
Incentive Mechanism Design for Distributed
Coded Machine Learning

Ningning Ding, Zhixuan Fang, Lingjie Duan, and Jianwei Huang

Abstract—A distributed machine learning platform needs to
recruit many heterogeneous worker nodes to finish computation
simultaneously. As a result, the overall performance may be
degraded due to straggling workers. By introducing redundancy
into computation, coded machine learning can effectively improve
the runtime performance by recovering the final computation
result through the first k (out of the total n) workers who
finish computation. While existing studies focus on designing
efficient coding schemes, the issue of designing proper incentives
to encourage worker participation is still under-explored. This
paper studies the platform’s optimal incentive mechanism for mo-
tivating proper workers’ participation in coded machine learning,
despite the incomplete information about heterogeneous workers’
computation performances and costs. A key contribution of this
work is to summarize workers’ multi-dimensional heterogeneity
as a one-dimensional metric, which guides the platform’s efficient
selection of workers under incomplete information with a linear
computation complexity. Moreover, we prove that the optimal
recovery threshold k is linearly proportional to the participator
number n if we use the widely adopted MDS (Maximum
Distance Separable) codes for data encoding. We also show
that the platform’s increased cost due to incomplete information
disappears when worker number is sufficiently large, but it does
not monotonically decrease in worker number.

Index Terms—distributed machine learning, coded computa-
tion, costs and incentives of workers, incomplete information

I. INTRODUCTION

A. Background and Motivations

Recent years have witnessed the rapid development of large-
scale distributed machine learning, which well reconciles the
massive computation tasks and the limited computation power
of a single worker’s machine. Many workers (e.g., using
servers, laptops, or even smartphones) can locally conduct
model training based on assigned training data, and they feed
back the computation results to the platform to complete
a larger machine learning task. However, the performance
of large-scale distributed machine learning systems can be

This work is supported by the Shenzhen Institute of Artificial Intelligence
and Robotics for Society, and the Presidential Fund from the Chinese
University of Hong Kong, Shenzhen.

Ningning Ding is with the Department of Information Engineer-
ing, The Chinese University of Hong Kong, Hong Kong (e-mail:
dn018@ie.cuhk.edu.hk).

Zhixuan Fang is with Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China, and Shanghai Qi Zhi Institute, Shanghai,
China (e-mail: zfang@mail.tsinghua.edu.cn).

Lingjie Duan is with the Engineering Systems and Design Pillar, Sin-
gapore University of Technology and Design, Singapore (e-mail: lingjie
duan@sutd.edu.sg).

Jianwei Huang is with the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, and the Shenzhen Institute of
Artificial Intelligence and Robotics for Society (corresponding author, e-mail:
jianweihuang@cuhk.edu.cn).

P x

W

W

W

1

2

3

P Ax

W

W

W

1

2

3y =(A1 2

y =A x1

A

A

2

1 2

A1

3

1

+A )x +A

A

A

2

1 2

A1

+A

y =A x22

(a) Encoding and assignment

P x

W

W

W

1

2

3

P Ax

W

W

W

1

2

3y =(A1 2

y =A x1

A

A

2

1 2

A1

3

1

+A )x +A

A

A

2

1 2

A1

+A

y =A x22

(b) Computing and decoding

Fig. 1. Illustration of coded machine learning using (n = 3, k = 2)-MDS
codes, which can recover the final computation result from only two (out of
three) workers’ computation results.

significantly affected by bottlenecks like straggling workers
which finish computation much slower than other workers [1].

A promising solution to effectively alleviate straggler bottle-
necks is to use coding techniques to create proper computation
redundancy [2]. The key idea of coded machine learning
is to properly encode the data to be used for the workers’
computation subtasks, such that the platform only needs the
computation results from a subset k workers among a total of
n workers who are assigned the subtasks, in order to complete
the overall computation task. Hence, the fastest subset of
workers will determine the overall runtime of the distributed
machine learning. The minimum number of workers that the
platform needs to wait for (i.e., k) is called recovery threshold,
which depends on the code design and subtask assignment.

Fig. 1 shows an illustrative example of coded machine
learning, where we consider a system with one platform and
n = 3 workers. The platform wants to compute a matrix-vector
multiplication y = Ax using (n = 3, k = 2)-MDS codes.
• Encoding and assignment: First, the platform splits matrix
A ∈ Rr×s equally into two matrices A1 ∈ R r

2×s and A2 ∈
R r

2×s. Then, the platform assigns matrix A1 to worker 1,
A2 to worker 2, and A1 + A2 to worker 3. The platform
also broadcasts the input vector x to the three workers.

• Computing and decoding: The three workers will compute
subtasks y1 = A1x, y2 = A2x, and y3 = (A1 + A2)x in
parallel, respectively, and return the results to the platform
as soon as each worker finishes his own computation.
The platform is able to obtain the intended outcome Ax
as long as he receives any k = 2 workers’ results. For
example, if worker 1 is the straggling worker which finishes
the computation subtask the last, the platform can simply
obtain the intended outcome from workers 2 and 3, i.e.,
y = [y3 − y2;y2] = [A1x;A2x] = Ax.
However, given significant runtime saving using codes, it

may not be realistic that workers are willing to participate in
coded machine learning without proper incentives, as workers
are selfish and incur costs during the computation [3]. For
example, a worker needs to postpone his own background task

ar
X

iv
:2

01
2.

08
71

5v
1 

 [
cs

.G
T

] 
 1

6 
D

ec
 2

02
0



for running the platform’s assigned task, which translates to
time costs locally.

