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We propose a potentially practical scheme for realization of electromagnetically induced acoustic wave transparency
(EIAT) in a high-Q single-crystal diamond mechanical resonator. Based on the dynamical strain-mediated coupling
mechanism, we establish Λ-type and Δ-type transition structures in the subspace spanned by the ground states of
the nitrogen-vacancy center, which drives the system into a coherent dark state, the system typically becoming
transparent to the acoustic field, giving rise to the EIAT phenomenon. The physical picture behind EIAT is in-
terpreted by using the framework of dressed states. Our work opens up possibilities to utilize this hybrid system as a
building block to construct a spin-based physical material for quantum information processing and quantum optics
applications, such as “slow sound” and enhanced nonlinear effects. © 2016 Optical Society of America

OCIS codes: (270.1670) Coherent optical effects; (270.5585) Quantum information and processing; (230.1040) Acousto-optical

devices.

http://dx.doi.org/10.1364/JOSAB.33.002242

1. INTRODUCTION

As one of the well-known nonlinear optical effects, the electro-
magnetically induced transparency (EIT) effect [1–3] has re-
ceived a great deal of attention in the past few years because
it has disclosed new possibilities for nonlinear optics and
quantum information processing (QIP), such as light storage
[4,5], ultraslow light propagation [6–8], lasing without inversion
[9], enhanced susceptibilities [10], and enhancement of non-
linear interactions [11] and dispersion effects [12,13]. Recently,
a series of publications have investigated the analogues of the
EIT effect by using acoustic waves and have demonstrated the
phenomenon of acoustic transparency and slow-sound propaga-
tion under certain conditions [14–16]. To date, EIT and elated
EIT-like effects have been theoretically investigated and exper-
imentally observed in a variety of quantum systems, i.e., atomic
systems [17–19], solid-state systems [20], superconductors [21],
plasmonics [22], metamaterials [23], optomechanics [24–29],
electronics [30], photonic crystals [31], and whispering-gallery-
mode microresonators [32–36]. In the EIT process in a simple
atomic medium, the three-level atoms (usually emerging as the
Λ-, Ξ-, and V -type structures) are excited by two electromag-
netic fields, where a strong control laser (coupling field) induces

a narrow spectral transparency window for the weak probe laser
beam (probe field). The physical mechanism of the EIT phe-
nomenon can be explained equivalently from the dressed state
basis referring to Fano interference [37], or the picture of bright
and dark states [38].

Among solid-state systems, for instance, the diamond
nitrogen-vacancy (NV) center has become one of the most
promising solid-state platforms for QIP and quantum optics
thanks to its long coherent properties [39–49] and optical
addressability [50,51]. Previous works have focused on the
EIT effect of the NV center from theoretical and experimental
aspects [52–56]. However, the above-mentioned EIT effects
take place only inside the all-optical region. In the microwave
region with respect to the ground states of the NV center, there
is a lack of an effective method for driving the system into a
coherent dark state, the system typically becoming transparent
to the probe field, giving rise to the EIT phenomenon. Here, by
using the dynamical strain-mediated coupling mechanism in a
high-Q single-crystal diamond mechanical resonator (DMR)
[57–70], we establish suitable transition structures in the
subspace spanned by the ground states of the NV center.
The purpose of the present paper is to bring the original optical
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phenomena into the realm of acoustic waves, namely, electro-
magnetically induced acoustic wave transparency (EIAT). The
key point of our proposal is that the direct coupling between
the lattice strain field and the NV center spins could be used
to construct a Λ-type or Δ-type transition structure for the
EIAT effect, and enable coherent spin–phonon interactions
in the quantum regime, which could mark an important step
toward engineering such a hybrid quantum device capable of
investigating and simulating significant quantum optics and
QIP. Our work is based on recent experimental and theoretical
progress, e.g., a demonstration on the direct strain-coupling
process with strain coupling strength of about 2 MHz inside
the DMR via crystal vibration [59–61], and a very recent report
about NV center-strain couplings exceeding 10 GHz for optical
transitions [62]. Via quantum control of the NV center spin,
the system shows a single standard acoustic transparency win-
dow in the general Λ-type transition case, and more complex
quantum interference and coherent phenomena exist in the
Δ-type transition case, such as three multiple transparency win-
dows. We emphasize that switching between the single EIAT
window and three multiple EIAT windows can be realized by
adjusting the key system parameters. Additionally, the group
velocity of the strain field is also discussed, and this hybrid sys-
tem can be used as a building block to construct a “slow sound”
solid-state physical material. The physical picture behind EIAT
is interpreted by using the framework of dressed states.

