
The Streaming Complexity of Cycle Counting, Sorting By Reversals, and Other
Problems∗

Elad Verbin † Wei Yu ‡

Abstract
In this paper we introduce a new technique for proving
streaming lower bounds (and one-way communication lower
bounds), by reductions from a problem called the Boolean
Hidden Hypermatching problem (BHH). BHH is a gener-
alization of the well-known Boolean Hidden Matching prob-
lem, which was used by Gavinsky et al. to prove an exponen-
tial separation between quantum communication complexity
and one-way randomized communication complexity. We are
the first to introduce BHH, and to prove a lower bound for
it.

The hardness of the BHH problem is inherently one-
way: it is easy to solve BHH using logarithmic two-way
communication, but it requires

√
n communication if Alice

is only allowed to send messages to Bob, and not vice-versa.
This one-wayness allows us to prove lower bounds, via re-
ductions, for streaming problems and related communication
problems whose hardness is also inherently one-way.

By designing reductions from BHH, we prove lower
bounds for the streaming complexity of approximating the
sorting by reversal distance, of approximately counting the
number of cycles in a 2-regular graph, and of other problems.

For example, here is one lower bound that we prove, for
a cycle-counting problem: Alice gets a perfect matching EA

on a set of n nodes, and Bob gets a perfect matching EB on
the same set of nodes. The union EA ∪EB is a collection of
cycles, and the goal is to approximate the number of cycles
in this collection. We prove that if Alice is allowed to send
o(
√
n) bits to Bob (and Bob is not allowed to send anything

to Alice), then the number of cycles cannot be approximated
to within a factor of 1.999, even using a randomized protocol.
We prove that it is not even possible to distinguish the case
where all cycles are of length 4, from the case where all cycles
are of length 8. This lower bound is “natively” one-way:
With 4 rounds of communication, it is easy to distinguish
these two cases.

1 Introduction

Streaming algorithms are algorithms that read the in-
put from left to right, use a small amount of space, and
approximate some function of the input. Their behav-
ior is typically measured by a tradeoff between space
consumption and approximation factor. Some classi-
cal streaming problems are for example estimating fre-
quency moments, finding approximate quantiles, and
other statistics of data-sets (see [26] for more). In re-
cent years, research has increasingly focused on stream-

∗This work was supported in part by the National Natural Sci-
ence Foundation of China Grant 60553001, the National Basic Re-
search Program of China Grant 2007CB807900, 2007CB807901.
†Aarhus University. elad.verbin@gmail.com
‡ITCS, Tsinghua University. zig.wei@gmail.com

ing algorithms for estimating complex distance metrics
between strings, such as earth mover distance [2], edit
distance [4, 5, 3], and others. These are interesting
both because of their relevance in applications, and be-
cause they are so challenging: they provide good testing
grounds for exploring current techniques and coming up
with new ones, both for upper bounds and for lower
bounds.

Streaming lower bounds (i.e. lower bounds on the
space required) often rely on reductions to communica-
tion complexity: we give Alice the first half of the input,
give Bob the second half, and require them to return an
answer to the problem. A lower bound on communi-
cation complexity immediately implies a lower bound
on the space usage of a streaming algorithm. In fact,
since the input is read left-to-right, it is enough to prove
a lower bound on the one-way communication complex-
ity, namely where Alice is only allowed to send messages
to Bob, but not vice-versa (and Bob is the player who
outputs the answer). However, in many lower bounds
the one-wayness is never used: the communication lower
bound is proved in the two-way setting, i.e. when Alice
and Bob can communicate back and forth. This is a
strength, not a weakness: it means that the community
is proving stronger lower bounds than those actually
necessary. However, considering the fact that for some
problems (e.g. edit distance) the known lower bounds
are exponentially far from the known upper bounds,
this might arouse suspicion that we are missing tech-
niques for proving natively one-way lower bounds. With
enough understanding of one-way bounds we might gain
the tools to prove stronger streaming lower bounds than
those known. (Andoni and Krauthgamer explicitly dis-
cuss this point in [4], and suggest that to get better
streaming lower bounds for edit distance, it might be
prudent to prove “natively one-way” lower bounds for
edit distance.) Indeed, the current paper focuses on
problems whose lower bounds are natively one-way, in
the sense that the two-way complexity of many of them
is exponentially smaller than the one-way complexity.

Many classical problems, such as frequency mo-
ments, can be reduced to communication problems such
as the Gap-Hamming problem (see e.g. [23, 10, 11]),

11 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

and the Set Disjointness problem [9, 1]. For problems
of estimating complicated metrics such as those dis-
cussed above, lower bound techniques seem to be much
more complicated, requiring embedding arguments [3]
and direct sum arguments, among others. Naturally,
progress on lower bounds has been slow for those prob-
lems, and the lower bounds proved are typically loga-
rithmic, not polynomial.

In this paper we show a technique for proving
streaming lower bounds that uses one-wayness in an in-
herent manner, and proving nearly-linear lower bounds
on the space usage. (Note that linear space is suf-
ficient for any streaming problem since we can just
store the whole input). We prove lower bounds for
an approximate cycle-counting problem, for estimating
the sorting by reversal distance, and for other prob-
lems. Our techniques almost, but not quite, prove lower
bounds for the edit distance with block moves prob-
lem, which was studied by Cormode and Muthukrish-
nan [13].1 Our lower bounds are proved by a series of re-
ductions to a seemingly “canonical problem” (which we
introduce), called Boolean Hidden Hypermatching
(BHH); this problem is a variant on the well-known
Boolean Hidden Matching problem [18, 19]. The reduc-
tions that we show to this problem, while non-trivial, do
not require technically-complicated tools. This raises
hope that there might be other results that can be
proved by similar reductions, creating a new “canonical
problem”, along with Gap Hamming, Disjointness,
etc. The BHH problem seems to capture the hardness
of the problems that we study in various natural ways,
and it seems like it might capture aspects of hardness
of other problems.

We proceed by describing some of the problems
discussed in this paper, and the lower bounds we prove
for them.

1.1 The Problems We now describe some of the
problems we consider in this paper, in their communi-
cation versions. Recall that each one-way communica-
tion lower bound immediately implies a streaming lower
bound.

The Boolean Hidden Hypermatching problem has a
slightly baroque definition, so we show here a simplified
definition that captures the spirit of the problem. See
Definition 2.5 for the actual definition.

Notice most of these are decision problems with a
promise, in the sense that there is a promise on the

1We mention this since the edit distance with block moves
problem, suggested to us by Robert Krauthgamer, was the
original motivation for our work. We have not proved a lower

bound on it, but we do believe that the techniques in the current
paper can eventually prove a lower bound for this problem as well.

inputs of Alice and Bob, which states that one of two
cases hold, and the goal is always to decide which of the
two cases holds. This kind of problems are particularly
suitable when discussing approximation; for example
they can ask: given that the value of the instance is
either ≤ a or ≥ b, decide between the case where it
is ≤ a and the case where it is ≥ b. This kind of
hardness implies a hardness of approximation up to a
multiplicative value of b/a, but it is conceptually more
“fine-grained”.

Boolean Hidden Matching (BHM) – Inaccu-
rate Version. In this problem, Alice is given an n-bit
string x ∈ {0, 1}n. Bob gets a perfect matching M on
n vertices. Thus, the n bits of Alice are matched up
in pairs, but the matching is not known to Alice. The
promise is that either each matched-up pair of bits is
unequal, or each matched-up pair of bits is equal. The
goal is to determine which of these two cases holds.

Gavinsky et al [18, 19] proved a lower bound of
Ω(
√
n) for a variant of this problem called Partial

Matching. We extend that result to the Boolean
Hidden Matching problem in this paper.

Boolean Hidden HyperMatching (BHH) –
Inaccurate Version. This is the same as the BHM
problem, but where the matching M is in fact a t-
uniform hypermatching. In other words, the n bits of
Alice are partitioned to n/t disjoint sets of cardinality
t each, and the promise is that either each matched-up
set of bits XORs to 1, or each matched-up set of bits
XORs to 0. The goal is to determine which of these two
cases holds.

For this problem, we prove a lower bound of
Ω(n1−1/t). The proof is similar to that of [19] but we
need to generalize various aspects of the proof to deal
with hypermatchings and the stronger promise.

