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Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect
and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised
machine learning approach to classify non-Hermitian topological phases based on diffusion maps, which are
widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle,
rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian
systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical
simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the “on-
site” elements of the projective matrix as the input data. Our results provide a valuable guidance for future
studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.

Non-Hermiticity arises naturally in a wide range of scenar-
ios [1–3], such as photonic systems with loss and gain [4–
8], open quantum systems [9–12], and quasiparticles with fi-
nite lifetimes [13–17]. Recently, the study of non-Hermitian
topological phases has attracted tremendous attentions [17–
61]. Exciting progresses have been made in both theory [17–
51] and experiment [52–61]. One of the prominent phenom-
ena of non-Hermitian systems is the so-called non-Hermitian
skin effect (NHSE) [39–42], where the majority of the eigen-
states of a non-Hermitian operator are exponentially localized
at boundaries. This leads to the breakdown of the conventional
bulk-boundary correspondence (a guiding principle for topo-
logical phases of Hermitian systems) and calls for the non-
Bloch band theory based on the generalized Brillouin zone
[32, 41, 42, 50, 51]. The NHSE has been observed in re-
cent experiments [52, 62, 63], and its physical implications
and consequences are still under active studies at the current
stage [23, 25, 42, 50, 64–71]. Here, we introduce an unsuper-
vised machine learning approach based on diffusion maps to
clustering non-Hermitian topological phases, with a focus on
these exhibiting NHSE that are drastically distinct from their
Hermitian counterparts (see Fig. 1 for a pictorial illustration).

Machine learning techniques [72–74] are exquisitely tai-
lored to identify hidden patterns in complex data and their
applications to physics have recently been invoked in vari-
ous contexts [75–77], ranging from black hole detection [78],
gravitational lenses [79] and wave analysis [80, 81], and quan-
tum nonlocality detection [82], to glassy dynamics [83] and
material design [84], etc. Within the vein of learning dif-
ferent phases of matter and phase transitions, a number of
different approaches have been proposed, with some been
demonstrated in recent experiments. In particular, for learn-
ing topological phases both supervised [85–92] and unsuper-
vised [93–104] methods have been introduced, despite the
fact that topological phases are typically more difficult to
learn than conventional symmetry-breaking ones due to their
lack of local order parameters [105]. Supervised methods re-
quire prior labeling of the data samples, whereas unsupervised
learning can detect and classify topological phases from unla-
beled raw data, without a priori knowledge of the underlying
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FIG. 1. A schematic illustration of the 1D non-Hermitian Su-
Schrieffer-Heeger (NH SSH) model, and the unsupervised learning
of its harboring topological phases based on the diffusion map. The-
oretically, with open boundary condition (OBC) this model entails
two distinct phases with phase diagram shown in the lower-left sub-
figure. Samples from the same phase correspond to the same diago-
nal blocks of the Gaussian kernel matrix and the boundary between
two blocks indicates the topological phase transition point.

topological mechanism. Therefore, to some extent unsuper-
vised approaches are more powerful and practical in detect-
ing and identifying new topological phases. An intriguing un-
supervised approach is based on diffusion maps [106–108],
which naturally implements the notion of continuous defor-
mation (homotopy) and thus is particularly suitable for clas-
sifying topological objects. Along this line, notable works
have demonstrated that diffusion maps are strikingly effective
in clustering topological orders in the Ising gauge theory [93],
symmetry protected topological phases [94, 95], valence-bond
solid [97], and topological phononics [96]. Nevertheless,
most of these existing works focus on Hermitian systems and
learning of non-Hermitian topological phases, especially for
these with NHSE, remains largely unexplored.

In this paper, we use diffusion maps to cluster non-
Hermitian topological phases in an unsupervised fashion.
Through theoretical analysis, we find that the NHSE gives
rise to unwanted singularities that result in vanishing diffusion

ar
X

iv
:2

01
0.

14
51

6v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
5 

D
ec

 2
02

1



2

probabilities even for data samples from the same topologi-
cal phase, thus making the direct application of the diffusion
map method impotent for classifying non-Hermitian topologi-
cal phases with skin effect. To overcome this obstacle, we pro-
pose to use only the “on-site” elements {PiA,iB |i ∈ [1, N ]}
of the projective matrices P , which are typically used for
defining topological indices for non-Hermitian systems, as in-
put data and show, through concrete examples involving one-
dimensional (1D) non-Hermitian Su-Schrieffer-Heeger (SSH)
and 2D Qi-Wu-Zhang (QWZ) models, that the diffusion map
method is indeed capable of classifying non-Hermitian topo-
logical phases without supervision, even for these with the
NHSE if we use the adjusted input data.

Theoretical analysis.—Suppose we are given a set of input
data D = {x(1),x(2), · · · ,x(L)} coming from different non-
Hermitian topological phases. Our goal is to classify these
samples topologically, namely, determine the number of dif-
ferent topological phases and for each sample identify which
category it belongs to. To measure the local similarity be-
tween samples x(l) and x(l′), we use the Gaussian kernel func-
tion with variance controlled by the parameter ε (0 < ε� 1):

Kl,l′ = exp
(
−‖x(l)−x(l′)‖2L1

/(2εN2)
)
, (1)

where ‖x(l)−x(l′)‖L1 denotes the Taxicab L1-norm distance,
i.e. ‖ ~A‖L1 =

∑
i |Ai|. N denotes the number of unit cells

of the Hamiltonian. The one-step diffusion probability Pl,l′
from sample x(l) to x(l′) is defined as: Pl,l′ =

Kl,l′∑
l′ Kl,l′

.