2. SYSTEM AND MODEL

As illustrated in Fig. 1(a), the system under consideration is a
monolithic hybrid quantum device DMR including a diamond
cantilever with many embedded NV centers. A high-Q single-
crystal DMR can be achieved in experiment with excellent
nanofabrication techniques [57]. The NV centers in diamond
are highly susceptible to deformations of the surrounding lat-
tice; therefore, vibration due to the ground mechanical mode of
the nanoresonator changes the local strain where the NV center
is located, and gives rise to an effective, strain-induced electric
field [71,72]. In general, the strain field can be produced by
means of a thin piezoelectric [59–66] or piezomagnetic
[73,74] film grown on the surface of the diamond layer, where
the piezoelectric or piezomagnetic film behaves as a transducer

that transforms the signal between the external electric or
magnetic field signal and the lattice vibration. When applying
a voltage (magnetic field) across the piezoelectric film (piezomag-
netic film), the strain field formed into a DMR. This implies that
the strain induced by an oscillating cantilever modulates the
energy of the ground-state spin levels, and the strain field can
be well controlled by the external voltage or magnetic field.

Each NV center embedded in the DMR is negatively
charged with two unpaired electrons located at the vacancy,
usually treated as electron spin-1; thus, each NV center has a
spin-triplet ground state. The nonaveraged electronic spin–spin
interaction leads to energy splitting between j3A;ms � 0i
(labeled by j0i) and j3A;ms � �1i (labeled by j � 1i) with the
zero-field splitting about D0∕2π ≃ 2.87 GHz [75]. Meanwhile,
the degeneracy of the levels j3A;ms � �1i can be lifted by em-
ploying an external magnetic field B0 (i.e., B0 > 102 mT),
which could shift the level j − 1i to be below the level j0i [76].
The external magnetic field with z-axis component Bz induces
level splitting between j � 1i with the width Δm � g sμBBz∕ℏ,
where gs ≃ 2, μB represents the Bohr magneton, and we assume
that the z axis is aligned with the NV center symmetry axis.

We first study individual NV center spin embedded in
the DMR. Here the coherent strain driving of the NV center
is based on the sensitive response of the NV center to strain in
the diamond host lattice. In the present system, the uniaxial
strain field from lattice vibration leads to direct coupling of
the two electronic spin states j � 1i and j − 1i, which is a
dipole-forbidden transition (ms � 2), i.e., the microwave field
is inaccessible to drive this transition j � 1i↔j − 1i [71].
We model the strain field by an effective electric field Ei
�i � x; y; z�, where the strain-induced displacements change
the electron density of the crystal, resulting in the local
electric field. Therefore, the corresponding strain-coupling
Hamiltonian for the NV center takes the form (in units of
ℏ � 1, hereafter) [42,67]

HNV � �D0 � ϵ∥Ez�S2z � g sμBBzSz

− ϵ⊥�Ex�SxSy � SySx� � Ey�S2x − S2y ��; (1)

where Si �i � x; y; z� are the spin-1 operators. ϵ∥�⊥� represents
the strain coupling constant along the direction parallel
(perpendicular) to the NV center symmetry axis.

3. EIAT PHENOMENON

In this section, we will investigate the phenomenon of EIAT in
this hybrid system, under the Λ-type transition case and the
Δ-type transition case. Based on the strain-coupling mecha-
nism, suitable transition structures in the ground-state subspace
for realization of the EIAT effect could be established, where
the microwave field and the strain field can be well controlled
by the Rabi frequency of the microwave pulse and the external
voltage or magnetic field, respectively.