There are a few challenges in incentivizing workers’ partic-
ipation. First, it is challenging for the platform to incentivize
only the desirable workers to participate in coded machine
learning, as the platform may not know workers’ computation
costs and computation time. Appropriate incentives should be
sufficient to cover the costs of desirable workers and be based
on workers’ computation time performance. The computation
costs can be workers’ private valuation information, which
may not be easily accessed by the platform due to workers’
privacy concerns. The worker’s computation time depends
on many factors such as computation power as well as the
unpredictable and unreliable computation infrastructure, hence
it may not be even accurately known by the worker himself,
not to mention the platform [4]. The joint consideration of
private information and stochastic information is a key feature
of our model, which differs from many incentive mechanism
design problems where there is only private and accurate
information (to the workers) (e.g., [5], [6]). This will lead
to the first key question of this paper:

Question 1. How to incentivize heterogeneous workers with
private cost information and stochastic computation time to
participate in coded machine learning?

Second, it is under-explored of the impact of workers’ pri-
vate information on the platform’s incentive mechanism design
and cost. In the presence of workers’ private information,
the platform may obtain more information through market
research. Different levels of information asymmetry require
the platform to design different optimal incentive mechanisms
and thus make the platform obtain different costs. It is under-
explored how much cost savings the platform can obtain if he
has more information about workers. This motivates us to ask
the second key question in this paper:

Question 2. What is the impact of platform’s incomplete infor-
mation about workers on the platform’s incentive mechanism
and cost, compared with complete information?

Third, the platform needs to optimize the load assignment
and recovery threshold, which will affect the determination
of incentives as well as the performance of coded machine
learning. If the recovery threshold is too small, the load of
each worker becomes so large that the overall runtime will
eventually increase. If the recovery threshold is too large, the
redundancy may not be sufficient to mitigate the effect of
straggling workers. This leads to the third key question of
this paper:

Question 3. How should the platform design the load assign-
ment and recovery threshold for the incentivized workers?

B. Contributions

We summarize our key novelty and contributions below.
• Incentive mechanisms for coded machine learning: To the

best of our knowledge, this is the first analytical work to

study economic incentives in coded machine learning. The
incentive issue determines whether coded machine learning
can be implemented with enough workers’ participation.

• Easy-to-implement incentive mechanisms for heterogeneous
workers: We perform the analysis considering workers’
multi-dimensional heterogeneity in computation costs and
performances under incomplete information and stochastic
information. As a result, searching the target incentivized
workers among M -many types of workers would require
large-scale computation. We manage to summarize work-
ers’ multi-dimensional heterogeneity into a one-dimensional
metric to guide the platform’s worker selection under incom-
plete information. Such a metric reduces the computation
complexity from O(2M ) to O(M). We only need to set
the recovery threshold linearly proportional to the total
participator number when using MDS codes, which is easy
to implement.

• Impact of incomplete information for mechanism design:
We show that the platform may give smaller rewards to
the workers with efficient computation performances, com-
pared with workers with poor performances under complete
information. However, the platform gives larger rewards
to the workers with efficient computation performances
under incomplete information. These reward-performance
relationships are independent of the workers’ distribution
in each type. We also show that the platform’s increased
cost due to incomplete information disappears when worker
number is sufficiently large, but it does not monotonically
decrease in worker number.

C. Related Work
Most literature about coded machine learning focused on

designing coding schemes to mitigate stragglers and improve
efficiency in distributed computation, e.g., MDS codes [2],
short-dot codes [7], polynomial codes [8], and s-diagonal
codes [9]. These studies usually focused on the matrix com-
putation tasks such as matrix-vector multiplication (e.g., [10]),
matrix-matrix multiplication (e.g., [11]), and large-sparsity
matrix computation (e.g., [12]). Moreover, a few studies
further considered the secure coded computation problem
(e.g., [13]) and the computation performance heterogeneity of
workers (e.g., [14]).

However, existing studies make an optimistic assumption
that workers are willing to participate in coded machine
learning, which may not be realistic without proper incentives
to the workers. To the best of our knowledge, this paper is the
first attempt that analytically studies the platform’s incentive
mechanism design in coded machine learning.

The rest of the paper is organized as follows. The system
model is described in Section II. We study the platform’s
incentive mechanisms under complete information and incom-
plete information in Sections III and IV, respectively. We
perform simulations in Section V and conclude in Section VI.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a distributed coded machine learning system
involving a platform and N workers. In the following, we will



first introduce the platform’s task coding and load assignment
as well as workers’ heterogeneity, and then specify the infor-
mation scenarios, and finally formulate the Stackelberg game
between workers and the platform.

A. Platform Modeling: Task Coding and Load Assignment

In this subsection, we introduce how the platform encodes
the original task and assigns coded subtasks to workers.

This paper focuses on matrix-vector multiplication tasks in
the widely adopted problems such as gradient descent-based
algorithms, logistic regression, and reinforcement learning
(e.g. [10], [14])1. Given a data matrix A ∈ Rr×s, the platform
wants to compute the task y = Ax for an input vector x ∈ Rs.

Regarding the task coding, we use linear combinations of
the r rows of the matrix A to generate the computation
redundancy, such that the platform can recover the result Ax
as soon as receiving any r inner products from the workers. We
take (n, k)-MDS codes as an example. If the task is distributed
across n workers, for any k ∈ {1, ..., n}, the platform first
divides matrix A into k equal-sized submatrices in R r

k×s.
Then, by applying an (n, k)-MDS code, the platform obtains n
encoded submatrices with unchanged size r

k × s, one for each
worker. Upon receiving any k workers’ results, the platform
can decode the result of the original task.

The computation load of a worker’s subtask is defined as the
number of inner products of assigned coded rows of A with
x. If worker i is assigned a matrix-vector multiplication with
matrix size `i × s, his computation load is `i. In the example
of (n, k)-MDS codes, each worker has the same computation
load ` = r/k.

Given the computation task, the platform needs to assign
appropriate subtasks for heterogeneous workers.

B. Worker Modeling: Heterogeneous Costs and Performances

We consider a population of N workers in the coded
machine learning system, with heterogeneous computation
performances and costs as modeled below.