Cycle Counting – Gap Version. Alice gets a
perfect matching EA on a bipartite graph with n vertices
on each side, and Bob gets a prefect matching EB on
the same graph. The union EA ∪ EB is a collection of
disjoint cycles. They wish to approximate the number
of cycles in the union. The goal is to decide between
the case that the number of cycles is ≤ a and the case
where the number of cycles is ≥ b.

We consider the special case of this problem where
b = 2a and where b divides n (e.g. b = n/2, n/3, . . .).
We prove a lower bound of Ω

(
(n/2)1−b/n

)
on the

randomized one-way communication complexity. This
implies, for example, that when we wish to decide
between the case that there are ≤ n/4 cycles and
the case there are ≥ n/2 cycles, the communication
complexity is Ω(

√
n). This lower bound is proved by a

reduction to the Boolean Hidden Hypermatching
problem.

12 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Deterministic variants of this problem was studied
by Raz [27] and by Harvey [22], but the deterministic
case is very different from the randomized case. In
particular, it is easy to see that a simple hashing-
based protocol can estimate to excellent accuracy the
number of cycles of length 2, yielding a protocol that
distinguishes the case of ≤ 0.1n cycles from the case of
≥ 0.9n cycles with O(1) communication and probability
of success 0.999. Such a protocol probably does not exist
in the deterministic setting.

Sorting by Reversals. The input is a signed
permutation x of {1, . . . , n}: this is a permutation
where each element is also assigned a sign of plus or
minus. Alice gets the first half of this permutation (i.e.
the first n/2 elements), and Bob gets the second half.
They wish to estimate the reversal distance, namely the
smallest number of reversals required to transform x
to the positive identity permutation, (+1,+2, . . . ,+n).
A reversal is the operation of choosing a block of the
permutation x, reversing the order of the elements and
flipping the signs.

There is a known (and rather complicated)
polynomial-time algorithm that given x computes ex-
actly the reversal distance of x [20]. There is even a
linear-time algorithm that achieves this [6]. However,
here we are interested in the communication complexity
(or streaming complexity) of approximating the reversal
distance.

For this problem, we prove a lower bound of
Ω((n/8)1−1/t) on the randomized one-way communi-
cation complexity of getting a (1 + 1/(4t − 2) − ε)-
multiplicative approximation of the reversal distance
(for any ε > 0). For example, to get a 1.166-
approximation, Ω(

√
n) communication is required. To

get a 1.0001-approximation, Ω(n0.999) communication is
required.

We also prove lower bounds for sorting by block
interchanges and a few other problems. Furthermore,
we discuss the problems of sorting by transpositions and
of edit distance with block moves, but we do not prove
lower bounds for them.

One observation to note is that BHH is qualitatively
different than sorting by reversals or cycle counting, in
that it is highly non-symmetric: the role of Alice is
entirely different than the role of Bob. Another way
to express this idea is that for the BHH problem, if Bob
is allowed to send one message to Alice instead of Alice
sending a message to Bob, the BHH problem becomes
easy (t log n bits of communication suffice). This does
not hold for the other problems: in the other problems,
if Bob is allowed to send one message to Alice, the lower
bounds stay the same.

The structure of our reductions is depicted in Fig-

ure 1.
In Section 5 we outline some ideas behind this work

and pose some conjectures that might motivate future
work. The reader might wish to skim it before moving
on.

2 Main Results

In this section we prove that Sorting-by-Reversal
and Sorting-by-Block-Interchanges in the
streaming model requires space Ω((n/8)1−1/t) to
achieve approximation factor 1 + 1/(4t − 2). That is,
in order to achieve 1 + ε approximate, a lower bound of

Ω((n/8)
1−2ε
1+2ε) is required.

2.1 List of Applications The main problem we
investigate is the Sorting-by-Reversal problem
in the streaming model. We also talk about
Sorting-by-Block-Interchanges and Sorting-
by-Transpositions problem. However, we do not
have a formalized lower bound for the Sorting-by-
Transpositions problem.

Definition 2.1. (Sorting-by-Reversal) Given a
data stream of a permutation S on {1, . . . , n} where
each coordinate of S is also assigned with a sign of
plus or minus. We define a reversal r(i, j) on x
transforming x = (x1, . . . , xn) to

x′ = (x1, . . . ,xi−1,−xj ,−xj−1,
. . . ,−xi, xj+1, . . . , xn).

In the Sorting-by-Reversal problem we want to
return the minimum number of reversals sbr(S) in order
to sort S (i.e. transform S into (1, 2, . . . , n)) within 1+ε
multiplicative factor by scanning the data stream in one
pass.

Definition 2.2. (Sorting-by-Block-Interchanges)
Given a string of permutation x, we define a block-
interchange r(i, j, k, l) where 1 ≤ i ≤ j < k ≤ l ≤ n on
x transforming x = (x1, . . . , xn) to

x′ = (x1, . . . , xi−1, xk, xk+1, . . . , xl,

xj+1, . . . , xk−1, xi, xi+1, . . . , xj , xl+1, . . . , xn).

The goal of Sorting-by-Block-Interchanges
is to approximate the minimum number of block-
interchanges to sort x in increasing order (i.e.
1, 2, . . . , n) by scanning one pass on the input.

The theorems giving lower bounds are Theorem 2.3
and Theorem 2.2 respectively.

13 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Boolean Hidden Hypermatching→ Gap Cycle-Counting→
{

Sorting-by-Reversal
Sorting-by-Block-Interchange

Figure 1: Reduction

Definition 2.3. (Sorting-by-Transpositions)
Given a string of permutation x, we define a trans-
position t(i, j, k) where 1 ≤ i ≤ j < k ≤ n on x
transforming x = (x1, . . . , xn) to

x′ = (x1, . . . , xi−1, xj+1, . . . , xk,

xi, xi+1, . . . , xj , xk+1, . . . , xn).

The goal of Sorting-by-Transpositions is to ap-
proximate the minimum number of transpositions to sort
x in increasing order by scanning one pass on the input.

A polynomial approximation algorithm in the non-
streaming model was proposed in [12]. We do not have
a lower bound for the SBT problem in this paper but
we believe it is closely related to our result (see Conjec-
ture 5.3).

2.2 Cycle Counting and Boolean Hidden Hy-
permatching Problem In this subsection we define
the Gap Cyc-Counting (abbr. GCC) problem used
in the reduction to get the lower bound for above listed
problems. The GCC problem is a communication com-
plexity problem with parameters a and b as following.

Definition 2.4. (GCCn(a, b)) Let G = (U ∪ V,EA ∪
EB) to be a bipartite graph with U and V being the
vertices on two sides respectively where |U | = |V | = n.
Alice receives EA, a perfect matching in G; and Bob
receives EB, another perfect matching in G. In the
Gap Cycle-Counting problem it is promised that the
number of cycles in G is either ≤ a or ≥ b. They want
to

• return 0, when the number of cycles in G ≤ a;

• return 1, when the number of cycles in G ≥ b.

Note that this problem could also be defined as deciding
the number of cycles is either ≤ a or ≥ b in the product
uv of two permutations u, v ∈ Sn where Sn is the
symmetric group of order n.

We reduce the GCC problem from the Boolean
Hidden Hypermatching problem, which is a variant
of the Partial Matching problem proposed in [19],
which is actually a generalization of the Boolean
Hidden Matching [8] problem.

Definition 2.5. (BHHt
n) The Boolean Hidden

Hypermatching problem is a communication com-
plexity problem where Alice gets a boolean vector
x ∈ {0, 1}n where n = 2kt for some integer k, and
Bob gets a perfect hypermatching M on n vertices
where each edge has t vertices and a boolean vec-
tor w of length n/t. Let Mx denote the length-n/t
boolean vector (

⊕
1≤i≤t xM1,i

, . . . ,
⊕

1≤i≤t xMn/t,i
)

where (M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) are the

edges of M . It is promised that either Mx ⊕ w = ~1
or Mx ⊕ w = ~0. The problem is to return 1 when
Mx⊕ w = 1n/t, and 0 when Mx⊕ w = 0n/t.

The main theorem of this paper is the following
lower bound for BHHt

n.

Theorem 2.1. The randomized one-way communica-
tion complexity of BHHt

n when n = 2kt for some integer
k ≥ 1 is Ω(n1−1/t).