A. Λ-type EIAT

As stated previously, the spin-triplet ground states (including
j � 1i, j0i, and j − 1i) of the NV center are of interest to us.
Here, each NV center is subject to the local electric field that
results from the strain field, with frequency ωp and intensity εp,
whose perpendicular component leads to the transition

(b)(a)

Fig. 1. (a) The system under consideration is a DMR containing
many embedded NV centers, where the NV center spins are coupled
to a cantilever that is resonantly driven by a piezoelement. (b) Energy
levels of the ground-state of the NV center, where the transition
j � 1i↔j0i is driven by a strong microwave field with Rabi frequency
Ω, and the phonon strain field with Rabi frequency G has been
employed to drive the transition j � 1i↔j − 1i. Here, Δ1�2� are the
detunings.
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j � 1i↔j − 1i. Another microwave spin manipulation with fre-
quency ωc and intensity εc is applied to the NV centers, which
drives the transition j � 1i↔j0i, as illustrated in Fig. 1(b). In
the interaction picture, the Hamiltonian of the whole system is
written as

H�Δ2σ�1;�1�Δσ0;0 −�Gσ�1;−1�Ωσ�1;0�H:c:�∕2; (2)

where σij � jiihjj (i; j � 0, �1) are the NV center projection
operators. Ω � μ0;�1εc∕2ℏ and G � μ−1;�1εp∕2ℏ represent
the Rabi frequencies of the microwave field and strain
field, respectively, where μij (i; j � 0, �1) represent the dipole
matrix elements of the transition jii↔jji. Here Δ1�2� � ω�1 −
ω0�−1� − ωc�p� and Δ � Δ2 − Δ1 represent the detunings, and
ωi (i � 0,�1) are the frequencies of level jii. Hereafter, we set
the level j − 1i as the energy zero point.

The equations of motion for the density matrix elements are
given by

_ρ�1;−1 � −�γ1� iΔ2�ρ�1;−1�
iΩρ0;−1

2
� iG�ρ−1;−1 −ρ�1;�1�

2
;

(3)

_ρ�1;0�−�γ2� iΔ1�ρ�1;0�
iGρ	0;−1

2
� iΩ�ρ0;0 −ρ�1;�1�

2
; (4)

_ρ0;−1 � −�γ3 � iΔ�ρ0;−1 −
iGρ	�1;0

2
� iΩ	ρ�1;−1

2
; (5)

where ρij � hijρjji (i; j � 0,�1), γ1�2� are the decay rates from
j � 1i to j − 1i (j0i), and γ3 is the decay rate from j0i to j − 1i;
	 denotes the complex conjugate.

Assuming that all NV centers occupy the ground state j − 1i
initially, we have ρ−1−1 � 1, ρ�1;�1 � ρ0;0 � 0. Setting
_ρ�1;−1 � _ρ�1;0 � _ρ0;−1 � 0, the steady-state solution of off-
diagonal density matrix element ρ�1;−1 has the following form:

ρ�1;−1�2iG�γ3� iΔ�∕�4�γ1� iΔ2��γ3� iΔ��jΩj2�: (6)

According to the well-known relations P � ε0χE and P �
Nμijρij [77], where ε0 is the permittivity of a vacuum, χ is the
complex electric susceptibility, E is the strength of the electro-
magnetic field, N is the number density of the medium, and P
is the intensity of polarization of the medium, we can obtain
the linear susceptibility χ � Nμijρij∕ε0E � Nμ−1;�1ρ�1;−1∕
ε0εp with the real part Re�χ� � K �Δ2�Δ2 � γ23� − ΔjΩj2∕
4�∕2Z and imaginary part Im�χ� � K �γ1�γ23 � Δ2��
γ3jΩj2∕4�∕2Z , with K � N jμ−1;�1j2∕2ε0, and Z � �γ1γ3 −
Δ2Δ� jΩj2∕4�2 � �γ3Δ2 � γ1Δ�2. For simplicity, our calcu-
lation is in units of K . In the present model, the real part of the
susceptibility Re�χ� is proportional to the dispersion coefficient
of the medium, and its imaginary part Im�χ� reflects the
absorption response of the media on the probe field.

