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a b s t r a c t

We introduce a new family of utility functions for exchange markets. This family provides
a natural and ‘‘continuous’’ hybridization of the traditional linear and Leontief utilities
and might be useful in understanding the complexity of computing approximating market
equilibria, although computing an equilibrium in a market with this family of utility
functions, this is PPAD-hard in general. In this paper, we present an algorithm for finding
an approximate Arrow–Debreu equilibrium when the Leontief components of the market
are grouped, finite and well-conditioned.
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1. Introduction

In recent years, the problem of computing and approximating market equilibria has attracted many researchers. In an
exchange market, there is a set of traders and each trader comes with an initial endowment of commodities. They interact
through some exchange process in order to maximize their own utility functions. In the state of an equilibrium, the traders
can simply sell their initial endowments at a determined market price and buy commodities that maximize their utilities.
Then, the market will clear — the price is so wisely set that the supplies exactly satisfy the demands. This price is called the
equilibrium price.
Arrow and Debreu [1] proved the existence of equilibrium prices under some mild conditions. Since then, efficient

algorithms have been developed for various families of utility functions.

1.1. From linear to Leontief utilities

Two popular families of utility functions are the linear and Leontief utilities. Both of them can be specified by an m × n
demandmatrix D = (di,j), in an exchange market withm goods and n traders. If trader j, where 1 ≤ j ≤ n, receives a bundle
of goods xj, then its linear utility is uj(xj) =

∑
i xi,j/di,j, while its Leontief utility is uj(xj) = mini(xi,j/di,j). Both linear and

Leontief utilities are members of a larger family of utility functions, referred to as CES utilities.
Although the two families of functions look similar, the complexities of computing market equilibria in these two

settings might be very different. In the linear case, a market equilibrium can be approximated and computed in polynomial
time, thanks to a collection of great algorithmic results by Nenakhov and Primak [12], Devanur, Papadimitriou, Saberi and
Vazirani [6], Jain, Mahdian and Saberi [10], Garg and Kapoor [7], Jain [9], and Ye [13].
However, approximating market equilibria with Leontief utilities has proven to be hard, under some reasonable

complexity assumptions. In particular, by analyzing a reduction of Codenotti, Saberi, Varadarajan and Ye [4] from Nash
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equilibria to market equilibria, Huang and Teng [8] showed that approximating Leontief market equilibria is as hard as
approximating Nash equilibria of general two-player games. Thus by a recent result of Chen, Deng and Teng [2], it is PPAD-
hard to approximate a Leontief market equilibrium in fully polynomial time. In fact, the smoothed complexity of finding a
Leontief market equilibrium cannot be polynomial, unless PPAD ⊂ RP.

1.2. Hybrid linear-Leontief utilities and our results

In this paper, we introduce a new family of utility functions, and study the computation and approximation of equilibria
in exchangemarkets with these utilities. Our work is partially motivated by the complexity discrepancy between linear and
Leontief utilities. In our market model, each trader’s utility function is a linear combination of a collection of Leontief utility
functions. We parameterize such a utility function by the maximum number of commodities in its Leontief components. If
the number of commodities in any of its Leontief components is at most k, we refer to it as a k-wide linear-Leontief function.
Intuitively, the new utility function combines an ‘‘easy’’ linear function with several ‘‘hard’’ Leontief utility functions.

Clearly, a 1-wide linear-Leontief function is a linear function and thus, a market with 1-wide linear-Leontief utilities can be
solved in polynomial time. On the other hand, for markets with general linear-Leontief utilities, finding an equilibrium is
PPAD-hard.
We further focus on grouped hybridizations inwhich the commodities of the exchangemarket are divided into groups. For

any of these groups, each trader has a Leontief utility function over the commodities in the group. A trader’s utility function
is then the summation of all its Leontief utilities. If each group has at most k commodities, we refer to the utility functions
(in the exchange market) as grouped k-wide linear-Leontief functions.
An exchange market with grouped linear-Leontief functions can be viewed as a linear combination of several smaller

Leontief markets, one for each group of commodities. In an equilibrium, the supplies exactly satisfy the demands in each
of these Leontief markets. However, a trader can invest the surplus it earned from one Leontief market to other Leontief
markets.
We present two algorithmic results on the computation and approximation of equilibria in markets with hybrid linear-

Leontief utilities:

• In Fisher’s model, we show that an equilibrium of an exchange market with n traders,M commodities and hybrid linear-
Leontief utility functions can be computed in O(

√
Mn(M + n)3L) time, where L is the bit-length of the input data.

