∩∆n. Note that si is an n-vector and

let ϑN =
∑N
i=1 δ(si) and µN = BTϑN . First, we show µN

and µ̃ are close.

Lemma 5.1. Let µN and µ̃ be defined as above and K =
O( h

ε22
log h

ε2
). Then, Tran2(µN , µ̃) ≤ O(ε2L).

Proof. We simply coupleBT si ∈ Support(µN ) and µ̃(si) ∈
Support(µ̃′) together. Conditioning on si, we can see that
E[µ̃(si)] = BT si. Recall from Lemma 4.5 that the magni-
tude of every entry of B is at most L. By a standard appli-
cation of the Chernoff-Hoeffding bound and a union bound
over h coordinates, we can see that Pr[‖µ̃(si) − BT si‖∞ >

ε2L/
√
h] < he−2ε22K/h ≤ ε2/2. Hence, with high probability,

for at least (1− ε2)N samples si, we have ‖µ̃(si)−BT si‖2 <
ε2L. Moreover, ‖µ̃(si) − BT si‖2 ≤ O(L

√
h) for all i. So,

Tran2(µN , µ̃) ≤ (1− ε2) · ε2L+ ε2 ·O(L
√
h) ≤ O(ε2L).

Lemma 5.2. Let µ and µN be defined as above and N =
O(1/ε2)h. Then, with probability at least 1−ε2, it holds that
Tran2(µ, µN ) ≤ O(ε2L).

Proof. µN is the empirical measure of µ. It is well known
that µN → µ almost surely in the topology of weak con-
vergence. In particular, the rate of convergence, in terms
of transportation distance, can be bounded as follows [2,
43]: for any ε2, for N > C for some large constant C de-
pending only on ε2, with probability at least 1 − ε2, we

have Tran2(µN , µ) ≤ O
(
L/N1/h

)
. Plugging N = O(1/ε2)h

yields the result.

Combining Lemmas 5.1 and 5.2, we obtain Tran2(µ, µ̃) =

Tran2(BTϑB , B
T ϑ̃B) ≤ O(ε2L). Viewing B as an operator

from L2(Rh) to L1(Rn), its operator norm is

‖B‖2→1 = sup
x∈Rh

‖Bx‖1
‖x‖2

= sup
x∈Rh

‖Bx‖1
‖Bx‖2

≤
√
n.

So by Lemma 2.1, Tran1(ϑB , ϑ̃B) = Tran1(Bµ,Bµ̃), which
is at most ‖B‖2→1 Tran2(µ, µ̃) ≤ O(ε2L

√
n) ≤ ε1.

Combining with Theorem 4.1, we obtain the following the-
orem for learning an arbitrary (even continuous) k-dimensional
mixture. The sample size bounds for 1- and 2-snapshots
below follow from Lemma 4.2 (taking σ = O(ε)) and Lem-
ma 4.8.

Theorem 5.3. Let ϑ be a mixture supported on Span(A)∩
∆n, where Span(A) is a k-dimensional subspace. Using

O(n logn/ε3), O(k4n3 logn/ε6), and
(
k
ε

)O(k)
1-, 2-, and K-

snapshot samples respectively, where K = Õ(k11/ε10), we

can obtain, with probability 0.99, a mixture ϑ̂ such that

Tran1(ϑ̃, ϑ) ≤ O(ε)

6. LEARNING K-SPIKE MIXTURES ON ∆N

In this section, we consider the setting where ϑ is a k-
spike distribution on ∆n, that is, ϑ is supported on k points
in ∆n. This setting was also considered in [36] but unlike
the results therein, our sample size bounds only depend on n
and k and not on any“width”parameters of ϑ (e.g., the least
weight of a mixture constituent, or the distance between two
spikes). We use K-snapshot samples only for K = 2k− 1 in
this section, which is known to be necessary [36].

The high level idea of our algorithm is as follows. Again,
given the reduction of Section 4, we only need to provide

an algorithm for learning a good approximation ϑ̃B for the
projected measure ϑB := ΠSpan(B)(ϑ). More specifically, we

need Tran1(ϑ̃B , ϑB) ≤ ε1. For this purpose, we pick a fine
net of directions in Span(B) and learn the 1-dimensional
projected measures on these directions. Then we use the
1-dimensional projected measures to reconstruct ΠSpan(B)ϑ.
The reconstruction can be done by a linear program that is
similar to LP1 in Section 3.1. The most crucial and techni-
cally challenging part is to show that if the 1D-projections
of two measures are close (in Tran), then the two measures
must be close as well. To do this, we leverage Yudin’s theo-
rem (Theorem 2.6), which shows that any 1-Lip-function f in
Bh2 (1) admits a good approximation in terms of certain 1D-
functions with bounded Lipschitz constant. Since the 1D-
projections of the two measures are close, the Kantorovich-
Rubinstein theorem implies that the RHS of (3) is small for
these 1D functions, and hence that the RHS of (3) is small
for f . This implies (again by (3)) that the two measures
are close in Tran. We defer the details of the algorithm and
the proof of the following theorem to the full version of the
paper.

Theorem 6.1. Let ϑ be an arbitrary k-spike mixture in

∆n. Using O(n logn/ε3), O(k4n3 logn/ε6), and (k/ε)O(k2)

1- and 2- and (2k−1)-snapshot samples respectively, we can

obtain, with probability 0.99, a mixture ϑ̂ such that

Tran1(ϑ̃, ϑ) ≤ O(ε).
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