In Fig. 2(a), we plot the imaginary part of the susceptibilities
Im�χ� as a function of probe detuning Δ2 under different
Rabi frequencies Ω, where the parameters Ω and Δ2 can be
tuned by applying an adjustable external magnetic field.
From Fig. 2(a), one can find that the strain field is absorbed
completely by the DMR if the microwave coupling field is
turned off (Ω � 0) in the resonant case Δ2 � 0. Once the
microwave coupling field is applied, i.e., Ω � 1.5, the medium
is transparent to the strain field because Im�χ� equals zero in
the resonant case. This means that the strong microwave

coupling field (G ≪ Ω) changes the absorption response of
the DMR to the strain field, and leads to the occurrence of a
single standard EIAT window. We call this phenomenon EIAT.
Because of quantum interference introduced by the driving
field, the acoustic wave can propagate without absorption
under the appropriate conditions. This is similar to the result
of EIT at optical frequencies, but the typical transition frequen-
cies in DMR are much lower.

An interesting characteristic of optical EIT is the slow-down
of light propagation resulting from a strong dispersion effect
[6–8]. Based on this driving interference effect, we will mimic
the phenomenon of “slowing light” as “slowing sound” in the
present system. The group velocity of the probe field is given
by vg � v∕ng, with sound propagating speed v ≃ 17.5 km∕s
in pure diamond [78] and group index ng � nr �
2πωp∂Re �χ�∕∂ωp [79], where nr � 1� 2π Re �χ� is the re-
fractive index of the DMR. This means that group velocity
vg can reduced, and even be zero, if positive dispersion is real-
ized, i.e., ∂Re�χ�∕∂ωp > 0 [6]. In addition, the group velocity
vg can be increased, and even be negative, for the negative
dispersion case with ∂Re�χ�∕∂ωp < 0 [80,81]. In order to
describe the phenomenon of “slowing sound” more quantita-
tively, here we define a quantity ξ � 2π Re�χ� � 2πωp∂Re �χ�∕
∂ωp � ng − 1, where ξ < 0 means supraliminal acoustic propa-
gation, and subliminal acoustic propagation requires that the
condition ξ > 0 can be well met.

In Fig. 2(b), the quantity ξ is plotted as a function of probe
detuning Δ2 under different microwave driving cases, where
the quantity ξ is always larger than zero and reaches its maxi-
mum in the resonant case (Δ2 � 0) if the microwave coupling
field is absent; this means that subliminal acoustic propagation
occurs. In the presence of the microwave driving field, the
quantity ξ changes from a single wave crest into the doublet

(a)

(b)

Fig. 2. (a) Imaginary part of the susceptibility Im�χ� and (b) the
quantity ξ as functions of detuning Δ2. The red solid and green solid
lines represent the approximate analytical results of the different driv-
ing cases with Ω � 0 and Ω � 1.5, respectively. The corresponding
numerical simulations without any approximations are represented by
the black dashed and gray dashed lines, respectively. The other param-
eters are set as G � 0.01, γ1 � 1, γ3 � 0.01, and Δ � Δ2.
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of a wave crest with larger magnitude during the process of a
frequency sweep. This indicates that the propagation of the
acoustic strain field changes from subliminal to supraliminal,
then again to subliminal. This demonstrates that the speed of
the acoustic propagation can be easily tuned with probe detun-
ing. The reason for the appearance of the doublet of a wave crest
is the presence of a doublet of dressed states produced by the
cancelation of opposite contributions from two different resonan-
ces. To get a clear picture of the dependence of the absorption
response of the DMR on the parameter space fΔ1;Δ2g, we plot
the values of Im�χ� in Fig. 3. An interesting feature is that the
absorption feature vanishes when detuning Δ1 equals Δ2; this
is consistent with the generation condition of optical EIT with
two-photon resonance. Once the detuning Δ1 is very large,
the absorption spectrum is essentially that of a two-level system
with an additional narrow Raman peak close to the Δ � 0 case.

B. Δ-type EIAT

The difference from the Λ-type transition case is that an
additional microwave field is applied to drive the transition
path j − 1i↔j0i, as shown in Fig. 4. In the Δ-type transition
case, a pair of microwave driving fields with Rabi frequencies
Ω1�2� create the transition j � 1i↔j0i (j0i↔j − 1i), and the
transition j � 1i↔j − 1i is driven by the strain field with
Rabi frequency λ, where λ ≪ Ω1�2�.