This theorem is proved in Section 3. This lower
bound is the best possible up to a log factor because
of a birthday paradox upper bound: Alice can just
send O(n1−1/t) random indices from x and with good
probability Bob will get all of the values of one of
the hyperedges. For deterministic and one-sided error
protocols we can get linear lower bounds; we omit their
proofs here.

Lemma 2.1. If there is a randomized one-way protocol
for GCC2n(n/t, 2n/t), then there is a randomized one-
way protocol for BHHt

n problem on n vertices using the
same communication and error probability.

Proof. Consider an instance of the BHHt
n problem:

Alice gets a boolean vector x of length n, and Bob gets
a hypermatching M of n/t edges where each edge is of
size t, as well as a boolean vector w of length n/t.

We now construct an instance of the GCC problem.
It is a bipartite graph (U ∪ V,EA ∪ EB), where U =
{u1, . . . , u2n} and V = {v1, . . . , v2n}. Here, EA and
EB are Alice’s and Bob’s input respectively which are
perfect matchings in the bipartite graph. For each
i ∈ [n], we place the following edges in EA:

• If xi = 0 then place (u2i−1, v2i−1) ∈ EA and
(u2i, v2i) ∈ EA; we call this a parallel gadget;

14 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

• If xi = 1 then place (u2i−1, v2i) ∈ EA and
(u2i, v2i−1) ∈ EA; we call this a cross gadget.

That is, a “parallel gadget” for xi = 0, or a “cross
gadget” for xi = 1.

Then for each hyperedge (i1, i2, . . . , it) ∈M ,

• For k = 1, 2, . . . , t− 1, (u2ik−1, v2ik+1−1) ∈ EB and
(u2ik , v2ik+1

) ∈ EB ;

• For k = t, if wi = 0, we just let
(u2it−1, v2i1−1), (u2it , v2i1) ∈ EB ; if wi = 1, we
let (u2it−1, v2i1), (u2it , v2i1−1) ∈ EB . (The latter
case means that we add an extra “cross gadget” if
wi = 1.)

It is easy to see that if |{k|xik = 1}| = p, then we go
through p+wi cross gadgets when traversing from u2i1−1
along the cycle. Thus, if p+wi is odd then there will be
one cycle of length 4t, otherwise there will be two cycles
of length 2t. So if the correct result for BHHt

n is 1, we
know that for any hyperedge i, p + wi is always odd.
It means that the number of cross gadgets is odd, so
each hyperedge will form two cycles of length 2t, which
means the number of cycles is 2n/t. If the result is 0,
by a similar argument the number of cycles will be n/t.

A randomized protocol for GCC(n/t, 2n/t) on 4n
vertices will, with probability 1 − ε, return 0 if the
number of cycles is ≤ n/t and will return 1 if the number
of cycles is ≥ 2n/t. So for an input from BHHt

n we
can turn it into two matchings in the above way. After
that we can invoke the protocol for GCC2n(n/t, 2n/t)
vertices to get a protocol for BHHt

n.

By using Lemma 2.1 with Theorem 2.1, we obtain
the following lower bound for Gap Cycle-Counting
problem.

Corollary 2.1. The randomized one-way commu-
nication complexity with error probability 1/100 of
GCCn(n/2t, n/t) for any integer t|n is Ω((n/2)1−1/t).

Note that this reduction actually suffers from a loss
in the hardness of the GCC problem. The GCC problem
is hard no matter if the one-way communication is from
Alice to Bob or from Bob to Alice. However, the BHH
problem is easy if Bob speaks to Alive, since Bob could
just send one edge using t log n.

2.3 Hardness of Sorting-by-Reversal and
Sorting-by-Block-Interchange We already see
the hardness of the Gap Cycle-Counting (abbr.
GCC) problem, and we are going to show that the
Sorting-by-Reversal (abbr. SBR) and Sorting-
by-Block-Interchanges (abbr. SBI) problems in

the streaming model are also hard. We do this by
relating the number of cycles in the breakpoint graph of
the permutation to the number of cycles in the input
of GCC.

Definition 2.6. (Breakpoint Graph) For a signed
permutation S of [n]2, the breakpoint graph G of S is
constructed by the following algorithm.

• From S we construct another integer array T of
length 2n+ 2.

– If S[i] > 0, T [2i] = 2|S[i]| − 1, T [2i + 1] =
2|S[i]|.

– If S[i] < 0, T [2i] = 2|S[i]|, T [2i + 1] =
2|S[i]| − 1.

– T [1] = 0, T [2n+ 2] = 2n+ 1.

• G = ([2n + 2], E), where E is constructed as
following.

– For 1 ≤ i ≤ n+ 1, let (2i− 1, 2i) ∈ E and we
call these edges black edges.

– If |T [j] − T [k]| = 1 and ∀1 ≤ i ≤ n, {j, k} 6=
{2i, 2i + 1}, let (j, k) ∈ E and we call these
gray edges.

In short, we expand an integer in S to two according
to its sign, after that we insert 0 at the front and 2n+ 1
to the rear. After that, we connect every other pairs
and every pair that the value only differs by one but
not expanded from the same integer. The breakpoint is
a standard and useful tool to get SBR and SBI distance
from the number of cycles. For further understanding
on the breakpoint graph (sometimes also called as cycle
graph), the reader might want to read [20, 17].

Lemma 2.2. Let EA and EB to be two perfect match-
ings on bipartite graph of size 2n (n vertices on each
side). And let C to be the number of cycles in EA∪EB.
We can transform EA to an integer array S1 and EB
to another integer array S2, such that S = S1 + S2 is
a signed permutation of [4n] which has 2C + 1 cycles
in its breakpoint graph. Moreover, let S′1 and S′2 sat-
isfy S′1[i] = |S1[i]| and S′2[i] = |S2[i]|, then S′ satisfying
S′[i] = |S[i]| is an unsigned permutation of [4n] which
also has 2C + 1 cycles in its breakpoint graph.

Before proving the lemma, we first show how to get
the lower bound of SBI by using this lemma.

2We use [n] to denote {1, 2, . . . , n}.

15 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Theorem 2.2. The lower bound of the space in
the streaming model for Sorting-by-Block-
Interchange when we want to approximate the correct
distance up to multiplicative factor 1 + 1/(4t − 2) − ε
for any small constant ε is Ω((n/8)1−1/t).

Proof. Assuming the space used in the streaming
algorithm for computing the Sorting-by-Block-
Interchange distance here is S, we can cut the stream
in the middle and split it into two sets of numbers of
size n/2. Thus by the standard reduction we can turn
the streaming algorithm into a one-way communication
complexity protocol, where Alice holds the first part
of the stream and the Bob holds the second part of the
stream. After Alice simulates her input with the stream-
ing algorithm, she can send S bits to Bob which is the
memory sketch of the algorithm, and Bob can resume
the algorithm after that to get the correct answer. Thus,
if we can give a lower bound for this one-way communi-
cation complexity version of the problem, there will be
a lower bound for S.

Say in the GCCn/4(n/4t, n/8t) problem Alice re-
ceives a matching EA in a bipartite graph of n/2 ver-
tices (n/4 vertices on each side) and Bob receives an-
other matching EB and they want to decide the number
of cycles in EA∪EB is either ≥ n/4t or ≤ n/8t. We can
transform EA and EB to S′1 and S′2 by using Lemma 2.2.
Let C to be the number of cycles in EA ∪ EB , then we
know that the number of cycles in the breakpoint graph
of S′1+S′2 is 2C+1. We also know that the SBI distance
of S′ = S′1 + S′2 satisfies sbi(S′) = (n − 2C)/2 because
of the following lemma from [12].

Lemma 2.3. (Theorem 4 from [12]) The Sorting-
by-Block-Interchange distance for a permutation x
of {1, 2, . . . , n} is

sbi(x) =
n+ 1− c(x)

2

where c(x) is the number of cycles in the breakpoint
graph of x.

Assuming we have a streaming algorithm for ap-
proximating the SBI distance using space S, by the
above discussion we can turn it into a one-way com-
munication complexity protocol for approximating the
SBI distance of S′ by using S bits where Alice holds S′1
and Bob holds S′2.

However, if this protocol can approximate up to
1 + 1/(4t − 2) − ε for some integer t ≥ 2, then we
can distinguish SBI distance n − n/2t from distance
n−n/4t since (1+1/(4t−2)−ε) ·(n−n/2t) < n−n/4t.
Thus it means that a protocol that approximates SBI
distance within 1 + 1/(4t − 2) − ε will be able to

distinguish the C ≤ n/4t case and the C ≥ n/2t case by
simply comparing (n− 2sbi(S′))/2 with n/2t. By using
Corollary 2.1 we have a lower bound of Ω((n/8)1−1/t)
for approximating SBI distance on an array of length n
with factor 1 + 1/(4t− 2)− ε for any constant ε > 0.