1) Computation Performances: We consider a 2-parameter
shifted exponential distribution for the computation time of
each worker, which is widely used in literature (e.g., [10],
[14]) because of the good approximation to the experiment
statistics. After being assigned `i rows of the matrix-vector
multiplication, worker i ∈ {1, ...N} will finish the computa-
tion subtask in time Ti, which is a random variable with the
following cumulative distribution function (CDF):

Pr (Ti ≤ t) =1− e−µi
(
t
`i
−ai

)
,∀t ≥ ai`i, (1)

where parameter µi > 0 is worker i’s average computation
speed and parameter ai > 0 tells worker i’s start-up time to
begin the computation. Equation (1) shows that a worker with
a larger µi, a smaller ai, or a smaller `i is more likely to finish
his computation earlier.

1Note that our analysis and insights can be easily applied to matrix-
matrix multiplications (which can be decomposed to several matrix-vector
multiplications) and other machine learning tasks as long as we can specify
the relationship between workers’ computation loads and computation time.

We consider that each worker’s computation time distribu-
tion in (1) (including the form as well as parameters µi and
ai) is known by the platform and other workers in this paper.
However, its realized value is unknown to both the platform
and the worker himself ahead of time, due to computing
resources’ unpredictable noise nature2. A worker will return
the computation results to the platform as soon as he finishes
his computation. Thus, each worker’s realized computation
performance is known to the platform after computation.

2) Computation Costs: The computation may lead to many
costs, such as time cost, energy consumption, and the potential
negative impact to other applications. We focus on the time
cost in this paper, as the commodity servers usually charge
workers on time (e.g. Amazon EC2 [15]). We consider each
worker i’s computation cost as ci per unit time of computation.

3) Worker Types: Given workers’ multi-dimensional het-
erogeneity in computation performances and costs, we intro-
duce worker type to classify the large number of workers.
Workers are distinguished by the cost, average computation
speed, and the start-up computation time. We call a worker
with (cm, µm, am) as a type-m worker. All N workers belong
to a set M = {1, 2, ...,M} of M types. Each type m ∈ M
has Nm workers, with

∑M
m=1Nm = N . We will see later in

Section III-C that workers’ three-dimensional heterogeneity
greatly increases the complexity and difficulty of platform’s
incentive mechanism design.

C. Information Scenarios
To study the impact of incomplete information, we will

perform the analysis in different information scenarios.
As for workers’ computation time, the platform only knows

each worker’s computation time distribution (i.e., µ and a).
Regarding workers’ computation costs, we will consider two
information cases in the following:
1) Complete information (benchmark): The platform knows

each worker’s computation cost c (and thus his type). This
may not be easy for the platform to achieve, but it provides
the platform’s minimum cost in all information cases for
comparison.

2) Incomplete information: The platform knows the total
number of workers N and the specific number of each
worker type {Nm}m∈M, but does not know each worker’s
computation cost c (and thus his type).

Workers always have incomplete information about each
other’s costs but know the computation time distributions.

D. Two-Stage Stackelberg Game Formulation
In this subsection, we specify the strategies, payoffs, as well

as costs of the platform and workers.
1) Strategies of Platform and Workers : As shown in Fig. 2,

we model the decision making of workers and the platform
before the computation as a two-stage Stackelberg game.

2The joint consideration of heterogeneous stochastic information and the
private information (i.e., computation costs to be introduced below) is a key
feature of our model. It differs from many incentive mechanism design papers
for networking problems, where the workers have no information uncertainty
regarding their own costs or performances (e.g., [5], [6]).



Stage I: Platform decides computation loads, targeted types, and rewards 

Stage II: Each worker decides whether to participate and type to report

Platform informs workers to stop computation once he receives 𝑟 inner 
products

Before 
Computation

Each Round’s 
Computation

Platform assigns rewards based on workers’ realized performances and 
reported types

After Each 
Round’s 

Computation

Fig. 2. Workflow of coded machine learning with incentives: the platform
and workers reach an agreement by playing a Stackelberg game before
computation, workers perform each round’s computation, and the platform
rewards workers after each round’s computation.

• In Stage I, the platform announces the set of targeted worker
types S ⊆ M, the computation loads in each computation
round ` , {`m}m∈S , and the rewards in each round
{pjm}m∈M,j∈{1,...,k}, where pjm is the reward for a type-
m worker being the j-th to finish the computation. Thus,
pm ,

∑k
j=1 Pr

j
mp

j
m is the expected reward for a type-m

worker in each round, where Prjm is the probability of a
type-m worker being the j-th to finish the computation3.
Equivalently, the platform actually determines the expected
rewards for workers p , {pm}m∈M.

• In Stage II, after knowing the platform’s decisions, each
worker decides whether to participate and what type to
report (which may not be his true type), as the platform
will give rewards based on workers’ realized performances
and their reported types after the computation.

The coded machine learning applies to multiple computation
rounds (e.g. in gradient descent problem). In each round of
computation, once the platform receives a decodable subset
of computation results (i.e., r inner products), the platform
will inform other workers to stop the computation without
any waste [16]. After each round’s computation, the platform
rewards workers as announced in Stage I.

Note that the number of participating workers n = N (S) ,∑
m∈S Nm is controlled by the incentive mechanism, and

the recovery threshold k depends on the load assignment as
illustrated in Section II-A.

2) Workers’ Payoff: Due to the randomness of the computa-
tion time, each worker can only maximize his expected payoff.
Each worker’s expected payoff in each round is the difference
between his expected reward and expected computation cost.

If a type-m worker optimally reports/misreports himself as
type m̃, his expected reward in each round is pm̃.

In each round, all workers’ expected spent time is the
expected overall runtime denoted by E[T ]. Note that even if a
worker finishes earlier in a particular round, he needs to wait
some random time for the rest of workers to finish and cannot
turn to any other job, resulting in the same time occupation for
all the workers. Thus, a type-m worker’s expected computation
cost is cmE[T ].

3The platform and workers know the participating worker types (i.e.,
targeted types in S), the worker number of each type Nm, and workers’
computation time distributions in (1) under both complete and incomplete
information, so both the platform and workers can derive Prjm.