The interaction Hamiltonian of the whole system is

H 1 � δ2σ−1;−1 � �δ1 � δ2�σ�1;�1

− �Ω1σ�1;0 �Ω2σ0;−1 � λe−iδtσ�1;−1 �H:c:�∕2; (7)

where δ1 � ω�1 − ω0 − ωc1, δ2 � ω0 − ωc2, δ3 � ω�1 − ωq,
and δ � δ1 � δ2 − δ3. ωc1�2� and ωq are the frequencies of
the microwave fields and strain field, respectively.

Taking the dissipative and dephasing effects into account,
the density matrix equations can be written as [3]

_ρ � −i�H 1; ρ� � Lρ; (8)

with

Lρ � Γ31�2σ−1;�1ρσ�1;−1 − σ�1;�1ρ − ρσ�1;�1�∕2
� Γ32�2σ0;�1ρσ�1;0 − σ�1;�1ρ − ρσ�1;�1�∕2
� Γ21�2σ−1;0ρσ0;−1 − σ0;0ρ − ρσ0;0�∕2
� γ2d �2σ0;0ρσ0;0 − σ0;0ρ − ρσ0;0�∕2
� γ3d �2σ�1;�1ρσ�1;�1 − σ�1;�1ρ − ρσ�1;�1�∕2; (9)

where the first, second, and third terms in the right-hand side
describe the spontaneous emission from state j � 1i to states
j − 1i (j0i), and from state j0i to state j − 1i, with dissipative
rates Γ31 (Γ32) and Γ21, respectively. The fourth and fifth terms
describe the dephasing of the states j0i and j � 1i with dephas-
ing rates γ2d and γ3d , respectively. For convenience, we define
the total spontaneous emission rates and the coherent decay
rates of the state j0i (j � 1i) as Γ2 � Γ21 (Γ3 � Γ31 � Γ32)
and γ 02 � Γ2 � γ2d (γ 03 � Γ3 � γ3d ), respectively, where Γ31 ≃
Γ32 � Γ3∕2 has been assumed.

The motion equations for all of the elements of the density
matrix are listed as follows:

_ρ−1;−1 � Γ2ρ0;0 � Γ3ρ�1;�1∕2 − i�λe−iδtρ−1;�1

− λeiδtρ�1;−1 �Ω2�ρ−1;0 − ρ0;−1��∕2;
_ρ−1;0 � −γ 02ρ−1;0∕2 − i�−λeiδtρ�1;0 − 2δ2ρ−1;0

�Ω1ρ−1;�1 �Ω2�ρ−1;−1 − ρ0;0��∕2;
_ρ−1;�1 � −γ 03ρ−1;�1∕2 − i�λeiδt�ρ−1;−1 − ρ�1;�1�

−2�δ1 � δ2�ρ−1;�1 � Ω1ρ−1;0 − Ω2ρ0;�1�∕2;
_ρ0;−1 � −γ 02ρ0;−1∕2 − i�λe−iδtρ0;�1 � 2δ2ρ0;−1

−Ω1ρ�1;−1 −Ω2�ρ−1;−1 − ρ0;0��∕2;
_ρ0;0 � −Γ2ρ0;0 � Γ3ρ�1;�1∕2 − i�Ω1�ρ0;�1 − ρ�1;0�

�Ω2�ρ0;−1 − ρ−1;0��∕2;
_ρ0;�1 � −�γ 02 � γ 03�ρ0;�1∕2 − i�λeiδtρ0;−1 − 2δ1ρ0;�1

�Ω1�ρ0;0 − ρ�1;�1� − Ω2ρ−1;�1�∕2;
_ρ�1;−1 � −γ 03ρ�1;−1∕2� i�λe−iδt�ρ−1;−1 − ρ�1;�1�

−2�δ1 � δ2�ρ�1;−1 � Ω1ρ0;−1 − Ω2ρ�1;0�∕2;
_ρ�1;0 � −�γ 02 � γ 03�ρ�1;0∕2� i�Ge−iδtρ−1;0 − 2δ1ρ�1;0

�Ω1�ρ0;0 − ρ�1;�1� − Ω2ρ�1;−1�∕2;
_ρ�1;�1 � −Γ3ρ�1;�1 � i�λe−iδtρ−1;�1 − λeiδtρ�1;−1

−Ω1�ρ�1;0 − ρ0;�1��∕2: (10)
Based on the population conservation rule ρ−1;−1 � ρ0;0�

ρ�1;�1 � 1, after eliminating the term ρ−1;−1, we can write
Eq. (10) in a compact form:

Fig. 3. Imaginary part of the susceptibility Im�χ�: left, as a function
of detunings Δ2 and Δ1; and right, as a function of detunings Δ2 and
Δ. The other parameters are set as Ω � 1.5, G � 0.01, γ1 � 1, and
γ3 � 0.01.