We are expecting to repeat the same proof for SBR.
But this does not work straight forward because we do
not have things like Lemma 2.3 for SBR. We can only
have the following conditional lemma for SBR from [20].

Lemma 2.4. (Theorem 4 from [20]) If no cycles in
the breakpoint graph G are unoriented, then the optimal
number of reversals is n − c, where c is the number of
cycles in the breakpoint graph.

And the definition for oriented cycles is as following.

Definition 2.7. (Oriented Edges and Cycles)
Say a cycle i1, i2, . . ., ik where i1 is the small-
est vertex in the cycle is unoriented if k > 2 and
i1 < i2 < . . . < ik. Otherwise, we call the cycle
oriented. It could be observed that in the breakpoint
graph a cycle is oriented iff it has length 2, or there is
a gray edge (i, j) in the cycle that both i and j are left
ends (or both right ends) of black edges.

Fortunately, we can prove that the breakpoint graph
constructed in our reduction only has oriented cycles.

Lemma 2.5. All cycles in the breakpoint graph of the
signed permutation constructed in Lemma 2.2 are ori-
ented.

So by combining this lemma with Lemma 2.4 we
can have the lower bound for SBR by repeating the
same proof in Theorem 2.2 with SBR.

Theorem 2.3. The lower bound of the space in the
streaming model for Sorting-by-Reversal when we
want to approximate the correct answer up to multiplica-
tive factor 1 + 1/(4t− 2)− ε for any small constant ε is
Ω((n/8)1−1/t), where n is the number of integers in the
stream.

Proof. Using S instead of S′, and using Lemma 2.5 and
Lemma 2.4 instead of Lemma 2.3, it is easy to see we
can repeat the same proof for 2.2 to get the same lower
bound.

2.4 Proof of Lemma 2.2 and Lemma 2.5 There
are two lemmas still left unproved, we prove them here.

Lemma 2.6. (Lemma 2.2 Restated) Let EA and EB
to be two perfect matchings on bipartite graph of size 2n

16 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(n vertices on each side). And let C to be the number of
cycles in EA ∪EB. We can transform EA to an integer
array S1 and EB to another integer array S2, such that
S = S1 + S2 is a signed permutation of [4n] which has
2C + 1 cycles in its breakpoint graph. Moreover, let S′1
and S′2 satisfy S′1[i] = |S1[i]| and S′2[i] = |S2[i]|, then S′

that will satisfy S′[i] = |S[i]| is an unsigned permutation
of [4n] which also has 2C + 1 cycles in its breakpoint
graph.

Proof. Starting with EA and EB as perfect matchings,
we construct S as following.

• For each edge (ui, vj) ∈ EA, S1[2j] = 2j and
S1[2j−1] = −(2i+2n). Since EA is a permutation,
all the indices in {1, . . . , 2n} are assigned.

• For each edge (ui, vj) ∈ EB , S2[2i−1] = 2n+2i−1
and S2[2i] = −(2j − 1).

The breakpoint graph G = (P,E) of S could be
constructed according to Definition 2.6, which is also
illustrated in Figure 2.

We are going to show the number of cycles in the
breakpoint graph G is 2C + 1, where C is the number
of cycles EA ∪ EB .

Let ui1 → vj1 → · · · → uim → vjm → ui1 be a cycle
of length m in G. And we know that (uik , vjk) ∈ EA and
(uik+1

, vjk) ∈ EB . We are going to show there are two
corresponding cycles in G, say 4n+4i1−1→ 4j1−4 99K
4j1 − 3 → 4n + 4i2 + 1 99K · · · → 4n + 4i1 − 2 99K
4n + 4i1 − 1 and 4n + 4i1 → 4j1 − 1 99K 4j1 − 2 →
4n+ 4i2 − 2 99K · · · → 4n+ 4i1 + 1 99K 4n+ 4i1 where
→ denotes black edge and 99K denotes gray edge. Note
that the direction here are just for the convenience of
presentation, the cycles are actually undirected. This
could be observed by the following facts.

• (4j1−4, 4n+4i1−1) and (4n+4i1, 4j1−1) are black
edges. This is because (ui1 , vj1) ∈ EA, so either
2j1 − 2,−(2n + 2i1), 2j1 are consecutive integers
in S or j1 = 1 and −(2n + 2i1), 2 are consecutive
integers in S.

• (4j1 − 1, 4j1 − 2) and (4j1 − 4, 4j1 − 3) are gray
edges.

• (4j1 − 3, 4n + 4i2 + 1) and (4j1 − 2, 4n + 4i1 − 4)
are black edges. This is because (ui2 , vj1) ∈ EB ,
so either 2n + 2i2 − 1,−(2j1 − 1), 2n + 2i2 + 1 are
consecutive integers in S or i2 = n and 4n,−(2j1−
1) are the last integers in S.

• (4n+4i2−2, 4n+4i1−3) and (4n+4i2+1, 4n+4i2)
are gray edges.

All these cycles in EA ∪ EB will use 8n edges in
all. There are only two edges left. But there is another
cycle which is 4n + 1 → 4n + 2 99K 4n + 1 of length 2
which are just formed by the edges left. So the number
of cycles in G is 2C+1, where C is the number of cycles
in EA ∪ EB . (And, the reader could also observe that
all the cycles in G has twice the length as the cycles in
EA ∪ EB .)

For the cycles in the breakpoint graph of S′ the
proof is similar. We omit the details and refer the reader
to (d) in Figure 2.

Lemma 2.7. (Lemma 2.5 Restated) All cycles in
the breakpoint graph of the signed permutation con-
structed in Lemma 2.2 are oriented.

Proof. According to the construction all the gray edges
except (4n+ 2, 4n+ 1) are of the kind (4j1 − 1, 4j1 − 2)
,(4j1 − 4, 4j1 − 3), (4n + 4i2 − 2, 4n + 4i1 − 3) and
(4n+ 4i2 + 1, 4n+ 4i2). And since 4j1− 1, 4j1− 2, 4n+
2i1 + 1, 4n + 4i1 are all right ends of black edges, and
4n + 4i2 − 2, 4n + 4i1 − 3, 4j1 − 4, 4j1 − 3 are all left
ends of black edges, we have that all these cycles are
oriented. We refer the reader to (c) in Figure 2.

And the cycle 4n + 1 → 4n + 2 99K 4n + 1 is just
a length 2 cycle, which is also oriented. Thus it means
the SBR distance is 4n+ 1− (2C + 1) = 4n− 2C.

3 Lower bound of BHH

In this section we prove a lower bound on the BHHt
n

problem. Together with the reductions in the previous
sections, it gives the main result of the paper.

3.1 Notations A t-dimensional hypermatching M is
a set of vertex disjoint edges, and each edge is a set of
t vertices. In this paper for a given boolean vector x
we are in particular interested in the XOR value of the
edges on this vector. That is, if the edges of M are
(i1,1, . . . , i1,t), · · · , (in/t,1, . . . , in/t,t), we are interested
in values

⊕
1≤k≤t xi1,k , · · · ,

⊕
1≤k≤t xin/t,k . We use Mx

to denote this vector.
Another way of representing the hypermatching M

is a n/t × n matrix. Each row of the matrix has t 1’s
and n − t 0’s denote the corresponding position of an
edge. The advantage of this representation is that when
computing the XOR values of all the edges on vector x in
the matching, it is equivalent to performing the matrix-
vector multiplication Mx. Thus we abuse notation and
useM both for the hypermatching and the matrix. Note
that in the matrix multiplication here, all computations
are modulo 2.

In the t = 2 case M is a perfect matching on n
vertices. This was the case discussed in [19].

17 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ui

uj

vk

vl

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a)

S1

S2

2k-2 2k-(2i+2n) 2l-2 2l-(2j+2n)

2j+2n-1 2j+2n+1-(2k-1) 2i+2n-1 2i+2n+1-(2l-1)

(b)

0

.

.

4k-5 4k-14i+4n 4l-5 4l-14j+4n. . . 4k-4 4i+4n-1 4k 4l-4 4j+4n-1 4l.