TABLE I
KEY NOTATIONS

N Number of workers
M Number of worker types
r Number of rows of matrix A or simply total workload
µm Average computation speed of type-m workers
am Start-up time of type-m workers
cm Unit cost of type-m workers
pm Expected reward for a type-m worker
`m Computation load in term of rows for a type-m worker
S Set of worker types that platform targets at

N(S) Number of participating workers
Ti Worker i’s random computation time

E[T ] Expected overall runtime

TABLE II
INFORMATION SCENARIOS

Scenarios Worker heterogeneity Platform’s knowledge

Complete-Hetero Computation costs
and performances

Costs and computation
time distributions

Incomplete-Hetero Computation costs
and performances

Computation
time distributions

Incomplete-
HeteCostOnly Computation costs Computation

time distribution

In summary, if a type-m worker participates and reports
himself as type m̃, his expected payoff in each round is:

E[U(cm, µm, am, m̃)] = pm̃ − cmE[T ]. (2)

Workers can manipulate his type reporting to achieve the max-
imum payoff. Each worker will participate in the computation
once he expects a non-negative payoff in (2).

3) Platform’s Cost: The platform’s expected cost objective
in each round involves the overall runtime and total payment to
targeted workers. If the platform considers workers’ incentive
compatibility in designing the incentives (as guaranteed in
Section IV), all workers will truthfully report their types and
the platform’s expected cost in each round is

E[W (p,S, `)] = γ1E[T ] + γ2
∑
m∈S

Nmpm, (3)

where term E[T ] is the expected overall runtime and term∑
m∈S Nmpm is the expected total payment to targeted worker

types in set S. Terms γ1 and γ2 indicate the platform’s
valuations on expected overall runtime and expected payment,
respectively.

For ease of reading, we list the key notations in Table I
and all information scenarios that we will study in Table II. In
the following, we will study the platform’s incentive mech-
anism design under complete information (i.e., “Complete-
Hetero” scenario) in Section III and that under incomplete
information (i.e., “Incomplete-Hetero” scenario) in Section
IV-A. Moreover, we will consider a special case with workers’
heterogeneity only in costs (i.e., “Incomplete-HeteCostOnly”
scenario) in Section IV-B to further explore the optimal load
assignment and recovery threshold in coded machine learning
with incentives.

III. INCENTIVE MECHANISM DESIGN UNDER COMPLETE
INFORMATION

In this section, we study the platform’s optimal incentive
mechanism under the assumption that the platform knows each



worker’s type (i.e., “Complete-Hetero” scenario). Although
complete information may not be practical for the platform
to achieve, it serves as a benchmark for later comparison with
incomplete information.

A. Computation Load Assignment and Overall Runtime

We first present the load assignment scheme and compute
the corresponding overall runtime.

With workers’ heterogeneous computation performances,
assigning equal loads to all workers (e.g., in the MDS coding
scheme) is clearly not optimal. It is challenging to compute
the optimal load assignment in this case, because the expected
overall runtime objective is difficult to derive under nonuni-
form load assignment due to uncertain order of finish workers
and workers’ heterogeneous computation time distributions.

To simplify the analysis, we apply asymptotic analysis as
the number of workers goes to infinity, similar to [14] which
focuses on minimizing the expected overall runtime. The
asymptotically optimal load assignment and the corresponding
expected overall runtime are given in Lemma 1:

Lemma 1. When worker number goes to infinity, the following
computation loads minimize the expected overall runtime:

`m =
r

λm
∑
m∈S Nm

µm
1+µmλm

,∀m ∈ S, (4)

where λm is the unique positive solution to eµm(λm−am) =
µmλm + 1. The expected overall runtime under scheme (4) is

E[T ] =
r∑

m∈S Nm
µm

1+µmλm

. (5)

Proof of Lemma 1 is given in Appendix I of the techni-
cal report [17]. Term λm is introduced for representing the
closed form of the minimum point. The 1/λm indicates the
computation performance of type-m workers, as ∂λm

∂µm
≤ 0

and ∂λm
∂am

≥ 0. We assign a larger computation load to a
worker with better computation performance. The assignment
scheme (4) can be viewed as an approximation of the finite N
case with approximation error o(1) and is applicable to both
”Complete-Hetero” and ”Incomplete-Hetero” scenarios.

Next, we use backward induction to study workers’ deci-
sions in Stage II and the platform’s strategies in Stage I.

B. Workers’ Participation Decisions in Stage II

Based on the load assignment in (4), the rewards, and
the targeted worker type set S announced to workers by the
platform, each worker decides whether to participate in the
computation. Note that here the platform knows each worker’s
type under complete information, so workers cannot misreport
their types.

According to (2) and (5), a type-m worker’s expected payoff
when truthfully reporting (i.e., m̃ = m) and handling the
assigned load `m in (4) is:

E[U(cm, µm, am,m)] = pm − cm
r∑

m∈S Nm
µm

1+µmλm

. (6)

Each worker locally decides to participate as long as he
obtains a non-negative expected payoff in (6).

C. Platform’s Worker Selection and Rewards in Stage I

Considering workers’ decisions, the platform determines the
targeted worker type set and the rewards for workers in Stage
I, by balancing workers’ computation performances and costs.

1) Problem Formulation: According to (3) and (5), the
platform’s expected cost objective is

E[W (p,S)] = γ1
r∑

m∈S Nm
µm

1+µmλm

+ γ2
∑
m∈S

Nmpm. (7)

Under complete information, the platform only needs to
ensure that targeted workers obtain non-negative payoff (6),
i.e., satisfy Individual Rationality (IR) constraints as below:

Definition 1 (Individual Rationality). The incentive mecha-
nism is individually rational if each targeted type-m ∈ S
worker receives a non-negative payoff by accepting the ex-
pected reward pm intended for his type, i.e.,

E[U(cm, µm, am,m)] ≥ 0,∀m ∈ S. (8)

The optimization problem of the platform in the “Complete-
Hetero” scenario is formally given below.

