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Abstract—Word representation learning methods have mostly
been designed for and evaluated on frequent words. However, in
real-world settings, deep neural architectures are often expected
to accept a large vocabulary of possible input words. In this paper,
we investigate context-based techniques for few-shot learning of
representations for infrequent words. We first adapt word2vec
to account for expanded contexts and subsequently introduce
an additional smoothing procedure. Experiments on similarity
benchmarks show significant improvements for rare words.

I. INTRODUCTION

Unlike many traditional semantic analysis methods, deep

learning architectures for text generally assume a fixed input

vocabulary, mapped to a set of word vectors. However, end

users often have the expectation that a given natural language

processing tool will be able to operate on virtually any valid

input word, rather than outputting <UNK> for unknown words

it has not been trained on. Thus, it is important to gracefully

handle out-of-vocabulary words not in the training data.

Embeddings pretrained on large amounts of external un-

labeled text, to some extent, help us to cope with infrequent

words. However, word2vec [1] is based on the idea of repeated

gradient updates for each word vector and normally uses a

frequency cut-off such that words occurring less often than

a threshold (5 by default) are excluded from the vocabulary.

Several recent papers propose to address this using external

data such as dictionaries, which provide word definitions [2],

[3], [4], [5] and semantic relationships [6]. In certain cases,

word forms arise from regular processes and hence can be

interpreted via morphological or character-based architectures

[7], [8], [9]. Such models may be able to guess the meaning

of a word such as trilateralism, for instance.

In the absence of such internal cues as well as of external

information, when faced with a word observed only once or

a few times, we have to pay more attention to its context to

obtain a reasonable representation. This paper explores how to

achieve this, by more effectively exploiting the little contextual

information that is available. Hearing a new word used in

context, humans are remarkably adept at inferring a basic

notion of a its meaning. To illustrate this point, consider the

fictional word wampimuk in the sentence “We found a cute,
hairy wampimuk sleeping behind the tree.” [10], [11].

*Gerard de Melo’s research is supported by the DARPA SocialSim program.

This paper investigates how to instantiate these ideas in

context-based methods for improved word representations,

geared towards few-shot settings. Section II first introduces our

technique for expanded context modeling and finally proposes

an additional smoothing procedure.

II. CONTEXT MODELING

Our model extends the well-known word2vec skip-gram

with negative sampling [1] approach. Rather than just using

unigram words as context, we also capture bigrams in the

neighborhood, while accounting for their relative position.

Clearly, unigrams and bigrams together are linguistically more

informative than just unigrams (consider e.g. information re-
trieval vs. just information and retrieval). The relative position

as well, is informative (for the target word card, consider e.g.

card manufacturer vs. manufacturer card).

Unfortunately, modeling such position-specific context bi-

grams as opposed to just unigrams leads to a quadratic

explosion in the number of parameters, and hence would not

easily scale to large corpora. We shall resolve this by treating

contextual units as hash bin-based features.

In our model, words w ∈ V , individual context words

c ∈ C, and features f ∈ F , are represented via vectors. We

consider the softmax conditional probability

pθ ((w, f) ∈ E1 ∪ E2 | w, f) = 1

1 + e−vf ·vw

for word vectors vw and vectors vf for features as well as

context words f , where E1 ⊆ V × C contains word-context

word pairs (skip-grams) from the input and E2 ⊆ V × F
contains word-feature pairs. E′1 and E′2 (Ei ⊆ E′i ⊆ V ×F, i ∈
{1, 2}) additionally contain pairs (w, f) ∈ V × (C ∪ F ) used

in negative sampling. Let E = E1 ∪ E2, E
′ = E′1 ∪ E′2. We

then define a loss function as follows:

L(θ) =− 1

|E′|

⎛
⎝ ∑

(w,f)∈E′
log pθ ((w, f) ∈ E | w, f)

−
∑

(w,c)∈E′
log pθ ((w, f) /∈ E | w, f)

⎞
⎠
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A. Neighbor and Bigram Cues

In addition to regular context words as in the standard skip-

gram model, we consider immediate neighbor and bigram cues

for the 1 or 2 words, respectively, that immediately precede

or follow the target word wi, captured as tuples (wi−1, “-”),
(wi−2, wi−1, “-”), (wi+1, “+”), or (wi+1, wi+2, “+”) in a set

F0. The label serves to distinguish whether the context words

appear before (“-”) or after (“+”) the target word.