4j+4n-3 4j+4n+14k-2 4i+4n-3 4i+4n+14l-2. . .4j+4n-2 4k-3 4j+4n+2 4i+4n-2 4l-3 4i+4n+2 . . . 8n+1. . .
(c)

0 4k-5 4k-14i+4n-1 4l-5 4l-14j+4n-1. . . 4k-4 4k 4l-4 4j+4n 4l.

4j+4n-3 4j+4n+14k-3 4i+4n-3 4i+4n+14l-3. . .4j+4n-2 4k-2 4j+4n+2 4i+4n-2 4l-2 4i+4n+2 . . . 8n+1. . .
(d)

S1[2k-2] S1[2k-1] S1[2k] S1[2l-2] S1[2l-1] S1[2l]

S2[2j-2] S2[2j-1] S2[2j] S2[2i-2] S2[2i-1] S2[2i]

4i+4n

Figure 2: Example of building the breakpoint graph. Dashed edges are gray edges while solid ones (horizontal ones)
are black edges. (a) An cycle in EA ∪ EB . (b) Corresponding integers in S1 and S2. (c) The two corresponding
cycles in the breakpoint graph. (d) The breakpoint graph in the unsigned case. Dashed lines are gray edges
and the solid ones are black edges. Note: all orientations are for the convenience of presentation, all edges are
undirected in fact.

For two distributionsD andD′, let ∆(D,D′) denote
the total variance distance between D and D′, which is∑
x |D(x)−D′(x)|.

3.2 Lower bound of BHH We now prove a lower
bound for the BHHt

n problem (see Definition 2.5). The
proof here extends the proof in [19] to t-hypermatching
case when n = 2kt. We are using the same framework
and notations as in [19].

The main difference here is we need to talk about
perfect hypermatching instead of partial matching. In
order to show a lower bound for the perfect matching,
we need to think of the case that n = 2kt and talk
about single parity sets (for definition see below). For
extending to hypermatching, we need to recompute all
the parameters used in [19]. The reader may want to
read [19] to get a better understanding of the proof.

The basic idea of the proof is the following. First,
we apply Yao’s minimax principle, after that we can
talk about deterministic protocols under distributional
inputs. Alice’s message is short, so after Bob looks
at her message, there are typically still many possible
inputs of Alice that he cannot tell apart. In other words,
let l to be the length of the message sent from Alice to
Bob, then the number of inputs for which Alice sends

a specific message is typically 2n−l, which is a large
number. Let X be a r.v. uniformly distributed in a set
of size ≥ 2n−l that corresponds to one specific message
from Alice to Bob. We are going to show that for most of
the hypermatchings M , if 2n−l is large, the distribution
of MX is nearly the same as MX, which means Bob
cannot distinguish these two cases. So l must be large
to make such kind of sets small. Note that unlike [19]
here MX and MX are close to each other, but neither
of them is close to uniform distribution.

Definition 3.1. (Single Parity Set) We call a set
A ⊆ {0, 1}n a single parity set iff ∃c ∈ {0, 1}, ∀x ∈ A,
|x| ≡ c (mod 2), i.e., all the elements in A have the
same weight parity.

18 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Theorem 3.1. Let n = 2pt for some integer p, and x
be uniformly distributed over a single parity set A ⊆
{0, 1}n of size |A| ≥ 2n−l for some l ≥ 1, and let
M be uniformly distributed over the set Mn,t of all t-
hypermatchings on n vertices. There exists a universal
constant γ > 0 (independent of n, l, t, ε), such that for
all ε ∈ (0, 1]: if l ≤ γεn1−1/t then

E
M∈Mn,t

[∆(pM , qM)] ≤ ε,

where pM and qM are the distributions over {0, 1}n/t
whose p.d.f. are

pM (z) =
|{x|x ∈ A,Mx = z}|

|A|
,

and

qM (z) =
|{x|x ∈ A,Mx = z}|

|A|
,

respectively.

It is important n needs to be an even multiple of
t, otherwise there is a simple constant upper bound by
sending the parity of x to Bob. We leave the proof of
this theorem in Section 4, we will show in detail how to
get the lower bound of BHHt

n from it.

Theorem 3.2. (Theorem 2.1 Restated) A one-
way communication complexity protocol that correctly
computes BHHt with error probability ≤ 1/100 has at
least Ω(n1−1/t) bits.

Proof. Think of a protocol with error ≤ ε. By Yao’s
principle, there must be a deterministic protocol which
has distributional error ≤ ε under the following chosen
“hard distribution”. We choose Alice’s input X and
Bob’s input M independently and uniformly at random;
then we choose w = Mx with probability 1/2 and
w = Mx with probability 1/2.

Let Π be the transcript of the protocol. In our case,
Π is just one message, of length ≤ l, sent from Alice to
Bob. The transcript can be thought of splitting Alice’s
input into disjoint single parity sets A1, A2, . . . , A2l+1 ,
where each set contains all the inputs for which she
sends the same message and single parity. Consider all
such sets bigger than 2n/(100 · 2l+1). It is trivial to see
that least 99% of the universe is covered by such sets.
Therefore, with probability 0.99, the message sent from
Alice to Bob is from a set of size ≥ 2n/(100 · 2l+1).

Let such a set to be A, and let X be a random
variable uniformly distributed on A, and let Z = MX
for some M which is a prefect t-hypermatching on n
vertices. Let Z0 = Z and Z1 = Z ⊕ 1n/t. If l ≤ γ/100 ·
n1−1/t − log 100 − 1, then |A| ≥ 2γ/100·n

1−1/t

and we

know A is single parity. Thus we can use Theorem 3.1
to get EM [∆(Z0, Z1)] < 1/100. By Markov bound, for
at least 1− 1/10 fraction of all M , ∆(Z0, Z1) ≤ 1/10.

For all the M in that case, by looking at w Bob
needs to decide which distribution w is from. That
is, Bob needs to distinguish two distributions Z0 and
Z1. Since it is well known that the best protocol
to distinguish 1/10-close (i.e. ∆(Z0, Z1) ≤ 1/10)
distributions errs with probability ≥ 1/2 − 1/40 (see
also [19, Eq 1.1]). So we know that the total error will
be ≥ 9/10·(1/2−1/40)·99% > 1/100, which contradicts
the assumption. Thus l > Ω(n1−1/t) and we are done.

4 Proof for Theorem 3.1

In this section we prove Theorem 3.1.

4.1 Preliminaries on Fourier Analysis Here we
need the standard definitions [15] of discrete Fourier
analysis. Let f : {0, 1}n → R be a function on the
boolean cube. We define the inner product on boolean
functions by

〈f, g〉 = E
x∈{0,1}n

[f(x)g(x)] = E[f · g] .

This also defines the `2-norm

‖f‖2 =
√
〈f, f〉 =

√
E[f2].

The Fourier transform of f is a function f̂ :
{0, 1}n → R defined by

f̂(s) = 〈f, χs〉 = E
y∈{0,1}n

[f(y)χs(y)]

where χS : {0, 1}n → R is the character function
χS(y) =

∏
i∈S(2yi−1). For the sake of convenience, we

also use s to denote the characteristic boolean vector of
s, e.g. χs can also be defined by χs(y) = (−1)y·s. We
will need Pareseval’s identity.

Lemma 4.1. (Parseval) For every function f :

{0, 1}n → R we have ‖f‖22 =
∑
x⊆[n] f̂(s)2.

And we need the following lemma, which is a direct
consequence of the Bonami-Gross-Beckner inequality, or
hypercontractivity inequality from KKL [24]. Let |x|
denote the Hamming weight of x, i.e., number of 1’s in
the boolean vector x.

Lemma 4.2. (KKL [24]) Let f be a function f :
{0, 1}n → {−1, 0, 1}. Let A = {x|f(x) 6= 0}. Then
for every δ ∈ [0, 1] we have

∑
s∈{0,1}n

δ|s|f̂(s)2 ≤
(
|A|
2n

) 2
1+δ

.

19 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

4.2 Main Proof Think of any set A ⊆ {0, 1}n with
|A| ≥ 2n−l. Let f be its characteristic function (i.e.
f(x) = 1 iff x ∈ A), and x be uniformly distributed
on A. The theorem defines the following functions for
z ∈ {0, 1}n/t:

pM (z) =
|{x|x ∈ A,Mx = z}|

|A|
,

and

qM (z) =
|{x|x ∈ A,Mx = z}|

|A|
.