Problem 1 (Complete-Hetero).

min E[W (p,S)]

s.t. E[U(cm, µm, am,m)] ≥ 0,∀m ∈ S
var. p ∈ [0,∞)M ,S ⊆M

To minimize the cost objective, the platform sets each
targeted worker’s expected reward just enough to cover his
expected cost, i.e., E[U(cm, µm, am,m)] = 0,∀m ∈ S . By
substituting the derived pm into (7), we can simplify Problem
1 to only choose the optimal worker types to target as follows.

Problem 2 (Worker Selection under Complete Information).

min
S⊆M

(
γ1 + γ2

∑
m∈S

Nmcm

)
r∑

m∈S Nm
µm

1+µmλm

.

Problem 2 is a combinatorial optimization problem and
should be solved by balancing workers’ computation perfor-
mances and costs. It is challenging to directly find the optimal
subset of workers given three-dimensional heterogeneity (i.e.,
µm, am, and cm), which in general requires combinatorial
search over all

∑M
n=1 C

n
M = 2M − 1 possible subsets of

worker types. The complexity is O(2M ), which is infeasible
for a large number of worker types. Alternatively, we will
explore to summarize the multi-dimensional heterogeneity as
a single metric to guide the platform’s worker selection in
linear complexity.

2) Optimal Solution: We will use two steps to summarize
the three-dimensional heterogeneity (i.e., µm, am, and cm)
into a one-dimensional metric. We first summarize the two-
dimensional heterogeneity of workers’ performances (i.e., µm
and am) as

φm ,
µm

1 + µmλm
. (9)

The φm can represent type-m workers’ computation perfor-
mance as it increases in average speed µm and decreases in



Incentivize Not Incentivize

𝛀
𝛀𝒏𝑪om𝑯𝒆𝒕

Fig. 3. Illustration of SComHet in “Complete-Hetero” scenario.

start-up time am (as λm decreases in µm and increases in am).
We further summarize the cost cm and the performance φm
as

Ωm ,
cm
φm

. (10)

The Ωm is type-m workers’ cost-performance ratio. Without
loss of generality, we assume increasing cost-performance
ratios among all the M worker types: Ω1 ≤ ... ≤ ΩM .

The following Theorem 1 shows how the one-dimensional
metric Ω guides the platform’s selection in the presence of
workers’ three-dimensional information.

Theorem 1. In the “Complete-Hetero” scenario, there exists
a threshold type nComHet,

nComHet=max

{
n|n ∈M,

cn
φn
≤
γ1 + γ2

∑n
m=1Nmcm

γ2
∑n
m=1Nm

µm
1+µmλm

}
,

(11)
such that it is optimal for the platform to induce the partici-
pation of worker types in the following targeted set SComHet:

SComHet = {n|n ∈M, n ≤ nComHet}. (12)

The optimal expected reward for a type-m worker is{
pComHetm = cm

r∑
m∈SComHet Nm

µm
1+µmλm

, ∀m ∈ SComHet,
pComHetm = 0, ∀m /∈ SComHet.

(13)

Proof of Theorem 1 is given in Appendix II of the technical
report [17].

As illustrated in Fig. 3, Theorem 1 shows that with workers
multi-dimensional heterogeneity in computation performances
and costs, the platform will incentivize the worker types with
a small cost-performance ratio under complete information.
In other words, the platform has a trade-off between work-
ers’ computation performances and computation costs. The
platform can tolerate a larger cost cm when the computation
performance is better (i.e., faster average computation speed
µm or less start-up time am).

For the worker types that the platform chooses to incentivize
(i.e., types in SComHet), the platform precisely makes the
expected rewards just enough to compensate for each worker’s
expected computation cost under complete information. For
the worker types out of targeted set SComHet, the platform
will not incentivize them by setting a zero expected reward.
We will see in next section that it is impossible for the platform
to make all participating workers obtain a zero expected payoff
under incomplete information, unless he only targets one type.

Moreover, we have the following remark about the com-
plexity of this easy-to-implement approach.

Remark 1. The platform can compute SComHet with a linear
complexity O(M), which is much more efficient than O(2M ).

The complete information scenario servers as a benchmark
to help understand the more realistic case of incomplete
information scenario, which we will study in next section.

IV. INCENTIVE MECHANISM DESIGN UNDER INCOMPLETE
INFORMATION

In this section, we study the optimal incentive mechanism
in the more realistic incomplete information scenario. More-
over, we will look at a special case where workers have
homogeneous computation time distribution (e.g., under the
same equipment or configuration) but still different costs in
Section IV-B, to further study the optimal load assignment
and recovery threshold under incentives.

A. Workers’ Heterogeneity in Both Performances and Costs

In this subsection, we focus on the general ”Incomplete-
Hetero” scenario where workers’ heterogeneity lies in both
computation performances and computation costs, i.e., workers
have different µi, ai, and ci. The platform does not know each
worker’s marginal cost, but he knows what types there are, the
number of each worker type, and each worker’s computation
time distribution.

1) Workers’ Participation Decisions in Stage II: Based on
the load assignment in (4), the rewards, and the targeted
worker type set S announced to workers by the platform, each
worker decides whether to participate and (if yes) which type
to report4.

According to (2) and (5), if a type-m worker participates
and reports his type as m̃, his expected payoff in this case is5:

E[U(cm, µm, am, m̃)]= pm̃ − cm
r∑

m∈S Nm
µm

1+µmλm

. (14)

If a worker does not participate, his expected payoff is 0.
Each worker will participate as long as he can obtain a non-

negative payoff, and he will report the type which maximizes
his expected payoff to the platform. Thus, a type-m ∈ M
worker’s optimal reported type (if he participates) is

m̃∗ = arg max
m̃

E[U(cm, µm, am, m̃)], (15)

and a type-m ∈M worker’s optimal participation decision is{
Participate, if E[U(cm, µm, am, m̃

∗)] ≥ 0,

Not participate, if E[U(cm, µm, am, m̃
∗)] < 0.

(16)

4When a worker decides to participate, he can only choose to report a type
that is within the targeted worker type set announced by the platform.