• We also present an algorithm for finding an approximate equilibrium in a well-conditioned Arrow–Debreu market with
grouped linear-Leontief functions (see Section 4 for details). While the upper bound that we can prove is exponential,
the time complexity of this algorithm is closely related to an interesting sampling problem (see Section 4.2 for details).

In this paper, we only prove the first result for grouped linear-Leontief utilities. It is easy to extend the proof to the general
case. In the Arrow–Debreu model, we notice that, due to a recent result of Chen, Deng and Teng [3] on the complexity of
sparse two-player games, approximating equilibria in fully polynomial-time is PPAD-hard even for Arrow–Debreu markets
with 10-wide linear-Leontief utilities.

1.3. Notations

We will use bold lower-case Roman letters such as x, a, bj to denote vectors. Whenever a vector, say a ∈ Rn is present,
its components will be denoted by lower-case Roman letters with subscripts, such as a1, a2, . . . , an. Matrices are denoted
by bold upper-case Roman letters such as A and scalars are usually denoted by lower-case Roman letters. We will also use
the following notation in the paper:

– Rm
+
: the set ofm-dimensional vectors with non-negative real entries;

– Pn: the set of vectors x ∈ Rn
+
with

∑n
i=1 xi = 1;

– 〈a|b〉: the dot-product of two vectors in the same dimension;
– ‖x‖p: the p-norm of vector x, that is, (

∑
i |xi|

p)1/p; and ‖x‖∞ = maxi |xi|.

2. Grouped linear-Leontief markets

Assume there are n traders in the market, denoted by T = {1, . . . , n − 1, n}. The market has m groups of commodities,
denoted by G = {G1, . . . ,Gm}, and each group Gj contains kj kinds of commodities.
Trader i’s initial endowment of goods is a collection ofm vectors: {eij ∈ R

kj
+, 1 ≤ j ≤ m}, where e

i
j,k is the amount of good k

in group j held by trader i. For each group j, we usematrix Ej = (e1j , . . . , e
n
j ) to denote the traders’ initial endowments in this

group. We also assume that the amount of each commodity is normalized to 1, i.e.,
∑n
i=1 e

i
j,k = 1 for all j : 1 ≤ j ≤ m and

k : 1 ≤ k ≤ kj. Similarly, the allocation to trader i is also a collection ofm vectors, denoted by xi = {xij ∈ R
kj
+, 1 ≤ j ≤ m}.

Trader i’s utility function ui is described by vectors {dij ∈ R
kj
+, 1 ≤ j ≤ m} and ai ∈ Rm

+
: given an allocation

xi = {xij, 1 ≤ j ≤ m}, we have
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ui(xi) =
m∑
j=1

aijv
i
j, where vij = min

1≤k≤kj

{
xij,k
/
dij,k
}
. (1)

In other words, ui is a linear combination of m Leontief functions. Locally, we have a Leontief market for each group j, in
which trader i demands the goods in proportion to vector dij. For each group j, we use matrix Dj = (d

1
j , . . . , d

n
j ) to denote

the traders’ demands in this group.
Let D = (D1, . . . ,Dm), E = (E1, . . . , Em), and A = (a1, . . . , an), then the market is a tupleM = (T,G,D, E,A). Now we

define the exchange equilibrium and approximate equilibrium in this market model.
Let x1, . . . , xn be an allocation of the market, then we use vj = (v1j , v

2
j , . . . , v

n
j )
> to denote the n-dimensional column

vector whose ith component vij is defined in Eq. (1). We also use v to denote {vj ∈ Rn
+
, 1 ≤ j ≤ m}.