Claim 4.1. For function f : {0, 1}n → {0, 1} which is
an indicator function of a single parity set A ⊆ {0, 1}n
(i.e. f(x) = 1 ⇐⇒ x ∈ A), we have

f̂(v)2 = f̂(v)2.

Proof. First, assume that ∀x ∈ A, |x| ≡ 0 (mod 2),
then we know that ∀v ∈ {0, 1}n, ∀x ∈ A, v · x = v · x.
Thus the following equation holds,

f̂(v) =
1

2n

∑
x∈{0,1}n

f(x)(−1)v·x

=
1

2n

∑
x∈{0,1}n

f(x)(−1)v·x

= f̂(v).

For the ∀x ∈ A, |x| ≡ 1 (mod 2) case it could be shown

in a similar fashion that f̂(v) = −f̂(v).

We prove Theorem 3.1 here.

Proof. By Jensen’s inequality we know that

E
M

[∆(pM , qM)] ≤
√
E
M

[∆(pM , qM)2],

then by Cauchy-Schwarz inequality we have

E
M

[
∆(pM , qM)2

]
≤ 22n/t E

M

[
‖pM − qM‖22

]
.

So by Parseval 4.1 and let rM (z) = pM (z) − qM (z) we
have

22n/t E
M

[
‖pM − qM‖22

]
= 22n/t E

M

 ∑
s∈{0,1}n/t

r̂M (s)2

 .
We are going to use the Fourier coefficients of f to

represent the Fourier coefficients of rM . After that we
classify the Fourier coefficients into two parts: 1) One
part is decaying fast, we bound these by using KKL
(Lemma 4.2); 2) the other part decays slow, but they
are already small, we bound them directly.

Let z · s denote the inner product of z and s (note
that all the plus operations are done in the mod 2 base).
Then we can write r̂M as following

r̂M (s) =
1

2n/t

 ∑
s⊆{0,1}n/t

pM (z)(−1)z·s

−
∑

z∈{0,1}n/t
qM (z)(−1)z·s


=

1

|A| · 2n/t

 ∑
s⊆{0,1}n/t

pM (z)(−1)z·s

−
∑

z∈{0,1}n/t
pM (z)(−1)z·s

 .

Since we know that (−1)z·s+z·s = (−1)|s|, so when |s|
is even we have z · s = z · s and when |s| is odd we
have z · s = 1 − z · s. Thus we know when |s| is even
r̂M (s) = 0. For s satisfying |s| is odd,

r̂M (s) =
2

|A| · 2n/t
∑

z∈{0,1}n/t
pM (z)(−1)z·s

=
2

|A| · 2n/t
(|{x ∈ A|(Mx) · s = 0}|

−|{x ∈ A|(Mx) · s = 1}|)

=
2

|A| · 2n/t
(
|{x ∈ A|x · (MT s) = 0}|

−|{x ∈ A|x · (MT s) = 1}|
)

=
2

|A| · 2n/t
∑

x∈{0,1}n
f(x)(−1)x·(M

T s)

=
2n+1

|A| · 2n/t
· f̂(MT s).

20 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Thus,

22n/t E
M

 ∑
s∈{0,1}n/t

r̂M (s)2



=
22n+2

|A|2 E
M

 ∑
s∈{0,1}n/t
|s| odd

f̂(MT s)2



=
22n+2

|A|2 E
M


∑

v∈{0,1}n
|v|=kt
k odd

∣∣∣{s ∈ {0, 1}n/t|MT s = v}
∣∣∣ · f̂(v)2


=

22n+2

|A|2
∑

v∈{0,1}n
|v|=kt
k odd

Pr
M

[
∃s ∈ {0, 1}n/ts.t.MT s = v

]
· f̂(v)2.

It could be easily observed that for a
fixed k, PrM

[
∃S ∈ {0, 1}n/ts.t.MTS = v

]
are

the same for different v. So let g(k) =
PrM

[
∃S ∈ {0, 1}n/ts.t.MTS = v

]
, we have the fol-

lowing claim to be proved later.

Claim 4.2. Let x ∈ {0, 1}n such that |x| = kt. We
define

g(k) , Pr
M

[
∃z ∈ {0, 1}n/t s.t. MT z = x

]
=

(
n/t
k

)(
n
kt

) ,

where M is uniformly over all t-hypermatchings on n
vertices. Thus g(k) = g(n/t− k) and

g(k) ≤ (en/t/k)k

(n/t/k)kt
= ek · (kt)kt−k · nk−kt.

Since we know that

22n/t E
M

 ∑
s∈{0,1}n/t

r̂M (s)2

 =

22n+2

|A|2
∑

1≤k≤n/t
k odd

g(k)
∑

v∈{0,1}n
|v|=kt

f̂(v)2.

Because A is a single parity set, we have f̂(v)2 =

f̂(v)2 by Claim 4.1. And since g(k) = g(n/t − k) and
2t|n from the statement of the theorem, we have,

22n+2

|A|2
∑

1≤k≤n/t
k odd

g(k)
∑

v∈{0,1}n
|v|=kt

f̂(v)2

=
22n+3

|A|2
∑

1≤k≤n/2t
k odd

g(k)
∑

v∈{0,1}n
|v|=kt

f̂(v)2.

We are going to bound this value by two parts.
Part I (1 ≤ kt < 4l). For a fixed k, let δ = kt/4l,

we have that

g(k) ≤ ek · (kt)kt−k · nk−kt(Claim 4.2)

= ek · δkt · (4γε)kt

(kt)k

≤ εkt

32
· δkt

where the last inequality holds because k ≥ 1, t ≥ 2
and by choosing γ to be a sufficiently small constant
(e.g. 1/1024, independent of k, t).

Thus for a fixed k we have

22n+3

|A|2
g(k)

∑
v:|v|=kt

f̂(v)2 ≤ 22n+3 · εkt

32 · |A|2 · 2kt
∑

v:|v|=kt

δktf̂(v)2

≤ εkt

4
· 22n

|A|2
·
(
|A|
2n

) 2
1+δ

(Lemma 4.2)

≤ εkt

4
· 22n

|A|2
·
(
|A|
2n

)2

= εkt/4.

Summing up, for ε < 1/2, we have

22n+3

|A|2

4l/t∑
k=1
k odd

g(k)
∑

v:|v|=kt

f̂(v)2 ≤
4l∑
k=1

εkt/4

≤ ε2/2.

Part II (4l ≤ kt ≤ n/2). We know that

g(k − 1)

g(k)
=

(
n/t
k−1
)
/
(

n
(k−1)t

)(
n/t
k

)
/
(
n
kt

)
=

t−1∏
i=1

n− kt+ i

kt− t+ i

≥ 1

when k ≤ n/2t. Since by Parseval (Lemma 4.1) we have∑
z f̂(z)2 = |A|

2n and we know that 2n

|A| ≤ 2l,

22n

|A|2
∑

4l≤kt≤n/2
k odd

g(k)
∑

z:|z|=kt

f̂(z)2 ≤ 2l · g(4l/t).

As we know

2lg(4l/t) ≤ 2l · e4l/t · (4l)4l−4l/t · n4l/t−4l

≤

(
2e4/t(4γ)4−4/t(
n1/t

)1−1/t · ε4−4/t
)l

≤ ε2/2

21 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where the last step is because t ≥ 2, l ≥ 1 and γ to be
a sufficiently small constant (e.g. 1/1024).

By summing up the two parts we conclude that

22n/t E
M

[
‖pM − qM‖22

]
= 22n/t E

M

 ∑
s∈{0,1}n/t

r̂M (s)2


=

22n+3

|A|2
∑

1≤k≤n/2t
k odd

g(k)
∑

v∈{0,1}n
|v|=kt

f̂(v)2

≤ ε2

2
+
ε2

2
= ε2.

Thus,

E
M

[∆(pM , qM)] ≤
√
E
M

[∆(pM , qM)2]

=
√

22n/t E
M

[‖pM − qM‖22] ≤ ε.

At last we prove Claim 4.2 left in the proof.

Proof. We can think of x = 1kt0n−kt w.l.o.g. M here
contains n/t edges with size t each. Each edge needs to
be either a subset of [kt] or a subset of [n] \ [kt]. And
notice that there is at most one s for a fixed z to make
MT s = z true. So the number of choosing k of them in
[kt] and n/t− k of them in [n] \ [kt] is

(kt)!