5Note that misreport will not affect the expected overall runtime. After
task coding, the number of subtasks for workers is fixed, and the platform
knows workers’ µ and a which cannot be misreported. Thus, under incomplete
information, even if some workers with types not in S want to participate
through misreporting their cost types, the number of workers who can
perform the computation and these workers’ computation performances will
not change.



2) Platform’s Strategies in Stage I: Taking workers’ deci-
sions into consideration, the platform determines the optimal
targeted worker type set and the optimal rewards for workers.

Since the platform does not know each worker’s type,
the platform needs to ensure a non-negative payoff for each
targeted worker type and make sure that all workers do not
misreport their cost types6. In other words, except for the
IR constraints, the platform has to make decisions under the
Incentive Compatibility (IC) constraints:

Definition 2 (Incentive Compatibility). Then incentive mech-
anism is incentive compatible if each type-m ∈ M worker
maximizes his own payoff by truthfully reporting his type, i.e.,

E[U(cm, µm, am,m)] ≥ E[U(cm, µm, am, m̃)],∀m, m̃ ∈M.
(17)

Formally, the platform’s optimization problem in
“Incomplete-Hetero” scenario is:

Problem 3 (Incomplete-Hetero).

min E[W (p,S)]

s.t. IR Constaints in (8), IC Constaints in (17)

var. p ∈ [0,∞)M ,S ⊆M

Compared with Problem 1, the incomplete information fur-
ther increases the complexity and difficulty of solving Problem
3 through the additional M(M−1) IC constraints. We present
the platform’s optimal strategies and the corresponding proof
sketch as follows:

Theorem 2. In the “Incomplete-Hetero” scenario, there exists
a threshold type nIncHet,

nIncHet = arg min
n∈M

γ1 + γ2
cn
φn

∑n
m=1Nmφm∑n

m=1Nmφm
, (18)

such that it is optimal for the platform to induce the partici-
pation of worker types in the following targeted set SIncHet:

SIncHet = {n|n ∈M, n ≤ nIncHet}. (19)

The platform’s optimal expected reward for a type-m ∈ M
worker is

pIncHetm = φm
rcnIncHet

φnIncHet
∑
m∈SIncHet Nm

µm
1+µmλm

,∀m ∈M.

(20)

Proof of Theorem 2 is given in Appendix III of the technical
report [17].

Theorem 2 shows that the platform is able to derive the
optimal set of workers under incomplete information in linear
complexity, by summarizing the three-dimensional type infor-
mation into a one-dimensional metric (i.e., cost-performance

6Revelation principle demonstrates that if a social choice function can be
implemented by an arbitrary mechanism, then the same function can be imple-
mented by an incentive-compatible-direct-mechanism (i.e. in which workers
truthfully report types) with the same equilibrium outcome. Thus, requiring
IC will simplify the mechanism design without affecting the optimality.

ratio Ω). Although the platform uses the same metric Ω to se-
lect workers in scenarios “Incomplete-Hetero” and “Complete-
Hetero”, the numbers of targeted types (i.e., nComHet in (11)
and nIncHet in (18)) are different. One may wonder whether
the platform always targets fewer worker types under incom-
plete information. Our simulation results in Section V show
that it is not always true. In the two information scenarios,
different payment rules will have different influences on the
platform’s expected cost, resulting in different worker selection
rules in (11) and (18).

Different from the “Complete-Hetero” scenario where all
participating workers obtain a zero payoff, in the “Incomplete-
Hetero” scenario, all worker types in set SIncHet except the
boundary type obtain positive expected payoffs which are the
information rent in economics. In the “Complete-Hetero” sce-
nario, the platform may give smaller expected rewards to the
workers with efficient computation performances, compared
with workers with poor performances, as the platform knows
workers’ costs. However, in “Incomplete-Hetero” scenario, the
platform sets a larger expected reward for a type with better
computation performance φ as shown in (20). Such a reward-
performance relationship is independent of the workers’ dis-
tribution in each type. Moreover, the rewards in Theorem 2
ensure that worker types in the desirable set SIncHet will
participate, and types not in SIncHet will not participate as the
expected reward cannot compensate for their expected costs.

Furthermore, we have the following insight about the opti-
mal number of targeted types in the two scenarios:

Corollary 1. The number of targeted types increases in
the platform’s valuation on expected overall runtime γ1 and
decreases in the platform’s valuation on payment γ2.

Proof of Corollary 1 is given in Appendix IV of the
technical report [17]. If the platform attaches more attention on
the computation time (larger γ1), he is likely to include more
worker types to reduce the overall runtime; if the platform
pays more attention on the payment to workers (larger γ2), he
will incentivize fewer worker types to save money.

Note that the recovery threshold k is a random variable
in these two scenarios. Workers’ different loads and random
computation time lead to the randomness of the number
of workers who finish the computation before the platform
receives r rows (i.e., the value of k in

∑k
j=1 `

j = r, where `j

is the load of the j-th worker who finishes the computation).
Next, we will consider a special case where workers have
the same computation time distribution but different costs
to further study the optimal load assignment and recovery
threshold in coded machine learning with incentives.

B. Workers’ Heterogeneity in Costs Only

In this subsection, we focus on the “Incomplete-
HeteCostOnly” scenario where workers have heterogeneous
computation costs c and the same computation performances
(i.e., computation time distribution). The platform has incom-
plete information about workers’ costs but knows the workers’
computation time distribution and worker type distribution.



Incentivize Not Incentivize

𝒄
𝒄𝒏𝑰𝒏𝒄𝑯𝒄𝒐

Fig. 4. Illustration of SIncHco in “Incomplete-HeteCostOnly” scenario.