B. Hashing

Straightforwardly using F0 as prediction targets for the skip-

gram model would lead to a quadratic increase of the output

vocabulary size. For scalability, we instead fix the size of F
in advance and define binned features

fi = {f0 | h(f0) mod |F | = i}
for i in 0, . . . , |F | − 1, and a suitable hash function h. Thus,

instead of learning to predict individual neighbors or bigram

cues, our loss function encourages the model to learn word

vectors that are predictive of features that bin together sets
of neighbor and bigram cues (in addition to also predicting

individual context words as in the regular word2vec skip-gram

model). Although the model now no longer needs to predict

individual neighbors or bigrams within each binned set, it still

is trained to select the most likely such binned sets out of a

large number (typically millions) of potential candidate bins.

C. Neighborhood-Based Smoothing

While the contextual features above provide more detailed

information about a word’s occurrence contexts, few-shot or

even one-shot learning remains difficult, since the features

may turn out to provide too sparse information. Previous

work showed that distributional vectors can be used to better

initialize embedding methods [12]. Inspired by transductive

learning methods, we instead adopt a form of relational

smoothing specifically targeting rare words by using vector

representations of similar words.

Given clusters Ci ∈ C of words, as well as two integer

thresholds T1, T2 as hyperparameters, we define

V ′ = {w ∈ V : F(w) ≤ T1}
C ′i = {w ∈ Ci : F(w) > T2}

where F(w) is the frequency of w in the training corpus, V ′

is the set of rare words, while C ′i is the set of non-rare words

in a word cluster Ci. Given initial word embeddings v0(w) for

every word w ∈ V , we first define vi = 1
|C′

i|
∑

w∈C′
i
v0(w).

Then, each word w ∈ V is assigned a new vector

vα(w) =

{
v0(w) if w /∈ V ′ or |C ′i(w)| = 0

(1− α)v0(w) + αvi(w) otherwise

where α is a hyperparameter and i(w) denotes the index of

the cluster Ci that includes w.

To induce the word clusters Ci ∈ C, we rely on Brown

clustering [13], which greedily merges words into clusters

in terms of their contextual similarity. Brown clustering is

competitive with certain (non-state-of-the-art) vector-based

methods [14], [15], [16]. In our experiments, we train the

Brown clusters on the training corpus. In practice, a post-hoc

form of few-shot learning can be supported as well, because

words with the lowest frequencies are processed last by the

algorithm, so any new word at test time can be appended to

the vocabulary. Assuming previous clusters remain unchanged,

one just runs an extra loop iteration to observe with which

previous cluster the newly added word will be merged.

III. EXPERIMENTS

A. Corpus

All experiments are carried out on the filtered plaintext

version (“fil9”) of the 1GB enwik9 Wikipedia corpus1. Its

small size enables us to obtain a greater ratio of infrequent

words in available word relatedness benchmarks.

B. Benchmarks

The task of word similarity evaluation involves computing

the cosine similarity of word vectors between pairs of words,

and then computing Spearman’s rank correlation compared to

gold standard human ratings. For this evaluation, we created

subsets {RWti j}i of the Stanford Rare Word Similarity

Dataset2, containing pairs for which both words appear at

least i times, but at most one appears more than j times in

the training corpus. We also created extra subsets {RWsi j}i,
containing pairs for which both appear at most j times, but

at most one appears less than i times. These subsets were all

binned so as to ensure that each subset had at least 150 pairs.

The resulting datasets, together with RW01, which contains

all pairs occurring in our corpus, are listed in Table I.

Dataset Word Pairs

RWt1 2 191
RWt3 4 168
RWt5 7 185
RWt8 12 184
RWt13 22 192
RWt23 40 194
RWt41 80 180

RWs1 50 162
RWs51 150 155
RWt151 300 151

RW01 1928

TABLE I: Subsets of RW01

C. Training

We use skip-grams with negative-sampling, training for 20

iterations. For lack of an alternative, we tuned the hyper-

parameters on WS353t1 2000, a subset of the well-known

WS353 word similarity benchmark created analogously to the

{RWti j}i sets.3 The optimal parameters on this set were then

1http://mattmahoney.net/dc/textdata
2http://stanford.edu/∼lmthang/morphoNLM/
3For WS353, word frequencies are generally high. Hence, j is increased

to 2000 to obtain sufficient word pairs.
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applied to the test set. In particular, we use a dimensionality

of 300, a max. neighbor distance of 5, and 5-fold negative

sampling. For the feature-based context modeling, the size of

feature set F ranged from 105 to 2× 107. For the smoothing

procedure, we use |C| = 2000 classes and fix α = 0.5.