Definition 1 (Exchange Equilibrium). An exchange equilibrium of market M = (T,G,D, E,A) is a pair (p, v), where p =
{pj ∈ R

kj
+, 1 ≤ j ≤ m} is a collection ofm price vectors and v = {vj ∈ Rn

+
, 1 ≤ j ≤ m}, such that

ui =
m∑
j=1

aijv
i
j, ∀i = 1, . . . , n

ui = max

{
m∑
j=1

aijz
i
j

∣∣ m∑
j=1

〈pj|dij〉z
i
j ≤

m∑
j=1

〈pj|eij〉

}
, ∀i = 1, . . . , n

Djvj ≤ E1, ∀j = 1, . . . ,m.

It is easy to see that, given any exchange equilibrium (p, v), one can find an allocation x1, . . . , xn of themarket efficiently,
such that, every trader’s utility is maximized and the market clears.

Definition 2 (ε-Approximate Equilibrium). An ε-approximate equilibrium ofmarketM = (T,G,D, E,A) is a pair (p, v) such
that 

ui =
m∑
j=1

aijv
i
j, ∀i

ui ≥ (1− ε)max

{
m∑
j=1

aijz
i
j

∣∣ m∑
j=1

〈pj|dij〉z
i
j ≤

m∑
j=1

〈pj|eij〉

}
, ∀i

Djvj ≤ (1+ ε)E1, ∀j.

3. An equivalent equilibrium characterization

In this section, we first prove a theorem that gives a necessary and sufficient condition for (p, v) being an exchange
equilibrium. Then we present the algorithm for Fisher’s model, whose definition will be presented later.

Theorem 3. A pair (p, v) is an equilibrium if and only if it satisfies

Djvj ≤ E1, ∀j

ui =
m∑
j=1

aijv
i
j, ∀i

wi =

m∑
j=1

〈pj|eij〉, ∀i

wiaij ≤ ui〈pj|d
i
j〉, ∀i, j.

(2)

Proof. For each trader i, (p, v)maximizes its utility if and only if

ui =
m∑
j=1

aijv
i
j, wi =

m∑
j=1

〈pj|eij〉,

aij
〈pj|dij〉

≤
ui
wi
, ∀j

aij
〈pj|dij〉

vij =
ui
wi
vij, ∀j.
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Therefore, (p, v) is an equilibrium ofM if and only if

Djvj ≤ E1, ∀j

ui =
m∑
j=1

aijv
i
j, ∀i

wi =

m∑
j=1

〈pj|eij〉, ∀i

wiaij ≤ ui〈pj|d
i
j〉, ∀i, j

wiaijv
i
j = ui〈pj|d

i
j〉v
i
j, ∀i, j.

To prove the theorem, it suffices to show that the last condition can be derived from the other four. By wiaij ≤ ui〈pj|d
i
j〉,

we havewiaijv
i
j ≤ ui〈d

i
j|pj〉v

i
j and

wi

m∑
j=1

aijv
i
j ≤ ui

m∑
j=1

〈dij|pj〉v
i
j, ∀i

⇒

m∑
j=1

〈eij|pj〉 = wi ≤
m∑
j=1

〈dij|pj〉v
i
j, ∀i

⇒

n∑
i=1

m∑
j=1

〈eij|pj〉 ≤
n∑
i=1

m∑
j=1

〈dijv
i
j |pj〉

⇒

m∑
j=1

〈E1|pj〉 ≤
m∑
j=1

〈
Djvj|pj

〉
.

On the other hand, since Djvj ≤ E1 for all j, we have 〈Djvj|pj〉 = 〈E1|pj〉 for all j. This forceswiaijv
i
j = ui〈d

i
j|pj〉v

i
j for all i, j. �

3.1. Solving Fisher’s model

Fisher’s model is a special case of the Arrow–Debreu model. In Fisher’s model, the commodities are initially held by a
single seller, and all other traders come to the market with money. Each trader buys goods from the seller to maximize
its utility, under the budget constraint. The market is in an equilibrium if the supplies satisfy the demands. Usually, the
computation of equilibria in Fisher’s setting is much easier than that in the general case. In fact, as shown in [11], one can
find an approximate equilibrium of the market by solving the following convex program:

max
n∑
i=1

wi log(ui)

s.t.


ui =

m∑
j=1

aijv
i
j, ∀i = 1, . . . , n

Djvj ≤ E1, ∀j = 1, . . . ,m
vj ≥ 0, ∀j = 1, . . . ,m

(3)

where we assume trader i comes to the market with wi dollars. With the same argument as in [13], we can prove the
following theorem:

Theorem 4 (Fisher’s Equilibrium). Fisher’s model can be solved using the interior-point algorithm in O(
√
Mn(M + n)3L) time,

where M =
∑
j kj is the number of commodities, n is the number of traders, and L is the bit-length of the input data.