After 2t steps, the diffusion distance between x(j) and x(j′)

is Dt(j, j
′) =

∑
k

(Pt
j,k−P

t
j′,k)2∑

l Kk,l
=
∑
k λ

2t
k [(ψk)j−(ψk)j′ ]

2,
where {ψk} are the right eigenvectors of P and {λk} de-
notes their corresponding eigenvalues. From Dt, it is clear
that in the long-time limit t → ∞, only the few components
with largest |λ| ≈ 1 will dominate, and these few compo-
nents can be used for dimensional reduction and clustering
non-Hermintian topological phases.

The success of the diffusion map method relies crucially
on the input data samples. For learning topological phases
in an unsupervised way, two types of data samples have been
considered in previous works [93–97]: bulk Hamiltonian vec-
tors (or equivalently bulk states) in the momentum space and
full projective matrices in real space. For Hermitian systems,
these two types of data should lead to the same classifica-
tion due to the bulk-boundary correspondence. However, for
non-Hermitian systems the phase transition points might be
boundary sensitive and the conventional bulk-boundary cor-
respondence may not hold. As a result, the choice of input
data becomes subtle, especially for these topological phases
with NHSE. In particular, in the following discussion we will
show that the data set of full projective matrices cannot be em-
ployed for clustering non-Hermitian topological phases with
NHSE via the diffusion map method.

For simplicity and concreteness, we consider spinless non-
Hermitian topological models with both periodic and open
boundary conditions (abbreviated as PBC and OBC, respec-

tively). To apply the first-order perturbation theory, here we
only focus on the lattice models with discrete eigenvalues.

We start with a general two-band model with PBC in the
momentum space: Ĥ = ~d·~σ = dxσx+dyσy+dzσz , where
σx,y,z denotes the usual Pauli matrices and dx,y,z is com-
plex for non-Hermitian systems. As discussed in previous
papers [93–95], we may choose the input data sample to be
x(l) = {d̂(l)(~k)|~k ∈ BZ} with d̂ =

~d√
d2x+d2y+d2z

and BZ de-

noting the first Brillouin zone. By varying the model parame-
ters ~t = (t1, t2, ...) contained implicitly in d̂, one obtains the
input data set {x(l)}. We now analyze how the diffusion map
method can classify these samples into different categories.
From the definition of the one-step diffusion probability, it
is clear that the dominant terms are these corresponding to
the nearest samples labeled by (l, l+δl) [109]. By adjust-
ing the hyper parameter ε, one can show that the connectivity
between x(l) and x(l+δl) depends on the derivability of the
unit vector d̂(l) = ~d(l)/E

(l)
+ on ~t for all ki ∈ [−π, π], where

E
(l)
+ =

√
d2
x+d2

y+d2
z . The gap closure points E(l)

± = 0 typi-

cally break the derivability. Hence, two samples (l, l+δl) sep-
arated by the gap closure point should result in Kl,l+δl ≈ 0,
i.e. vanishing one-step diffusion probability between them.
Combined with the approximation that only the nearest sam-
ples dominantly contribute to the diffusion, the gap closure
points divide the kernel matrix into blocks, and samples cor-
responding the same block are connected via diffusion, hence
belonging to the same topological phase. Thus for those mod-
els with phase transition occurring at the gap closure points,
the data samples in the same phase should be clustered into
the same category via the diffusion map.

With OBC, things become tricky due to the possible ex-
istence of the NHSE. In this case, a straightforward choice
for the input data would be the projective matrices defined as
P =

∑
Re[Em]<0 |mR〉〈mL| [43], where |mR〉 and 〈mL| are

the right and left eigenstates (with the corresponding eigenen-
ergy Em and E∗m respectively) of the non-Hermitian Hamil-
tonian in real space. We mention that P can be used to define
the topological invariants for non-Hermitian systems in real
space [43]. The L1-norm of a matrix is defined by ‖P‖L1 =∑
i,j |Pij |. As was mentioned above, the nearest samples

dominantly contribute to the diffusion probability with proper
hyper parameter ε. Then the Gaussian kernel can be expressed

as Kl,l+δl = exp

(
−‖δP‖

2
L1

2εN2

)
= exp

(
− (‖∇~tP‖L1 ·δ~t )2

2εN2

)
.

The singularity of ‖∇~tP‖L1
is crucial to the kernel values.

For convenient illustration, let us take the one-dimensional
(1D) non-Hermitian SSH model with OBC (in Fig. 1) as
an example, where the fermion annihilation (creation) opera-
tors on the A and B sublattices are denoted by CA (C†A) and
CB (C†B), respectively; t1, t2, and γ are model parameters
characterizing the hopping strength. A sketch of the phase
diagram is shown in Fig. 1. We consider the parameter re-
gion t1 > |γ|, where the non-Hermitian SSH Hamiltonian
Ĥ1D
o in orthonormal bases can be transformed into a Her-
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mitian matrix H̄1D
o in non-orthonormal bases [41]: H̄1D

o =
Γ−1Ĥ1D

o Γ with Γ = diag(1, r, r, r2, r2, · · · , rN−1, rN ), and
r =

√
|(t1−γ)/(t1+γ)|. Then ∂t1P reduces to [110]:

∂t1P =
∑

Re[Em]<0
n 6=m

〈n|Γ∂t1ĤΓ−1|m〉Γ−1|n〉〈m|Γ+ (n↔ m)

Em−En
.