Fig. 4. Levels ofΔ-type transition of the NV center system, where the
transition j � 1i↔j0i (j0i↔j − 1i) is coupling with strong microwave
fields with Rabi frequencies Ω1�2�. The phonon strain field with Rabi
frequency λ has been employed to drive the transition j � 1i↔j − 1i.
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_R � MR − A;

where

R � �ρ0;0; ρ�1;�1; ρ�1;−1; ρ−1;0; ρ0;�1; ρ�1;0; ρ−1;�1; ρ0;−1�T
(11)

and the constant vector is

A��0;0;−iλ exp�−iδt�∕2; iΩ2∕2;0;0;iλ exp�iδt�∕2;−iΩ2∕2�T ;
(12)

with T the matrix transpose. The form of matrix M can be
deduced from the coefficients of Eq. (10).

Both the vector A and matrix M can be divided into terms
with different time dependence [82,83]:

A � A0 � λ exp�−iδt�A1 � λ exp�iδt�A−1; (13)

and

M � M 0 � λ exp�−iδt�M 1 � λ exp�iδt�M −1; (14)

with A0, A�1, M 0, M�1 the constant matrices. Thus, we
obtain

_R � A0 � λ exp�−iδt�A1 � λ exp�iδt�A−1

� �M 0 � λ exp�−iδt�M 1 � λ exp�iδt�M −1�R: (15)

By using the Floquet theorem [84], we can obtain the sta-
tionary solution with respect to R. In the case of λ ≪ Ω1�2�, the
Floquet harmonic expansion of R could be truncated at the first
order; then we can obtain R that contains only terms at the
harmonics of the detuning δ as

R � R0 � λ exp�−iδt�R1 � λ exp�iδt�R−1: (16)

Substituting Eq. (16) into Eq. (15) and equating the
coefficients of the different harmonics of δ and the correspond-
ing powers of λ, the solutions for R0 and R1 are given by

R0 � M −1
0 A0; R1 � �M 0 � iδ�−1�A1 −M 1R0�: (17)

On the other hand, the linear susceptibility χ of the weak
probe field in the present system is proportion to �R1�3, where
�R1�3 is determined from the third elements of R1 [38], and
the index of refraction (absorption) is obtained by the real
(imaginary) part of χ.

In Fig. 5, we plot the value of Im�χ� and the quantity ξ as
functions of the probe detuning δ3. One can find that the
DMR shows an electromagnetic response that closely resembles
the EIT in an optical system, and the strain field is absorbed
completely by the medium when Ω1 � Ω2 � 0 in the reso-
nant case with δ3 � 0, as illustrated in Fig. 5(a). If we drive
only the transition j � 1i↔j0i, similar to the Λ-type case in
the above section, a transparency window on the strain field
exists, as shown in Fig. 5(b). Once a pair of microwave driving
fields are turned on simultaneously, as illustrated in Fig. 5(c),
three multiple transparent windows occur, among which the
big transparent window occurs in the resonant case δ3 � 0,
but the degree of the absorption response of the medium is
weaker than the non-driving case (Ω2 � 0). In addition, the
other two transparent windows appear symmetrically on both
sides of the central window. This is because the added electro-
magnetic field in the Δ-type transition case can change the
maximum transmission of the probe field, the sensitivity of

the EIT on the loss of coherence, the splitting features of
the EIT window, and the dependence of the probe transmission
spectra on the total phase of the applied fields. As a result, three
valleys on the quantity ξ appear, comparing with the single val-
ley in the Λ-type case, as shown in Fig. 5(f ). This implies that
more complex quantum interference and coherent phenomena
exist in the Δ-type case, and one can control the group velocity
of the acoustic field in a more flexible way.