Each worker i’s computation time (i.e., Ti) in this case
follows (1) with µi = µ, ai = a, and `i = `,∀i ∈ {1, ..., N}.
In this case, we consider the (n, k)-MDS code as introduced
before, which is a widely used code for workers with ho-
mogeneous computation time distribution in literature (e.g.,
[2], [10]).7 Then, the load assignment and the corresponding
expected overall runtime are given as follows:

Lemma 2. Under the (n, k)-MDS codes, each worker has the
same computation load

` =
r

k
. (21)

The expected overall runtime under (21) is

E[T ] =
r

k

(
a+

Hn−Hn−k

µ

)
' r

k

(
a+

1

µ
log

n

n−k

)
, (22)

where Hn ,
∑n
i=1

1
i , and Hn ' log n when n is large.

Proof of Lemma 2 is given in Appendix V of the technical
report [17]. The analysis of workers’ participation decisions
and the platform’s strategies is similar to that in Section IV-A.
Then, the platform’s optimal targeted worker type set, optimal
rewards, and optimal recovery threshold in the “Incomplete-
HeteCostOnly” scenario are given in Proposition 1:

Proposition 1. Given c1 ≤ ... ≤ cM in the “Incomplete-
HeteCostOnly” scenario, there exists a threshold type
nIncHco,

nIncHco = arg min
n∈M

γ1 + γ2cn
∑n
m=1Nm∑n

m=1Nm
, (23)

such that it is optimal for the platform to induce the partici-
pation of worker types in the following targeted set SIncHco:

SIncHco = {n|n ∈M, n ≤ nIncHco}. (24)

The optimal expected reward for a type-m ∈M worker is

pIncHcom = cnIncHco
r

k∗

(
a+

1

µ
log

1

1− α

)
,∀m ∈M, (25)

and the platform’s optimal recovery threshold is

k∗ = αN (SIncHco), (26)

where α ,
[
1 + 1

W−1(−e−aµ−1)

]
∈ [0, 1], W−1(·) is the

lower branch of Lambert W function8, and N (SIncHco) ,∑
m∈SIncHco Nm.

7Our mechanisms can also be extended to other codes similarly. MDS codes
can make the expected overall runtime Θ(logn) times faster than uncoded
matrix multiplication (e.g., [2]).

8x = −W−1

(
− 1

t

)
is the unique solution to ex

x
= t, t ≥ e and x ≥ 1.

TABLE III
WORKERS’ PARAMETER SETTINGS IN SIMULATION

(c1, µ1, a1) = (1, 50, 0.012) (c2, µ2, a2) = (7, 100, 0.024)
(c3, µ3, a3) = (8, 200, 0.033) (c4, µ4, a4) = (3, 10, 0.031)
(c5, µ5, a5) = (16, 400, 0.040) (c6, µ6, a6) = (5, 20, 0.081)
(c7, µ7, a7) = (21, 800, 0.044) (c8, µ8, a8) = (9, 40, 0.123)
(c9, µ9, a9) = (12, 80, 0.153) (c10, µ10, a10) = (20, 160, 0.172)

Proof of Proposition 1 is given in Appendix VI of the
technical report [17].

As illustrated in Fig. 4, Proposition 1 shows that in the
“Incomplete-HeteCostOnly” scenario, the platform prefers the
worker types with small marginal costs, as workers have the
same computation performance in this case. The platform
gives all workers the same expected reward, which ensures
that worker types in the desirable set SIncHco will participate,
and types not in SIncHco will not participate.

More importantly, Proposition 1 presents that the MDS
codes’ optimal recovery threshold k∗ is linearly proportional
to the total participator number N (SIncHco), which provides
an easy-to-implement guideline for data encoding. According
to (21), the optimal load assignment is `∗m = r/k∗,∀m ∈ S.

Next, we will compare the platform’s strategies and costs in
different scenarios through numerical analysis in Section V.

V. SIMULATION RESULTS

In Section V-A, we will evaluate the performance of our pro-
posed incentive mechanisms. In Section V-B, we will further
consider a strongly incomplete information scenario where
the platform further lacks the information about workers’
distributions in different types (i.e., Nm of type m). We will
show that our incentive mechanism for incomplete information
scenario is asymptotically optimal under strongly incomplete
information.

When workers have three-dimensional heterogeneity in
computation performances and costs, we consider M = 10
types of workers with parameter settings in Table III, sim-
ilar to that in [14]. The parameters satisfy increasing cost-
performance ratio relationship: Ω1 ≤ ... ≤ ΩM . There are
r = 1000 inner products to be finished by workers. Each
type has Nm = N/M,∀m ∈ M workers. We consider both
γ1 = 2000 and γ2 = 1 to reflect the platform’s different
evaluation scenarios on time cost and payment.

A. Complete versus Incomplete Information

Fig. 5 shows the number of platform’s targeted worker
types characterized in Theorems 1 and 2 versus the total
worker number N , under both complete and incomplete in-
formation. Both curves are decreasing in N . This is because
the worker types of small cost-performance ratios have more
workers when N increases. The platform can rely less on the
inefficient or costly types. By comparing the results in two
information scenarios in Fig. 5, we realize that the platform
does not always target at a smaller group of workers under
incomplete information. For example, the platform includes 4
worker types under incomplete information versus 3 worker
types under complete information at around N = 1400. The



0 1000 2000 3000 4000
1

2

3

4

5

6

7

8
Complete information

Incomplete information

Fig. 5. Number of worker types targeted by the platform (under both complete
and incomplete information) versus the total worker number N .

0 1000 2000 3000 4000

0

100

200

300

400

500

600

In
c
re

a
s
e
d
 c

o
s
t

Fig. 6. Platform’s increased cost due to the lack of information versus the
total worker number N .

platform under incomplete information afraid of large overall
runtime wants to include one more type despite the mildly
increased cost.

Fig. 6 compares the platform’s cost objectives under com-
plete and incomplete information, by measuring increased cost
due to incomplete information versus the worker number N .
When the number of workers becomes very large (larger than
3400 in Fig. 6), the platform obtains the same cost in these
two scenarios. This is because the platform only chooses the
type with smallest cost-performance ratio in both complete
and incomplete information scenarios (Fig. 5). However, the
platform’s cost gap does not monotonically decrease in N .
The platform may sometimes target more worker types under
incomplete information (see Fig. 5 when N equals 1400),
which increases cost difference compared to the complete
information scenario.