Direct calculations show that all terms
〈n|Γ∂t1Ĥ1D

o Γ−1|m〉/N are finite [110]. Suppose the
system is initially in the topologically trivial phase, then
when the system approaches the phase transition point
|t1| =

√
t22+γ2, the two levels E±1 approach zero and

become the zero modes, which will be eliminated in the
P -matrix after passing through the transition point. The only
singularity (|t1| 6= |γ|) of 1/(Em−En) occurs at the gap
closing point, where the two nearest levels |E−1−E1| → 0.
So far, everything looks similar to the Hermitian SSH model.
However, the term Γ−1|n〉〈m|Γ, which basically gives rise to
the NHSE, involves matrix elements with values r±(i−j+1)

that are singular when |i−j| → ∞. This singularity is bound-
ary condition sensitive and unique to non-Hermitian systems.
It persists for a wide range of parameter space, independent
of the phase transitions. As a consequence, it will render the
diffusion map method invalid and should be removed from
the input data. To address this problem, we propose to use
the “on-site” part of the P -matrix elements as the raw input
data: {PiA,iB |i ∈ [1, N ]}, where r±(i−j+1) factors cancel
out and no singularity shows up. Such “on-site” extraction
should be suitable to those non-Hermitian models where the
NHSE exhibits an exponential function of lattice site. With
this adjusted P -matrix as the input data, the kernel values
Kl,l+δl ≈ 1 for all the data samples from the same phase,
but two samples {l, l+δl} crossing the phase transition point
have no connectivity Kl,l+δl ≈ 0. This restores the capability
of the diffusion map method in classifying non-Hermitian
topological phases with NHSE in the unsupervised fashion.

The above discussion explains in theory why and when
the diffusion map method can be applied to classify non-
Hermitian topological phases, and how to overcome the ob-
stacles due to the NHSE. To illustrate how this method works
in practice, in the following we apply it to a couple of concrete
examples, including the cases with and without the NHSE.

Unsupervised learning without NHSE.—The first example
we consider is the non-Hermitian SSH model with PBC. In
the momentum space, this model reads Hp(k) = ~d·~σ =
(t1+t2 cos k)σx+(t2 sin k+iγ)σy . The input data set can be
chosen as {x(l)|x(l) = {d̂(ki), |ki = 2i−N−2

N π, i ∈ [1, N ]}}
with varying t1, while fixing t2 and γ. Our numerical results
are shown in Fig. 2 (a-c). From Fig. 2 (a), the kernel matrix K
is separated into three blocks, which correspond to the three
largest eigenvalues λ0,1,2 ≈ 1 of the one-step diffusion ma-
trix P , as shown in Fig. 2 (b). As a result, the input samples
are classified into three different topological phases. This is
also clearly indicated in Fig. 2 (c), where we show the scat-
ter diagram of eigenvectors {ψ1, ψ2} corresponding to λ1,2.
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FIG. 2. Numerical results of unsupervised learning without NHSE
for the 1D non-Hermitian SSH [subfigures (a-c)] and 2D QWZ
model [subfigure (d)]. (a) Heatmap for Gaussian kernel value dis-
tribution between samples with varying t1. (b) Eigenvalues of the
one-step diffusion matrix P . (c) Scatter diagram of eigenvectors
{ψ1, ψ2} with the corresponding eigenvalues λ1,2 ≈ 1, where the
samples are clustered into three topological phases. (d) For the QWZ
model, the input samples are classified into seven categories [110].

In addition, the phase boundaries can also be obtained from
Fig. 2 (a), which match exactly with the theoretical one [110].

Another example we consider is the 2D non-Hermitian
QWZ model with PBC: Ĥ2D

p (k) = (vx sin kx+iγx)σx+
(vy sin ky+iγy)σy+(M−0.5 cos kx−0.5 cos ky)σz . The

phase boundaries occur at M (ν)
± = (2−ν)±

√
γ2
x+γ2

y , ν =

1, 2, 3. The Hamiltonian in the region M ∈ (−∞,M (3)
− )∪

(M
(3)
+ ,M

(2)
− )∪(M

(2)
+ ,M

(1)
− )∪(M

(1)
+ ,+∞) is gapped and the

topological Chern number is well-defined. However, in re-
gions M ∈ (M

(ν)
− , M

(ν)
+ ) the Hamiltonian is gapless and the

topological indices are not well-defined. These gapless re-
gions lead to singularities and hence no diffusion probability
among samples from such regions. Nevertheless, one can still
utilize the diffusion map method to locate the phase bound-
aries M (1,2,3)

± based on the “effective” kernel matrix, which
is the average of a set of kernel matrices with different lattice
sizes (different discrete ~k configurations) as the input data.
By such a construction, the diffusion map method still works
even with input samples in gapless regions. We choose the
bulk Hamiltonian as the input samples by varying the parame-
ter M and our numerical results are shown in Fig. 2 (d). From
this figure, the samples are classified into seven categories. In
addition, careful examinations of the heatmap for the kernel
matrix yield that the phase boundaries identified by the diffu-
sion map method coincide with the theoretical ones [110].