To obtain more physical characteristics about the depend-
ence of response of the DMR system on the added microwave
driving field, we first investigate the effect of the Rabi frequency
Ω2 on the probe absorption spectrum by setting the detuning
δ2 � 0, as illustrated in Fig. 6, where we set the Rabi frequency
of the microwave field Ω1. When the Rabi frequency Ω2 in-
creases, the distance between the lateral EIAT windows and
the central EIAT window widens, but the position of the cen-
tral EIAT window is fixed, as shown in Fig. 6(a). More specifi-
cally, in Fig. 6(b), we plot the frequency interval between the
central EIAT window and the lateral EIAT windows as a func-
tion of the Rabi frequency Ω2; a linear relationship exists and
the frequency interval equals the Rabi frequency Ω2. Also, the
influence from detuning δ2 on the added microwave driving
field is investigated in Fig. 7, which tells us that the position

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Imaginary part of the susceptibility Im�χ� (left panel) and
the quantity ξ (right panel) as functions of detuning δ3 in different
driving cases: (a, d) (Ω1 � 0, Ω2 � 0), (b, e) (Ω1 � 1.5, Ω2 � 0),
and (c, f ) (Ω1 � 1.5, Ω2 � 1.5). The other parameters are set as
λ � 0.01, Γ32 � Γ31 � 1, Γ21 � 0.01, γ2d � 0.01, γ3d � 1, and
δ1 � δ2 � 0.

(a) (b)

Fig. 6. (a) Value of Im�χ� as a function of detuning δ3 and Rabi
frequency Ω2. (b) Frequency interval between the central EIAT win-
dow and the lateral EIAT window as a function of Rabi frequency
Ω2. The other parameters are set as λ � 0.01, Γ32 � Γ31 � 1,
Γ21 � 0.01, γ2d � 0.01, γ3d � 1, Ω2 � 1.5, and δ1 � δ2 � 0.
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of the central EIAT window varies obviously with the change of
detuning δ2, as illustrated in Fig. 7(a). In the same manner, we
plot the frequency shift (δ2 ≠ 0) with respect to the central
EIAT window, compared with the resonant case (δ2 � 0), as
a function of detuning δ2 in Fig. 7(b). A similar linear relation-
ship is found, and the frequency shift is equal to detuning δ2 of
the microwave driving field when specific parameters are set. In
Fig. 7(c), the frequency interval between the central EIAT win-
dow and the lateral EIAT windows as a function of detuning δ2
is also plotted. This verifies that the frequency interval equals
the general Rabi frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

2 � δ22
p

of the added microwave
driving field. Thus, both the Rabi frequency and detuning of
the added microwave driving field Ω2 could be effectively used
to achieve frequency tuning of the EIAT windows. We empha-
size that the switching between the single EIAT window and
three multiple EIAT windows can be obtained by properly
adjusting the system parameters.

In the following, we give the physical interpretation of the
above novel phenomena in Figs. 6 and 7 by using the frame-
work of dressed states [85,86]. In the present system, both
energy levels j − 1i and j0i will be spilled into a pair of dressed
state levels under the strong driving of the external microwave
driving field Ω2, as illustrated in Fig. 8(b) [Fig. 8(a) is the
simplified version of Fig. 4]; this effect is the well-known
dynamical Stark splitting. The splitting width Ωp equals the

general Rabi frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

2 � δ22
p

of the driving field. In
the case of the equal detuning of the microwave coupling field
Ω1 and probe field with δ1 � δ3, four transition paths p1�2;3;4�
exist in the system, and every transition path could be treated as
aΛ-type three-level system. In the four transition paths p1�2;3;4�,
the frequencies of the strain fields are equal in transition paths
p2 and p3, and the frequencies of the strain fields in paths p1
and p4 have a positive and negative shift, respectively, compared
with paths p2 and p3. Therefore, the central EIAT window is
attributed to transition paths p2 and p3, and the lateral EIAT
window is attributed to transition paths p1 and p4. In addition,
the frequency shift in transition paths p1 and p4 depends on
the splitting width Ωp in the dressed state framework, which
is consistent with the analyses about Figs. 6(b) and 7(c).
Furthermore, compared with the resonant case (δ2 � 0), when
detuning δ2 ≠ 0, the frequency shift corresponding to the cen-
tral EIAT window equals detuning δ2 of the microwave driving
field, agreeing with the description of Fig. 7(b).