4. An approximation algorithm for Arrow–Debreu markets

Since Leontief economy is a special case of the hybrid linear-Leontief economy, the hardness results [4,5,8] for Leontief
economy also apply to our setting. For example, it is NP-hard to determine the existence of equilibria [4], and there is no
algorithm to compute an equilibrium in smoothed polynomial time, unless PPAD ⊂ RP [8]. In this section, we present
an approximation algorithm for well-conditioned grouped linear-Leontief markets. We say a market M = (T,G,D, E,A) is
well-conditioned, if τ = mini,j,k{eij,k, d

i
j,k} > 0. The time complexity of our algorithm is

min

{
O

((
1
τε

)M−m
poly(M, n)

)
,O

((
log(1/τ)

ε

)2mn
poly(M, n)

)}
,

whereM =
∑m
j=1 kj is the number of commodities.
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4.1. Intuition

Assume the market isM = (T,G,D, E,A) and (p, v) is one of its equilibria. In the following discussion, it is convenient
to replace each pj with qjpj, where qj ∈ R

+
and ‖pj‖1 = 1 is a normalized vector, and rewrite equilibrium (p, v) as (q, p, v),

where q ∈ Rm
+
. We call p an equilibrium internal price ofM.

As wementioned earlier, marketM can be viewed as a linear combination of several Leontief markets. Therefore, it is not
surprising that given an equilibrium (q, p, v) ofM, we can construct a new linear marketM such that q is the price vector
of an equilibrium ofM.
Given (q, p, v), we buildMwith linear utilities as follows. The set of traders is the same asM. We introduce a commodity

gj for each group Gj ∈ G and thus,M has m types of commodities g1, . . . , gm. Trader i’s initial endowment of commodity gj
is eij = 〈e

i
j|pj〉, and its preference to commodity gj is a

i
j = a

i
j/〈d

i
j|pj〉. The lemma below follows directly from the definition

of equilibria.
Lemma 5 (Market Reduction). Let xij = v

i
j〈d
i
j|pj〉 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then (q, x) is an equilibrium of the linear

marketM.
Lemma 5 shows that if we are so lucky that we know the internal price pj of each group Gj, then the hybrid marketM can

be somehow reduced to a linearmarketM: By computing an equilibrium (q, x) ofM (which can be done in polynomial time,
sinceM is a linear market), we get an equilibrium (q, p, v) of the hybrid marketM, where vij = x

i
j/〈d

i
j|pj〉 for all 1 ≤ i ≤ n,

1 ≤ j ≤ m.
This observation leads us to the following approximation algorithm. First, we introduce a discrete set Sj ⊂ Pkj , for each

group Gj, to approximately cover the simplex Pkj . More exactly, Sj is a dense subset of Pkj in the sense that, for any pj ∈ Pkj ,
there exists a pj ∈ Sj such that pj and pj are close enough (for the desired accuracy). Then, we exhaustively enumerate
all the internal prices p = {pj, 1 ≤ j ≤ m} in S1 × · · · × Sm. For each p, we reduce M to a linear market M using p (as
described above). Finally, we check whether there is an equilibrium (q, x) ofM, which can be combined with p to produce
an approximate equilibrium of the original marketM.
The time complexity of this algorithm clearly depends on the size of the sampling set S1 × · · · × Sm, so the construction

of sets Sj is very important. We address this problem in the following subsection.