Unsupervised learning with NHSE.—The above numerical
results show clearly that the diffusion map method is indeed
capable of classifying non-Hermitian topological phases with-
out NHSE. Yet, as discussed in the beginning the presence of
the NHSE may handicap the performance of this approach. A
possible way out of this is to choose different input data. Now,
we turn to this case and examine the applicability of the dif-
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FIG. 3. Numerical results of unsupervised learning with NHSE. (a-
c) show respectively the heatmap of the Gaussian kernel, the eigen-
values of the one-step diffusion matrix, and the scatter diagram of
eigenvectors for the non-Hermitian SSH model. The red arrow in (a)
indicates the phase transition point t1 ≈ 0.6993. The input data sam-
ples are clustered into two (rather than three) topological categories,
in sharp contrast to the case of learning without NHSE shown in Fig.
2. (d) The eigenvalues of the one-step diffusion matrix for the non-
Hermitian QWZ model, with the inset showing the scatter diagram of
eigenvectors corresponding to the largest two eigenvalues. The input
samples are classified into two (rather than seven) categories [110].

fusion map method for clustering non-Hermitian topological
phases with NHSE. We still focus on the non-Hermitian SSH
and QWZ models, but with OBCs this time.

We start with the 1D non-Hermitian SSH model [41]. With
OBC, the phase boundaries are theoretically predicted to be
t1 = ±

√
t22+γ2. Topological non-trivial phase with ground

state degeneracy occurs in the interval |t1| <
√
t22+γ2. We

numerically diagonalize the real space Hamiltonian Ĥ1D
o for

given system sizes and parameters, and choose partial ele-
ments of the projective matrices {P (l)

iA,iB |i ∈ [1, N ]} as the
raw input data {x(l)}. Our numerical results are shown in
Fig. S2 (a-c). From this figure, the input samples are classi-
fied into two categories and the learnt phase transition point
occurs at t1 ≈ 0.6993, which is consistent with theoretically
predicted values of t1 =

√
t22+γ2 ≈ 0.7211 [110]. The small

discrepancy is mainly due to the fact that only partial infor-
mation of the projective matrices are used and the finite size
effect in our numerical simulations (see [110] for details).

For the 2D non-Hermitian QWZ model with OBC, it has
been shown from both analytical and numerical aspects that
one topological phase boundary occurs approximately atM =

M0 = tx+ty+
txγ

2
x

2v2x
+
tyγ

2
y

2v2y
for small γx(y)

vx(y)
[42]. When M <

M0, the corresponding Chern number in generalized Brillouin
zone for the valence band (Re(E) < 0) is C = 1. Whereas
for M > M0, the Chern number is C = 0. With partial
elements of the projective matrices as input data, the diffu-
sion map method works as well and our numerical results are
shown in Fig. S2 (d). It is clear from this figure that the in-
put samples are classified into two distinct categories and the

learnt phase boundary occurs at M ≈ 2.1731, which matches
the theoretical valueM = 2.2 with a desirable accuracy [110].

We mention that non-Hermitian systems are extremely sen-
sitive to boundary conditions. A change of boundary condi-
tions could alter drastically both the eigenspectra and eigen-
states [111]. This is in sharp contrast to the case of Hermi-
tian systems. From the unsupervised learning results shown
above, it is also clear that different boundary conditions lead
to completely different clustering results of the input samples.
For instance, with PBC the data samples of the QWZ model
are clustered into seven groups via the diffusion map method,
whereas with OBC one obtains only two categories. Owing to
the NHSE, the relevant features of input data could be dramat-
ically suppressed and consequently are harder to extract. Here
we note that the obstacle induced by the NHSE may also ex-
ist in other machine learning approaches, e.g., the CNN-based
ones [91], and the solution we provide here should carry over
to these algorithms as well [110]. We also remark that find-
ing the appropriate topological invariants based on the pro-
jective matrix is a highly non-trivial task. In fact, a number
of works have been reported recently in the literature to deal
with this problem [30, 39, 43, 112]. Although the diffusion
map approach still requires full diagonalization of Hamiltoni-
ans in real space, it does not rely on any a priori information
about the underlying topological invariants. As a result, this
approach is also applicable to non-Hermitian systems whose
characteristic topological invariants have not yet been discov-
ered. In addition, the requirement of the costly diagonaliza-
tion might be circumvented by replacing the projective matrix
with observables (e.g., correlation functions) that can be mea-
sured in experiment. We leave this interesting and important
problem for future studies.

Discussion and conclusion.—Symmetries play a crucial
role in the study of topological phases and, analogous to
the Hermitian case [113], a periodic table for non-Hermitian
Hamiltonians has also been established from the K theory
perspective recently [29]. Yet, incorporating symmetry con-
straints into unsupervised learning approaches to topological
phases is highly nontrivial [94]. In the future, it would be
interesting and desirable to extend our results to symmetry
protected or enriched non-Hermitian topological phases, espe-
cially those predicted in the periodic table. In addition, non-
Hermitian topological phases for interacting systems remain
elusive and we expect that unsupervised learning will provide
valuable wisdom in studying such phases as well.

In summary, we have introduced an unsupervised ma-
chine learning approach to classify non-Hermitian topological
phases based on diffusion maps. We show that the NHSE can
result in a critical handicap for the straightforward extension
of the unsupervised method of learning Hermitian topological
phases to the non-Hermitian case. Through theoretical analy-
sis and numerical simulations, we have demonstrated that this
obstacle can be avoided by appropriately choosing the input
data, such as the “on-site” elements of the projective matri-
ces. Our results reveal a new consequence of the NHSE and
would benefit future studies across non-Hermitian topological
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phases and machine learning.
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[56] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature 548, 192 (2017).

[57] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu,
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[99] F. Schäfer and N. Lörch, Vector field divergence of predictive
model output as indication of phase transitions, Phys. Rev. E
99, 062107 (2019).