D. Results

In our main experiment, we combined the feature-based

context modeling and the neighborhood-based smoothing by

applying the smoothing method on embeddings trained using

our feature-based context modeling. We retain all bigram

features and rely on hashing to reduce them to a fixed feature

set F . We tuned the size of F in feature-based context

modeling first and obtained |F | = 2 × 107. Then, we tuned

the smoothing and obtained T1 = 22, T2 = 3200.

We compared the Spearman correlation between the

word2vec baseline, embeddings trained with feature-based

context modeling, and final embeddings after additional

smoothing. Figure 1a shows that our methods provide sub-

stantial gains on rare words, particularly for very infrequent

ones. Figures 1b/1c show that our methods do not harm

the vector quality for frequent words. Since T1 = 22, the

smoothing model does not affect words with frequency larger

than 22, especially for WS353 and SimLex999, where the

word frequencies are generally very high.

E. Analysis of Feature Hashing

We further analysed the contribution of the features without

further smoothing. The size of feature set F ranged from 105

to 2 × 107. Figure 2a shows that the Spearman correlation

for rare words increases with increasing |F |, while Figure 2b

shows that the choice of |F | does not exert any substantial

influence on the Spearman correlation on frequent words.

For further analysis, we also compare the Spearman correla-

tion between feature-based modeling and the regular word2vec

skip-gram model under the same parameters for more specific

test subsets. Figure 3 shows that the feature-based model has

apparent advantages on rare words.

As an example, consider the rare word inexpert, which is

semantically similar to unprofessional. It turns out that with

feature-based context modeling (again forgoing the additional

context-based smoothing step), the cosine angle between their

respective vectors improves from 0.25 to 0.52. The word

inexpert occurs only twice in our corpus, and one of the sen-

tences is: The story’s technique still seems somewhat inexpert,
with passages of local color description occasionally inter-
rupting the flow of the narrative. The bigram seems somewhat
has 14 occurrences. Examples of words with the same cue

(“seems”, “somewhat”, “-”) are listed in Table II. The

last column shows the similarity between a word w and the

word unprofessional. The second and third columns show the

improvement of similarities between w and inexpert. Thus, a

higher similarity between inexpert and unprofessional results

from increasing the similarity between inexpert and words

similar to unprofessional.

(a) Spearman correlations on RW and RWt subsets

(b) Spearman correlations on RWs subsets

(c) Spearman correlations on standard datasets

Fig. 1: Main results

F. Analysis of Smoothing Procedure

Figure 3 evaluates smoothing alone, without the feature-

based modeling, in comparison with the full model. Recall that

the smoothing method is applied only to rare words, for which

the threshold T1 is relatively small. Hence, it has almost no
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(a) Dataset RWt with rare words

(b) Dataset RWt with common words

Fig. 2: Spearman correlation for various feature set sizes

Fig. 3: Model with and without our features

impact on the results for WS353 and SimLex999, implying

that it can safely be applied without distorting the results

of frequent words. For the RW data set, we do not obtain

statistically significant improvements with smoothing alone,

yet we obtain even further gains over feature hashing when

Word w vw · vi v′w · v′i vw · vu
inappropriate 0.34 0.43 0.53

portly 0.36 0.59 0.35
flawed 0.33 0.41 0.34
naive 0.31 0.43 0.31

suspect 0.30 0.37 0.28
arbitrary 0.44 0.48 0.27

TABLE II: Case study, where vw: normalized embedding

vector of word w from the model without our features, v′w:

normalized embedding vector of w from the model with our

features, u: the word unprofessional, i: the word inexpert.

it is combined with smoothing. This is because smoothing

hinges on having sufficiently accurate vectors to start with.

This is achieved when both techniques are combined.

IV. CONCLUSION

We have shown that significantly improved modeling of

rare words is possible by 1) accounting for the context in

a more fine-grained manner to make the best possible use of

the limited information that we have in few-shot learning, and

2) applying smoothing to mitigate the effects of data sparsity.

The method proves fairly safe to apply, as it improves vectors

of rare words without distorting those of frequent words.
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