4.2. The efficient sampling problem

The Efficient Sampling Problem: Given ε > 0 and n points {xi ∈ Pk, i = 1, . . . , n}, called anchor points, find a subset
S ⊆ Pk such that for any p ∈ Pk, there exists a point p ∈ S satisfying 1− ε ≤ 〈p|xi〉/〈p|xi〉 ≤ 1+ ε for all anchor points xi,
1 ≤ i ≤ n. Such a set S is called an efficient sampling set of {xi, i = 1, . . . , n} with accuracy ε. The goal is to minimize the
size of S.
We now give two constructions for S.

Lemma 6. If τ = mini,j{xi,j} > 0, then we can build an efficient sampling set S of size O((log(1/τ)/ε)n).
Proof. For any p ∈ Pk, it is easy to see that τ ≤ 〈p|xi〉 ≤ 1. To construct S, we first introduce the following
log(1/τ)/ log(1+ ε) ≈ log(1/τ)/ε planes:{

a0 = τ , plane0 = {y, 〈y|x1〉 = a0};
ai = (1+ ε)ai−1, planei = {y, 〈y|x1〉 = ai}.

These planes cut Pk into O(log(1/τ)/ε) polytopes (P1, P2, . . .).
Then, we define O(log(1/τ)/ε) planes for x2 similarly. They further cut each Pi into at most O(log(1/τ)/ε) smaller

polytopes (denoted by Pi,0, Pi,1, . . .).
We repeat this process for vectors x3, x4, . . . , xn and finally, Pk is divided into O((log(1/τ)/ε)n) polytopes. The sampling

set S is then constructed by picking an inner point from each of these polytopes. �

Lemma 7. If τ = mini,j{xi,j} > 0, then we can build an efficient sampling set S of size O((τε)1−k).
Proof. The sampling set S is constructed by meshing the simplex Pk, such that for any p ∈ Pk, there exists a p ∈ S satisfying
‖p− p‖∞ ≤ ετ . It is easy to show that S is an efficient sampling set of size O((τε)1−k). �

In the algorithm, as we will see, we need to build an efficient sampling set Sj for {eij, i = 1, . . . , n}
⋃
{dij, i = 1, . . . , n}

with accuracy ε. Let S be S1 × · · · × Sm, then the time complexity of the algorithm is dominated by |S|.

4.3. A convex optimization problem

Now suppose p∗ is an equilibrium internal price of marketM and p is a vector in S = S1 × · · · × Sm such that

1− ε ≤
〈p∗j |d

i
j〉

〈pj|dij〉
≤ 1+ ε and 1− ε ≤

〈p∗j |e
i
j〉

〈pj|eij〉
≤ 1+ ε (4)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. In this subsection, we show how to use p to compute an approximate equilibrium ofM.
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Recall the equivalent equilibrium condition stated in Theorem3. After replacing (p, v)with (q, p, v), we get the following
convex optimization problem:

min θ

s.t. Djvj ≤ (1+ θ)E1, ∀j

ui =
m∑
j=1

aijv
i
j, ∀i

wi =

m∑
j=1

qj〈pj|eij〉, ∀i

wiaij ≤ uiqj〈pj|d
i
j〉, ∀i, j

〈pj|E1〉 = 1, q > 0, ∀j.

(5)

The variable θ can be viewed as the surplus of the demands in the marketM. We can prove that θ is always nonnegative in
any feasible solution to problem (5). The proof is similar to the one in Ye [13], and is omitted here.

Lemma 8. For any feasible solution (q, p, v) of (5), we have θ ≥ 0. Moreover, (q, p, v) is an equilibrium if and only if θ = 0.
Now suppose we are given an internal price p = {pj, 1 ≤ j ≤ m} ∈ S. We can reduce (5) to the following convex

optimization problem, denoted by Opt(p):
min θ

s.t. Djvj ≤ (1+ θ)E1, ∀j

ui =
m∑
j=1

aijv
i
j, ∀i

wi =

m∑
j=1

qj〈pj|e
i
j〉, ∀i

wiaij ≤ uiqj〈pj|d
i
j〉, ∀i, j

q > 0, ∀j.