[100] O. Balabanov and M. Granath, Unsupervised learning using
topological data augmentation, Phys. Rev. Research 2, 013354
(2020).

[101] C. Alexandrou, A. Athenodorou, C. Chrysostomou, and
S. Paul, The critical temperature of the 2d-ising model through

deep learning autoencoders, Eur. Phys. J. B 93, 1 (2020).
[102] E. Greplova, A. Valenti, G. Boschung, F. Schäfer, N. Lörch,
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Supplementary Material for: Unsupervised Learning of Non-Hermitian Topological Phases

Diffusion map is a sort of typical manifold learning algorithm [106–108], which provides non-linear dimensionality reduction
and unsupervised clustering of raw data without any priori knowledge. It combines the heat diffusion with the random walk
Markov chain. Concretely, given a set of input data x = {x(1), x(2), · · ·x(L)}, where x(i) represents the i-th data point in
complex space Cd. The connectivity between two points x(l) and x(l′) is described by the local similarity, which is required to
be positive definite and symmetric. For example, the Gaussian kernel

Kl,l′ = exp

(
−
‖x(l)−x(l′)‖2Lp

2ε

)
, (S1)

where ‖x(l)−x(l′)‖Lp represents the Lp-norm distance between two points x(l) and x(l′), variance ε is a small quantity to be
adjusted. Recently, applications of p = 1, 2,∞ cases in unsupervised clustering topological phases have been reported [93–96].
When p = 2, the distance is the familiar Euclidean distance. With such kernel, the one-step transition matrix P of Markovian
random walk between two points x(l) and x(l′) can be defined as follows

Pl,l′ =
Kl,l′∑
l′ Kl,l′

, (S2)

where Pl,l′ obeys the probability conservation condition
∑
l Pl,l′ = 1. Then after 2t steps of random walk, the connectivity

between x(l) and x(l′) is given by the diffusion distance

Dt(l, l
′) = Dt(x

(l),x(l′)) =

L∑
k=1

(
Ptl,k−Ptl′,k

)2

∑
j Kk,j

=

L−1∑
k=1

λ2t
k [(ψk)l−(ψk)l′ ]

2 ≥ 0, (S3)

where {ψk} are the right eigenvectors of P , Pψk = λkψk, k = 0, 1, ...L−1, the corresponding eigenvalues rank in descending
order, i.e. λ0 = 1 ≥ λ1 ≥ · · · ≥ λL−1. k = 0 term does not contribute because the corresponding right eigenvector is constant
with all vector elements equivalent.

Under the mapping

x(l) → Ψ
(l)
t := [λt1(ψ1)l, λ

t
2(ψ2)l, · · · , λtL−1(ψL−1)l], (S4)

the distance between samples x(l) and x(l′) can be recast as the Euclidean distance in Ψ space

Dt(x
(l),x(l′)) = ‖Ψl−Ψl′‖2L2

. (S5)

After t→∞ steps, only the first few components with largest |λk| ≈ 1 are dominant due to the term λtk in Ψt. Hence almost all
the distance information is encoded in such few components. Then the original samples x(l) with higher dimension are reduced
to the lower ones, and the clustering method (e.g. k-means) can be applied in Ψ space to cluster the corresponding samples with
no prior knowledge. Specifically, in clustering the topological phases of quantum models, the number of |λk| ≈ 1 equals to
the number of topological clusters without prior labels. Hence it is possible for such algorithm to detect unknown topological
phases.

PHASES OF NON-HERMITIAN TOPOLOGICAL MODELS

1D non-Hermitian Su-Schrieffer-Heeger model

Periodic boundary condition

With periodic boundary condition(PBC), the system obeys translational symmetry, and the bulk Hamiltonian takes the form

Ĥ1D
p (k) = ~d·σ = dxσx+dyσy (S6)

in the momentum bases {Ck,A, Ck,B}, where Ck,A and Ck,B represent the fermionic sublattice sites, ~d = (dx, dy), dx =

t1+t2 cos k, dy = t2 sin k+iγ. The 1D Brillouin zone is given by [−π, π]. Winding number W = 1
π

∫ π
−π

dx∂kdy−dy∂kdx
d2x+d2y

dk
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counts the times of the mapping wrapping around the original point. Different winding numbers indicate different topological
phases of matter:

W =


0, |t1±γ| > |t2|;
1

2
, |t1±γ| < |t2|&|γ| > |t2|;

1, |t1±γ| < |t2|&|γ| < |t2|.

(S7)

The above half-winding number has a geometrical explanation, see Ref. [27] for details. For the non-Hermitian system with
PBC, the sublattice symmetry [29] S = σz , σzĤ

(1D)
p (k)σz = −Ĥ(1D)

p (k) ensures that the bulk bands are in pairs E±(k) =
±
√

(t1+t2 cos k)2+(t2 sin k+iγ)2. The topological phase transition occurs at the exceptional points t1 = −t2±γ (k = 0) and
t1 = t2±γ (k = π), which coincide with the change of winding numbers.