(t!)k(k)!
· (n− kt)!

(t!)n/t−k(n− n)!(n/t− k)!
.

By dividing the number of all possible matchings
n!/((t!)n/t(n/t)!(n− n)!) we have

(kt)!
(t!)k(k)!

· (n−kt)!
(t!)n/t−k(n−n)!(n/t−k)!

(n!/((t!)n/t(n/t)!(n− n)!)
=

(
n/t
k

)(
n
kt

)
which is called g(k) as a function of k.

5 Ideas Behind this Work and Suggestions for
Further Work

The approach taken in this paper does not match the
authors’ original plan. In this section we outline the
original thoughts and plans. For future research it might
be interesting to use some ideas from these original
plans, or even to try to follow them more closely than we
did. This might make the results simpler, more elegant,
or quantitatively stronger.

The original motivation of this work has been to
prove a n1−ε lower bound on the communication com-
plexity of edit distance with block moves (viz. Conjec-
ture 5.3). Edit distance with block moves is a met-
ric where the distance between two strings x, y is the

minimum number of operations required to transform
x to y by single-character edit operations (i.e. inser-
tion, deletion and modification of a character) and by
block moves (i.e. cutting out an entire block and insert-
ing it elsewhere). Alice gets x, Bob gets y, and they
want to approximate the distance between x and y. For
this problem, there is a protocol with communication
O(1) and approximation factor O(log n log∗ n), see [13],
which works by an embedding into `1. In the case that
each character appears exactly once in x and exactly
once in y, i.e. each string is a permutation, this prob-
lem can be called “Ulam distance with block moves”,
and it is easy to obtain an protocol with communica-
tion O(1) and which achieves 2 + ε approximation, by a
simple embedding into `1, as in [14]. We believe that ap-
proximating these problems better than some particular
constant factor c > 1 should take at least

√
n commu-

nication. (1.5 and 2 are both good guesses for the value
of c.) We also believe that the closer the approximation
factor is to 1, the closer the communication must be to
n. Thus, we conjecture for example that for a 1.001-
approximation, the communication must be n0.99. Such
lower bounds would in particular imply strong lower
bounds on the space complexity of approximating edit
distance with block moves in the streaming model, a
well-studied problem.

The problem of Ulam distance with block moves is
equivalent to a well-known problem in computational
biology called Sorting-by-Transpositions (SBT) [7,
21, 16]. This problem is neither known to be NP-
hard nor known to lie in P. Therefore, we decided to
start by considering a related problem, Sorting-by-
Reversal (SBR), which is known to lie in P. For this
problem, Hannenhalli and Pevzner [20, 25] proved a
combinatorial characterization of the distance. This
combinatorial characterization heavily relies on the so-
called breakpoint graph (see Definition 2.6) which is a
2-regular graph. The distance is “almost” uniquely
determined by the number of cycles in this graph.
(We say “almost” because the number of “hurdles”
and “fortresses” also needs to be taken into account,
see [20, 25] for more details.) Furthermore, when we
are trying to compute the edit distance between two
signed permutations x and y using the Hannenhalli-
Pevzner characterization, the breakpoint graph is a
union of two matchings, one of which is determined by
x and the other is determined by y. We see then that
the communication complexity of sorting by reversals
is tightly related to the communication complexity of
cycle-counting, at least at the conceptual level. This
led us to study the communication complexity of the
cycle counting problem.

For the cycle counting problem, we had originally

22 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

made the following conjecture:

Conjecture 5.1. For the cycle-counting problem, it
takes Ω(

√
n) communication to distinguish the case

where all cycles are of length 4 from the case that there
is just one cycle of length 2n. In general, it takes
Ω(n1−1/`) communication to distinguish the case where
all cycles are of length 2` from the case that there is just
one cycle of length 2n.

We tried to prove this conjecture directly, but failed.
Instead, we found that cycle counting reduces to BHH
by a rather straightforward reduction, and decided to
work on a lower bound for BHH. This reduction together
with the lower bound for BHH that we prove, gives
Corollary 2.1, which is a weaker result than Conjecture
5.1. For example, Corollary 2.1 tells us that it takes
Ω(
√
n) communication to distinguish the case that all

cycles are of length 4 from the case that all cycles are
of length 8, while Conjecture 5.1 tells us that it takes
Ω(
√
n) communication to distinguish the case that all

cycles are of length 4 from the case that there is just
one cycle, of length 2n.

Back to SBR: First let us ignore the issue of hurdles
and fortresses. In this case, if two permutations x, y
induce a breakpoint graph which has only cycles of
length 4, then the SBR distance between x and y is
roughly n/2; on the other hand, when x and y induce
a breakpoint graph that consists of just one very long
cycle, then the SBR distance between x and y is roughly
n. Therefore, assuming Conjecture 5.1, it is tempting to
conjecture that any protocol which approximates SBR
to within 2 − ε needs

√
n communication. Since we

can only prove Corollary 2.1, then we should instead
consider the case that x and y induce a breakpoint graph
which has only cycles of length 8; in this case, the SBR
distance between x and y is roughly 3n/4. Thus, surely
we can prove that to approximate SBR to within 3/2−ε,
one needs

√
n communication? But this is not the case.

The issue of dealing with hurdles and fortresses, and
the fact that not any 2-regular graph (with particular
vertex labels) is the breakpoint graph of some pair of
permutations, prevented us from proving this. We were
able to find a more baroque reduction that shows that to
approximate SBR to within 7/6−ε,

√
n communication

is needed, this reduction is described in Theorem 2.3.
Overall, we think our difficulties were just of technical
nature and we still believe our original intuitions to be
true. Therefore we conjecture:

Conjecture 5.2. Any communication protocol for ap-
proximating SBR or SBI up to 2−ε requires Ω(

√
n) com-

munication. Furthermore, for any number α of the form
α = 2/1, 3/2, 4/3, 5/4, . . ., any protocol to approximate

SBR or SBI up to α − ε requires Ω(n1/α) communica-
tion.

For SBT we have no good guess what the exact tradeoff
should be between the approximation factor and the
communication required, but in general the behavior
should be similar: the closer the approximation factor
is to 1, the closer the communication should be to n.

Conjecture 5.3. For any γ > 0 there exists a δ > 0
such that any protocol for approximating SBT up to 1+δ
requires Ω(n1−γ) communication.

The difficulty behind dealing with SBT, and the reason
we were not able to prove any lower bounds about
it, is that no combinatorial characterization of the
SBT distance is known. However, we believe that our
baroque reduction from SBR uses the combinatorial
characterization to an excessive degree, and that a
better reduction might be adaptable to SBT. For this
the main difficulty is in the fact that not every 2-regular
graph (with particular vertex labels) can be obtained as
the breakpoint graph of some pair of permutations.

Finally, all of the discussion so far has been about
one-way protocols. BHH is already easy with 2 rounds
of communication, but for cycle counting, SBR, SBT,
etc, the problems seem hard even for 2 rounds or more.
In particular, for cycle counting we make the following
conjecture.

Conjecture 5.4. For protocols where ≤ t messages
are sent, communication Ω(n1−1/t) is needed to distin-
guish the case where all cycles are of length 2t and the
case where all cycles are of length 4t.

Acknowledgement

We are indebted to Robert Krauthgamer for suggesting
to work on lower bounds for edit distance with block
moves, on invaluable advice, including referring us to
the Boolean Hidden Matching problem, and for a lot of
encouragement along the way. We would also like to
thank Alexandr Andoni for many helpful discussions on
streaming lower bounds.

23 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Journal of Computer and system sciences, 58(1):137–
147, 1999.

[2] A. Andoni, K. Do Ba, P. Indyk, and D. Woodruff. Ef-
ficient sketches for earth-mover distance, with applica-
tions. In 2009 50th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 324–330. IEEE,
2009.

[3] A. Andoni, T.S. Jayram, and M. Patrascu. Lower
bounds for edit distance and product metrics via
Poincaré-type inequalities. In ACM-SIAM Symposium
on Discrete Algorithms (SODA10), 2010.

[4] A. Andoni and R. Krauthgamer. The Computational
Hardness of Estimating Edit Distance [Extended Ab-
stract]. In Proceedings of the 48th Annual IEEE Sym-
posium on Foundations of Computer Science, pages
724–734. IEEE Computer Society, 2007.