4. DISCUSSION AND CONCLUSION

We briefly address the experimental feasibility of our scheme.
One of inherent advantages of this strain-coupled spin-
resonator system is that no additional components are required
to tune the coupling strength due to the intrinsic nature of the
coupling. In addition, this NV center-resonator system requires
no functionalization of the resonator, compared with other hy-
brid mechanical systems [59]. In our model, by properly adjust-
ing the external magnetic field, we can make energy level j − 1i
close to level j0i. In this case, the decay rate in the transition
j − 1i↔j0i is weak compared with the transition j � 1i↔j − 1i
(j0i). Additionally, the strength and detuning of the microwave
fields can be easily adjusted. The strain field can also be well
controlled by the external voltage or magnetic field, and the
magnitude of the strain is highly controlled, and is set by the
cantilever’s mode shape and amplitude of motion, the depth
and lateral location of the NV center in the DMR, and the
orientation of the NV center. On the other hand, the phe-
nomenon of acoustic-wave-induced microwave transparency
could also be realized in the present system by using a similar
idea, i.e., using the acoustic strain field as the strong coupling
field, and using the microwave field as the weak probe field,
which will induce a narrow spectral transparency window for
the microwave field.

Additionally, our result could be expanded into the quan-
tum regime. For instance, the coupling strength and the fre-
quency of the DMR can be calculated from Euler–Bernoulli
thin beam elasticity theory if we take a doubly clamped dia-
mond beam with L ≫ w; h [87]. As the strain is linear to its
position within small displacement, we can express the electric
field Ey in Eq. (1) into the quantized term Ey � E0�a� a†�,
with a† (a) the creation (destruction) operator of the mode of
the DMR, and E0 the perpendicular strain resulting from the
zero point motion of the beam. Under the rotating wave
approximation, the interaction Hamiltonian has the form
Hi � g0�σ�i a� a†σ−i �, where σ�i is the Pauli operator for
the ith NV center. For an NV center near the surface of the
beam, we have the individual coupling strength g0∕2π ≃
180

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ∕�L3w ffiffiffiffiffiffi

ρE
p �

p
[67] with ρ and E the mass density

and Young’s modulus of diamond, respectively. We can
estimate the vibrational frequency ωm∕2π∼2 GHz and the
individual coupling g0∕2π∼4 kHz for a beam of dimensions

(a) (b)

Fig. 8. (a) Bare-state and (b) dressed-state energy levels of the
Fig. 4. Here, p1�2;3;4� represent four transition paths in the case of
δ1 � δ3, and Ωp is the splitting width on energy levels jms � −1i
and jms � 0i under the driving of microwave field Ω2.

(a) (b) (c)

Fig. 7. (a) Value of Im�χ� as a function of detuning δ3 and
Rabi frequency Ω2. (b) Frequency shift of the central EIAT window
as a function of detuning δ2 in the detuning case with δ2 ≠ 0.
(c) Frequency interval between the central EIAT window and the lat-
eral EIAT window as a function of detuning δ2. The other parameters
are set as λ � 0.01, Γ32 � Γ31 � 1, Γ21 � 0.01, γ2d � 0.01,
γ3d � 1, Ω1 � Ω2 � 1.5, and δ1 � 0.
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�L; w; h� � �0.5; 0.05; 0.05� μm. Additionally, a long spin
relaxation time of T 1 ∼ 100 s [88] and spin dephasing time
T 2 � 10 ms [41] at low temperature are achieved in experi-
ment. These parameters are suitable for the realization of
EIAT in the present system.

In conclusion, we propose a potential scheme to observe
EIAT in a DMR system. We demonstrate that a single and
three multiple EIAT windows occur in the Λ-type and Δ-type
transition cases, respectively, and switching between the single
and three EIAT windows can be obtained by properly adjusting
the system parameters. Additionally, the group velocity of the
acoustic strain field was also discussed. With the NV center’s
long quantum coherence time and diamond’s low mechanical
losses, this hybrid system provides a unique environment to
engineer spin–phonon interaction, and can be used as a build-
ing block to construct a “slow sound” solid-state physical
material. We think our investigation could promote related
phonon-based QIP applications, such as phonon-based infor-
mation storage and propagation.
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