Open boundary condition

The 1D non-Hermitian SSH model in the real space takes the following form:

Ĥ1D
o =

N∑
i=1

(t1+γ)C†i,ACi,B+(t1−γ)C†i,BCi,A+t2C
†
i,BCi+1,A+t2C

†
i+1,ACi,B . (S8)

With OBC, the conventional bulk-boundary correspondence(BBC) breaks down, and the non-Hermitian skin effect arises. The-
oretically, one straightforward method of detecting the topological phase transition is to calculate its ground state degeneracy.
Direct numerical calculation of Eq. (S8) with a large enough chain length shows that the 2-fold ground state degeneracy holds
in the interval |t1| <

√
t22+γ2. Hence the phase transition occurs at t1 = ±

√
t22+γ2. This phase boundary does no-longer

correspond to the exceptional point in Brillouin zone, but one can reconstruct the generalized BBC based on a similarity trans-
formation Γ on the Hamiltonian matrix represented in bases {C1,A, C1,B , C2,A, · · · , CN,B}T ,

H̄1D
o = Γ−1Ĥ1D

o Γ, (S9)

where Γ is a 2N×2N diagonal matrix with the diagonal elements {1, r, r, r2, r2, ..., rN−1, rN−1, rN}, and r =√
|(t1−γ)/(t1+γ)|. Then the non-Hermitian matrix Ĥ1D

o is transformed into a Hermitian matrix H̄1D
o by S, with the trade-off

that the bases are transformed to be non-orthonormal as {C1,A, r
−1C1,B , r

−1C2,A, · · · , r−NCN,B}T . When |t1| > |γ|, i.e.
r is real, the Hermitian H̄1D

o is exactly the SSH matrix. Fourier transformation maps the real space SSH matrix H̄1D
o to the

momentum space,

H̄1D
o (k) = (t̄1+t2 cos k)σx+t2 sin kσy, t̄1 =

√
(t1+γ)(t1−γ). (S10)

Clearly, the topological phase transition of H̄1D
o (k) occurs at |t̄1| = |t2|, i.e. t1 = ±

√
t22+γ2, with the change of topological

winding numbers. Hence to discuss the BBC for such non-Hermitian model, one approach is to transform it into the Hermitian
matrix formalism under the similarity transformation.

Another equivalent approach to define the non-Hermitian BBC is to introduce the concept of generalized Brillouin zone
H(eik → β), which transforms the Bloch phase factor eik into |β| 6= 1 for the non-Hermitian case,

eik := β =

√
t1−γ
t1+γ

eiq, q ∈ R. (S11)

Under such transformation, the matrix form of H ′(β) in generalized Brillouin zone is exactly the same as Eq. (S10). Then the
generalized BBC holds.

2D non-Hermitian Qi-Wu-Zhang model

Periodic boundary condition

The non-Hermitian Qi-Wu-Zhang (QWZ) model takes the following form[42],

Ĥ2D =[
∑
y

∑
j=x,y

c†y(− i
2
vjσj−

1

2
tjσz)cy+ej

+h.c.]+
∑
y

c†y(Mσz+i
∑

j=x,y,z

γjσj)cy, (S12)
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where cy = (cy,A, cy,B)T represents the unit cell fermionic annihilation operator, y labels the 2D lattice number of the unit cell,
and ej is the unit vector in j = x, y directions. Here we also consider two types of boundary conditions: PBC and OBC.

With PBC, the non-Hermitian QWZ model in Eq. (S12) is Fourier transformed into the bulk Hamiltonian in Brillouin zone,

Hp(k) =~d·~σ = dxσx+dyσy+dzσz

=(vx sin kx+iγx)σx+(vy sin ky+iγy)σy

+(M−tx cos kx−ty cos ky+iγz)σz.

(S13)

For simplicity, let γz = 0, tx = ty = 0.5, then the theoretical phase transition boundaries are

M
(1)
± = 1±

√
γ2
x+γ2

y (kx, ky) = (0, 0),

M
(2)
± = ±

√
γ2
x+γ2

y (kx, ky) = (0, π), (π, 0),

M
(3)
± = −1±

√
γ2
x+γ2

y (kx, ky) = (π, π),

(S14)

One unique feature of such model is that in regions M ∈ (M
(ν)
− , M

(ν)
+ ) for ν = 1, 2, 3 the Hamiltonian is gapless and the

topological indices are not well-defined in these regions.

Open boundary condition

With OBC, the conventional BBC breaks down. We have to consider the influence of non-Hermitian skin effect. In OBC
(independent of the geometrical configuration, such as square or disk, etc. [42]), it has been shown from both the analytical and
numerical aspects that one topological phase boundary is approximately expressed as

M = tx+ty+
txγ

2
x

2v2
x

+
tyγ

2
y

2v2
y

(S15)

for small γx(y)

vx(y)
. When M < tx+ty+

txγ
2
x

2v2x
+
tyγ

2
y

2v2y
, the corresponding Chern number in generalized Brillouin zone for the valence

band (Re(E) < 0) is C = 1. While forM > tx+ty+
txγ

2
x

2v2x
+
tyγ

2
y

2v2y
, the topological index is C = 0. Hence the boundary separates

the system into two distinct topological regions. For more details, see Ref. [42].

THE APPLICABILITY OF DIFFUSION MAP IN NON-HERMITIAN TOPOLOGICAL PHASE TRANSITION

Here we theoretically analyze the applicability of diffusion map in classifying the non-Hermitian topological phases.