[5] A. Andoni, R. Krauthgamer, and K. Onak. Poly-
logarithmic Approximation for Edit Distance and
the Asymmetric Query Complexity. Arxiv preprint
arXiv:1005.4033, 2010.

[6] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-
time algorithm for computing inversion distance be-
tween signed permutations with an experimental study.
Journal of Computational Biology, 8(5):483–491, 2001.

[7] V. Bafna and P.A. Pevzner. Sorting by Transpositions.
SIAM Journal on Discrete Mathematics, 11(2):240,
1998.

[8] Z. Bar-Yossef, T.S. Jayram, and I. Kerenidis. Expo-
nential Separation of Quantum and Classical One-Way
Communication Complexity. SIAM Journal on Com-
puting, 38:366, 2008.

[9] Z. Bar-Yossef, T.S. Jayram, R. Kumar, and D. Sivaku-
mar. An information statistics approach to data
stream and communication complexity. Journal of
Computer and System Sciences, 68(4):702–732, 2004.

[10] J. Brody, A. Chakrabarti, O. Regev, T. Vidick,
and R. de Wolf. Better Gap-Hamming Lower
Bounds via Better Round Elimination. Arxiv preprint
arXiv:0912.5276, 2009.

[11] A. Chakrabarti and O. Regev. An optimal lower bound
on the communication complexity of gap-hamming-
distance. ECCC Report TR10-140, 2010.

[12] D.A. Christie. Sorting permutations by block-
interchanges. Information Processing Letters,
60(4):165–169, 1996.

[13] G. Cormode and S. Muthukrishnan. The string edit
distance matching problem with moves. ACM Trans-
actions on Algorithms (TALG), 3(1):1–19, 2007.

[14] G. Cormode, S. Muthukrishnan, and C. Sahinalp. Per-
mutation editing and matching via embeddings. In
Automata, languages and programming: 28th interna-
tional colloquium, ICALP 2001, Crete, Greece, July 8-
12, 2001: proceedings, page 481. Springer Verlag, 2001.

[15] R. De Wolf. A brief introduction to Fourier analysis
on the Boolean cube. Theory of Computing Library–
Graduate Surveys, 1:1–20, 2008.

[16] I. Elias and T. Hartman. A 1.375-approximation al-
gorithm for sorting by transpositions. IEEE/ACM
Transactions on Computational Biology and Bioinfor-
matics, pages 369–379, 2006.

[17] J. Feng and D. Zhu. Faster algorithms for sorting by
transpositions and sorting by block interchanges. ACM
Transactions on Algorithms (TALG), 3(3):25, 2007.

[18] D. Gavinsky, J. Kempe, and R. de Wolf. Exponential
separation of quantum and classical one-way commu-
nication complexity for a boolean function. Electronic
Colloquium on Computational Complexity, TR06-086,
July 2006.

[19] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and
R. de Wolf. Exponential Separation for One-Way
Quantum Communication Complexity, with Applica-
tions to Cryptography. SIAM Journal on Computing,
38:1695, 2008.

[20] S. Hannenhalli and P.A. Pevzner. Transforming cab-
bage into turnip: polynomial algorithm for sorting
signed permutations by reversals. Journal of the ACM
(JACM), 46(1):1–27, 1999.

[21] T. Hartman. A simpler 1.5-approximation algorithm
for sorting by transpositions. In Combinatorial pattern
matching, pages 156–169. Springer, 2003.

[22] N.J.A. Harvey. Matroid intersection, pointer chasing,
and Young’s seminormal representation of S n. In Pro-
ceedings of the nineteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 542–549. Society
for Industrial and Applied Mathematics, 2008.

[23] T.S. Jayram, R. Kumar, and D. Sivakumar. The
One-Way Communication Complexity of Hamming
Distance. Theory Of Computing, 4:129–135, 2008.

[24] J. Kahn, G. Kalai, and N. Linial. The influence of
variables on Boolean functions. In Proceedings of the
29th Annual Symposium on Foundations of Computer
Science, pages 68–80. IEEE Computer Society, 1988.

[25] H. Kaplan, R. Shamir, and R.E. Tarjan. A Faster and
Simpler Algorithm for Sorting Signed Permutations by
Reversals. SIAM Journal on Computing, 29:880, 2000.

[26] S. Muthukrishnan. Data streams: Algorithms and
applications. Now Publishers Inc, 2005.

[27] R. Raz and B. Spieker. On the log rank-conjecture in
communication complexity. Combinatorica, 15(4):567–
588, 1995.

A Variants of BHM

In this section we discuss the variants of Boolean
Hidden Matching. In short, our main conclusion is
they are all equivalent up to a constant factor in the
amount of bits communicated.

Definition A.1. (BHM1
n) The Variant 1 of the

Boolean Hidden Matching problem is a communi-
cation complexity problem where

24 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

• Alice holds a boolean vector x ∈ {0, 1}n,

• Bob holds a perfect matching M on n vertices and
a boolean vector w of length n/2.

It is promised that either Mx⊕w = 1n/2 or Mx⊕w =
0n/2. The problem is to return 1 for Mx ⊕ w = 1n/2

case, and 0 for Mx⊕ w = 0n/2 case.

Definition A.2. (BHM2
n) The Variant 2 of the

Boolean Hidden Matching problem is a communi-
cation complexity problem where

• Alice holds two boolean vectors x ∈ {0, 1}n and
y ∈ {0, 1}n/2,

• Bob holds a perfect matching M on n vertices and
a boolean vector w of length n/2.

It is promised that either Mx ⊕ y ⊕ w = 1n/2 or
Mx ⊕ y ⊕ w = 0n/2. The problem is to return 1 for
Mx⊕ y ⊕w = 1n/2 case, and 0 for Mx⊕ y ⊕w = 0n/2

case.

Definition A.3. (BHM3
n) The Variant 2 of the

Boolean Hidden Matching problem is a communi-
cation complexity problem where,

• Alice hold a boolean vector x ∈ {0, 1}n,

• Bob holds a bipartite matching (could also be seen
as a permutation) M on 2n vertices (n on each
side) and a boolean vector w of length n,

It is promised that either M(x) ⊕ x ⊕ w = 1n or
M(x) ⊕ x ⊕ w = 0n. The problem is to return 1 for
M(x)⊕ x⊕w = 1n case, and 0 for M(x)⊕ x⊕w = 0n

case.

Definition A.4. (BHM1s
n , BHM2s

n and BHM3s
n)

BHM1s
n , BHM2s

n , and BHM3s
n are exactly the same prob-

lem as BHM1
n, BHM2

n, and BHM3
n problem respectively

with w fixed to be 0n/2.

Lemma A.1. (Equivalence of the 6 Variants)
All the 6 variants of the problem stated above are
all equivalent in the sense that the communication
complexity are within constant factors of each other.

Proof. It is easy to see that BHM1s
n , BHM2s

n and BHM3s
n

are just special cases of BHM1
n, BHM2

n, and BHM3
n.

Moreover, BHM1
n is a special case of BHM2

n by setting
y = 0n.

BHM1
2n ⇒ BHM3

n. Let x′ = xx to be the
concatenation of two identical copies of x and M ′ to
be the perfect matching on x′ which is built from M
that connects the first half of x′ to the second half of x′,
that is, connecting i to M(i) + n/2. By executing the
protocol for BHM1

2n on x′, M ′ and w we will get the
answer.

BHM3
2n ⇒ BHM2

n. Take the inputs x, y,M,w of
BHM2

n. Let x′ = xy and w′ = ww. For each edge
(i, j) ∈ M , we add two edges (i, j + n) and (i + n, j)
to the bipartite matching M ′. After that we run the
protocol for BHM3

2n on x′,M ′, w′ to get the answer.
BHM1s

2n ⇒ BHM1
n. Take the inputs x,M,w of

BHM1
n. Let x′ = xx, where x means the bitwise

negation vector of x. And for each edge (ik, jk) ∈M , if
wk = 0 we let (ik, jk), (ik + n, jk + n) ∈ M ′, otherwise
when wk = 1 we let (ik, jk +n), (ik +n, jk) ∈M ′. After
that we run the protocol for BHM1s

2n on x′,M ′ to get
the answer.

We know that BHM1s
4n ⇒ BHM3s

2n ⇒ BHM2s
n by

using similar reduction. This finishes the proof.

25 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