Fig. 7 further shows that different types of workers’ payoffs
under incomplete information versus the worker number N .
Only the targeted worker types can have positive payoffs,

0 500 1000 1500 2000 2500
0

5

10

15

20
Type-1 worker

Type-2 worker

Type-3 worker

Type-4 worker

Type-5 worker

Type-6 worker

Type-7 worker

Type-8 worker

Type-9 worker

Type-10 worker

Fig. 7. Different worker types’ payoffs under incomplete information versus
the total worker number N .

0 200 400 600 800 1000

0

50

100

150

200

250

300

350

In
c
re

a
s
e
d

 c
o
s
t

Fig. 8. Platform’s increased cost due to strongly incomplete information
compared with incomplete information versus the total worker number N .

and such payoffs are overall decreasing in N due to mutual
competition and the platform’s smaller set of targeted types.

B. Extension of Incomplete Information

In Section IV, we have studied the mechanism design
under incomplete information without knowing each worker’s
computation time and cost. Here we further evaluate the
performance of the proposed mechanism in Theorem 2 under
strongly incomplete information, where the platform only
knows the total number of workers and the distribution of
each worker’s type. Each worker has an equal probability of
10% of belonging to each worker type.

In this strongly incomplete information scenario, as the
number of workers N becomes large, according to the law of
large numbers, the empirical number of each type of workers
approaches to the expected value computed based on the
distribution. As shown in Fig. 8, when N is larger than 400, the
increased cost due to strongly incomplete information reaches
zero9. Thus, our incentive mechanism in Theorem 2 performs
optimally under this strongly incomplete information scenario
as N goes to infinity.

VI. CONCLUSION

This paper studied the important incentive issues in coded
machine learning. We captured the trade-off between the
platform’s time cost and payment in his payoff function. We
proposed the optimal incentive mechanisms for the workers
in both complete information and incomplete information
scenarios, under workers’ multi-dimensional heterogeneity in
computation performances and costs. In the presence of the
high complexity of the worker selection problem, we managed
to summarize workers’ multi-dimensional heterogeneity into
a one-dimensional metric and solved the problem in a linear
complexity. We also demonstrated that the optimal recovery
threshold is linearly proportional to the total participator num-
ber when using MDS codes. We showed that compared with
the complete information scenario, the effect of incomplete
information on the platform’s cost will disappear when the
total worker number is sufficiently large. We will further study
the optimal incentive mechanisms of competing platforms in
future work.

9The fluctuations are due to the random realization of the number of each
type workers.



REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[3] L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa, and J. Walrand,
“Incentive mechanisms for smartphone collaboration in data acquisition
and distributed computing,” in 2012 Proceedings IEEE INFOCOM,
2012.

[4] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput
optimal coded computing over cloud networks,” in Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2019, pp. 301–310.

[5] N. Ding, Z. Fang, and J. Huang, “Incentive mechanism design for
federated learning with multi-dimensional private information,” Inter-
national Symposium on Modeling and Optimization in Mobile, Ad Hoc
and Wireless Networks, 2020.

[6] Q. Ma, L. Gao, Y.-F. Liu, and J. Huang, “Incentivizing wi-fi network
crowdsourcing: A contract theoretic approach,” IEEE/ACM Transactions
on Networking, vol. 26, no. 3, pp. 1035–1048, 2018.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016, pp. 2100–2108.

[8] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403–
4413.

[9] S. Wang, J. Liu, N. Shroff, and P. Yang, “Computation efficient coded
linear transform,” in The 22nd International Conference on Artificial
Intelligence and Statistics, 2019, pp. 577–585.

[10] A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation
schemes over wireless networks,” in 2017 55th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton). IEEE,
2017, pp. 1256–1263.

[11] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 2418–2422.

[12] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix
multiplication,” in 2017 55th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), 2017, pp. 1271–1278.

[13] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in 2017 IEEE International Symposium on
Information Theory (ISIT), 2017, pp. 2900–2904.

[14] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[15] “Amazon EC2,” https://aws.amazon.com/ec2/?nc1=h ls.
[16] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:

Which clones should attack and when?” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 45, no. 2, pp. 12–14, 2017.

[17] “Online technical report,” https://www.dropbox.com/s/
dqynehe1pqn61e2/appendix.pdf?dl=0.

https://aws.amazon.com/ec2/?nc1=h_ls
https://www.dropbox.com/s/dqynehe1pqn61e2/appendix.pdf?dl=0
https://www.dropbox.com/s/dqynehe1pqn61e2/appendix.pdf?dl=0

	I Introduction
	I-A Background and Motivations
	I-B Contributions
	I-C Related Work

	II System Model and Preliminaries 
	II-A Platform Modeling: Task Coding and Load Assignment 
	II-B Worker Modeling: Heterogeneous Costs and Performances
	II-B1 Computation Performances
	II-B2 Computation Costs
	II-B3 Worker Types

	II-C Information Scenarios
	II-D Two-Stage Stackelberg Game Formulation
	II-D1 Strategies of Platform and Workers 
	II-D2 Workers' Payoff
	II-D3 Platform's Cost


	III Incentive Mechanism Design under Complete Information
	III-A Computation Load Assignment and Overall Runtime
	III-B Workers' Participation Decisions in Stage II
	III-C Platform's Worker Selection and Rewards in Stage I
	III-C1 Problem Formulation
	III-C2 Optimal Solution


	IV Incentive Mechanism Design under Incomplete Information
	IV-A Workers' Heterogeneity in Both Performances and Costs
	IV-A1 Workers' Participation Decisions in Stage II
	IV-A2 Platform's Strategies in Stage I

	IV-B Workers' Heterogeneity in Costs Only

	V Simulation Results
	V-A Complete versus Incomplete Information
	V-B Extension of Incomplete Information

	VI Conclusion
	References