Periodic boundary condition

With PBC, the 2-level topological band model reads

Ĥ = ~d·σ = dxσx+dyσy+dzσz (S16)

with the free fermionic bases {Ck,A, Ck,B}, where {dx, dy, dz} can be complex for the non-Hermitian model, the corresponding

energy levels E± = ±
√
d2
x+d2

y+d2
z . Then the Hamiltonian are equivalently described by the vector ~d in Pauli space. In the

d-dimensional lattice model, the momentum vectors k are discrete in Brillouin zone [−π, π]d. To apply the diffusion map
algorithm to such models, the vectors d̂ =

~d√
d2x+d2y+d2z

are chosen as the raw data, e.g. for the 1D model with length N , the

data sample x(l) = {d̂(ki), |ki = 2i−N−2
N π, i ∈ [1, N ]}. By varying the parameters ~t = (t1, t2, ...) in d̂, one obtains the data

set {x(l)}.
In our diffusion map algorithm, the diffusion probability Pl,l′ =

Kl,l′∑
l′ Kl,l′

between samples x(l) and x(l′) is defined by
choosing the Gaussian kernel function with the L1-norm

Kl,l′ = exp

(
−
‖x(l)−x(l′)‖2L1

2εN2

)
, (S17)
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where the variance is controlled by 0 < ε� 1.
Importantly, without the assistance of symmetric operators [114], it is easy to find that the prominent contributions of the

one-step diffusion probability Pl,l′ are from those nearest samples l′ = l+δl, i.e. the corresponding parameters ~t ′ = ~t+δ~t, then
the L1-norm distance between l and l+δl can be approximately recast to

‖x(l)−x(l+δl)‖L1
=

N∑
i=1

∑
α=x,y,z

(
‖d̂(l)
α (ki)−d̂(l+δl)

α (ki)‖L1

)
≈

N∑
i=1

∑
α=x,y,z

(
‖∇~t (d̂(l)

α (ki))‖L1

)
·δ~t. (S18)

Then the Gaussian kernel Kl,l+δl reads

Kl,l+δl ≈ exp

−
(∑N

i=1

∑
α=x,y,z

(
‖∇~t (d̂

(l)
α (ki))‖L1

)
·δ~t
)2

2εN2

 . (S19)

In case of confusion, we note that ‖∇~t d̂‖L1
=
(
‖∂t1 d̂‖L1

, ‖∂t2 d̂‖L1
, . . . ‖∂tn d̂‖L1

)
.

As long as
∑N
i=1

(
|∇~t (d̂

(l)
x (ki))|+|∇~t (d̂

(l)
y (ki))|+|∇~t (d̂

(l)
z (ki))|

)
is finite, the constant δ~t

2
/ε can always be adjusted so as

to keepKl,l+δl ≈ 1. Hence the connectivity between l and l′ depends on the derivability of the vector d̂(l) =
~d√

d2x+d2y+d2z
= d(l)

E
(l)
+

on ~t for all ki ∈ [−π, π]. The gap closure points E(l)
± = 0 usually break the constraint. Hence two nearest data samples divided

by the gap closure point should have Kl,l′ ≈ 0, i.e. no one-step diffusion probability between such samples. Combined with the
approximation that only the nearest samples prominently contribute to the diffusion, as a consequence, the gap closure points
divide the diffusion matrix into blocks. In most cases, different blocks usually correspond to different topological phases both
for Hermitian and non-Hermitian cases [115].
Example: 1D non-Hermitian SSH model with PBC.– For illustration, we focus on the 1D non-Hermitian SSH model with
PBC

Hp(k) = ~d·~σ = dxσx+dyσy, dx = t1+t2 cos k, dy = t2 sin k+iγ. (S20)

The data set {x(l)|x(l) = {d̂(ki), |ki = 2i−N−2
N π, i ∈ [1, N ]}} for clustering is obtained by varying only one parameter t1,

while fixing t2 and the non-Hermitian term γ. Correspondingly, the L1-norm term in Eq. (S18) reads

‖x(l)−x(l+δl)‖L1

δt1
≈

N∑
i=1

(
|∂t1 (d̂(l)

x (ki))|+|∂t1 (d̂(l)
y (ki))|

)
=

N∑
i=1

∣∣∣∣∣∣ d
(l)
y

2

E
(l)
+

3

∣∣∣∣∣∣
ki

+

∣∣∣∣∣∣d
(l)
x d

(l)
y

E
(l)
+

3

∣∣∣∣∣∣
ki

 . (S21)

It is easy to verify that Eq. (S21) tends to be infinite at the gap closure pointsE± = 0, i.e. the critical cases t1 = t2±γ (ki = −π)
and t1 = −t2±γ (ki = 0). Hence the kernel valueKl,l+δl ≈ 0 around such points and the kernel matrix becomes block diagonal.
As a consequence, the diffusion map algorithm successfully classifies the topological phases of the 1Dnon-Hermitian SSH model
with PBC.

Open boundary condition

Here we show how to apply the diffusion map method to classify phases of non-Hermitian topological models with OBC.
For the case of OBC, the raw data is no longer the Hamiltonian vector in momentum space. Instead, we choose the real space

projective matrix elements as the raw data. Generally, a projective matrix of such topological model is defined as

P =
∑

Re[Em]<0

|mR〉〈mL|, (S22)

where |mR〉 and 〈mL| are the right and left eigenstates of the non-Hermitian model, m covers the continuum bulk spectrum
leaving out the discrete zero modes.

We reiterate that the diffusion between the nearest samples contributes prominently. To illustrate the applicability of the
diffusion map method in clustering real space data samples, we consider the projective matrix P (l+δl) = P (~t (l+δl)) in first-
order perturbation

P (l+δl) =
∑

Re[Em]<0

|m′R〉〈m′L| ≈
∑

Re[Em]<0

|mR〉+
∑
n 6=m

〈nL|δĤ|mR〉
Em−En

|nR〉

〈mL|+
∑
n 6=m

〈mL|δĤ|nR〉
Em−En

〈nL|

 , (S23)



12

where δĤ = Ĥ(l+δl)−Ĥ(l) and then

δP = P (l+δl)−P (l) =
∑

Re[Em]<0

(|m′R〉〈m′L|−|mR〉〈mL|) ≈
∑

Re[Em]<0
n6=m

(
〈nL|δĤ|mR〉
Em−En

|nR〉〈mL|+
〈mL|δĤ|nR〉
Em−En

|mR〉〈nL|

)
.