(6)

Opt(p) can be solved in polynomial time [13]. Note that since pmay not be an equilibrium internal price ofM, the optimum
of Opt(p)may not be zero. However, we prove in the following lemma that, if p is close to an equilibrium internal price p∗,
then the optimum of Opt(p) is small.
Lemma 9. Suppose (q∗, p∗, v∗) is an equilibrium of market M, and ε ≤ 1/3. If p satisfies (4) for all i, j, then the optimum of
Opt(p) is at most 3ε.
Proof. Since (q∗, p∗, v∗) is an equilibrium, it satisfies

Djv∗j ≤ E1, ∀j

u∗i =
m∑
j=1

aijv
i∗
j , ∀i

w∗i =

m∑
j=1

q∗j 〈p
∗

j |e
i
j〉, ∀i

λ∗i = w
∗

i /u
∗

i , ∀i
λ∗i = min1≤j≤m

{
q∗j 〈p

∗

j |d
i
j〉
/
aij
}
, ∀i.

We now use (q∗, p∗, v∗) to construct a feasible solution to (6) as follows:

qj = q∗j , ∀j
λi = min

1≤j≤m

{
qj〈pj|d

i
j〉
/
aij
}
, ∀i

wi =

m∑
j=1

qj〈pj|e
i
j〉, ∀i

ui = wi/λi, ∀i
vij = v

i∗
j
ui
u∗i
, ∀i, j.

Using (4), we have λi/λ∗i ≥ 1− ε andwi/w
∗

i ≤ 1+ ε. As a result, we have

ui
u∗i
=
wi

w∗i

λ∗i

λi
≤
1+ ε
1− ε

≤ 1+ 3ε,

since we assumed ε ≤ 1/3. Therefore, Djvj ≤ Djv∗j (1+ 3ε) ≤ (1+ 3ε)E1, and the optimum of problem (6) is at most 3ε. �
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Fig. 1. An approximation algorithm for well-conditioned Arrow–Debreu markets.

4.4. The algorithm

Finally, our algorithm is described in Fig. 1. The construction of S = S1×· · ·×Sm guarantees that, ifM has an equilibrium
(q∗, p∗, v∗), then there must exist a p ∈ S that satisfies (4). By Lemma 9, the optimum of problem Opt(p) is at most ε and
thus, the algorithm outputs an ε-approximate equilibrium.
The time complexity of our algorithm is |S| ·poly(M, n), where poly(M, n) is spent on solving each optimization problem

Opt(p), andM =
∑m
j=1 kj is the total number of commodities. By Lemmas 6 and 7, we can bound the size of S by

min
{
O
(
(τε)−M+m

)
,O
(
(log(1/τ)

/
ε)2mn

) }
,

where τ = mini,j,k{eij,k, d
i
j,k} > 0.

5. Discussion

In this paper,we introduce a new family of utility functions—hybrid linear-Leontief functions.We study the computation
and approximation of exchange equilibria in markets with grouped linear-Leontief utilities, which are special cases of
the hybrid ones. We show that, in Fisher’s model, an equilibrium can be found in polynomial time. We also develop an
algorithm for approximating market equilibria in the Arrow–Debreumodel. The time complexity of our algorithm is closely
related to the efficient sampling problem discussed in Section 4.2. At this moment, it is exponential in either the number of
commodities or the number of traders. But any improvement to the construction of efficient sampling sets will improve the
performance of our algorithm.
As a grouped hybrid market can be viewed as a linear combination of Leontief economies, given the fact that linear

markets are easy to solve [12,9,13], we conjecture that there exists an approximation algorithm that runs in time polynomial
in the number of groups and the number of traders, with access to an oracle that can compute equilibria in Leontief
economies.
More generally, we can extend the concept of hybrid linear-Leontief utility functions to hierarchical linear-Leontief utility

functions. Such a function can be specified by a tree whose internal vertices are either+ ormax operators. Each of its leaves
is associated with one commodity. Given an allocation vector, one can evaluate the utility function from bottom up.
Clearly, we can use this family of hierarchical utility functions to characterize more complicated market behaviors. With

the same technique used in Section 3.1, a market equilibrium in Fisher’s setting can be computed efficiently. We hope the
study of these utilities could lead us to a better understanding of the complexity of computing market equilibria.
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