(S24)
Hence the Gaussian kernel can be reexpressed as

Kl,l+δl = exp

(
−
‖P (l)−P (l+δl)‖2L1

2εN2

)
= exp

(
−
‖δP‖2L1

2εN2

)
= exp

(
− (‖∇~tP‖L1

·δ~t )2

2εN2

)
, (S25)

where ‖∇~t P‖L1
= (‖∂t1P‖L1

, ‖∂t2P‖L1
, . . . ‖∂tnP‖L1

). The singularity of ‖∇~tP‖L1
is crucial to the kernel values.

Example: 1D non-Hermitian SSH model with OBC.– Now we take the 1D non-Hermitian SSH model in Eq. (S8)) as an
example. The data set {x(l)} is obtained by varying t1. It is well known that the non-Hermitian SSH matrix Ĥ1D

o in the
orthonormal bases can be transformed into a Hermitian SSH matrix H̄1D

o in the non-orthonormal bases for |t1| > |γ|,

H̄1D
o = Γ−1Ĥ1D

o Γ, Γ−1|n〉 = |nR〉, 〈n|Γ = 〈nL|, H̄1D
o |n〉 = En|n〉. (S26)

where Γ = Diag(1, r, r, r2, r2, · · · , rN−1, rN ), r =
√
|(t1−γ)/(t1+γ)|. Then the term ‖∇~tP‖L1

can be expressed as

‖∇~tP‖L1
= ‖∂t1P‖L1

=

∥∥∥∥∥∥∥∥
∑

Re[Em]<0
n6=m

(
〈nL|∂t1Ĥ1D

o |mR〉
Em−En

|nR〉〈mL|+
〈mL|∂t1Ĥ1D

o |nR〉
Em−En

|mR〉〈nL|

)∥∥∥∥∥∥∥∥
L1

=

∥∥∥∥∥∥∥∥
∑

Re[Em]<0
n 6=m

(
〈n|Γ∂t1Ĥ1D

o Γ−1|m〉
Em−En

Γ−1|n〉〈m|Γ+
〈m|Γ∂t1Ĥ1D

o Γ−1|n〉
Em−En

Γ−1|m〉〈n|Γ

)∥∥∥∥∥∥∥∥
L1

.

(S27)

Here for convenience, we calculate the L1-norm in the fermionic bases {C1,A, C1,B , C2,A, ..., CN,B} instead of the eigenstate
bases {|n〉} of H̄ . Similar to the Hermitian SSH model, the singularity of ‖∇~tP‖L1 still occurs in condition |E−1−E1| →
0, which corresponds to the phase transition points |t1| =

√
t22+γ2. In the next section, we show in detail that the terms

〈1|Γ∂t1 ĤΓ−1|−1〉
E−1−E1

and 〈−1|Γ∂t1 ĤΓ−1|1〉
E−1−E1

are both infinite, while all other associated parameters are finite. Here to remove the
possible exponential infinity of NHSE, we choose part of the P -matrix elements as the raw input data: {PiA,iB |i ∈ [1, N ]},
i.e. the parameters of C†i,BCi,A-terms in Γ−1|−1〉〈1|Γ and Γ−1|1〉〈−1|Γ are finite numbers ±r. Hence for each matrix element
PiA,iB , the value of the L1-norm tends to be infinite near the phase transition points |t1| =

√
t22+γ2. As a consequence, the

corresponding Gaussian kernel value tends to be zero, and there is not diffusion probability between the two samples in different
phases. It indicates the applicability of the diffusion map algorithm in non-Hermitian model with OBC.

DETAILED CALCULATIONS OF 〈n|Γ∂t1Ĥ1D
o Γ−1|m〉/N IN 1D NON-HERMITIAN SSH MODEL

To manifest that the only singularity originates from the gap closure, we need to show that the term 〈n|Γ∂t1Ĥ1D
o Γ−1|m〉/N

is finite for all bulk eigenstates {|n〉} of the 1D non-Hermitian SSH model(|t1| > |γ|) with OBC in Eq. (S8).

In single fermion system, the eigenstate |n〉 can be expressed as |n〉 =
∑
i

(
uAniC

†
i,A+uBniC

†
i,B

)
|Vac〉,

∑
i

(
|uAni|2+|uBni|2

)
=

1. Then the term 〈n|Γ∂t1Ĥ1D
o Γ−1|m〉/N takes the form

1

N
〈n|Γ∂t1Ĥ1D

o Γ−1|m〉 =
1

N

N∑
i=1

〈n|(rC†i,ACi,B+r−1C†i,BCi,A)|m〉,

=
1

N

N∑
i=1

r(uAni)
∗uBmi+r

−1(uBni)
∗uAmi

(S28)
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which is of order r±1. Hence the term 〈n|Γ∂t1Ĥ1D
o Γ−1|m〉/N is finite for finite r.

Then we focus on the singularity of the term 〈−1|Γ∂t1 Ĥ
1D
o Γ−1|1〉Γ−1|−1〉〈1|Γ+〈1|Γ∂t1 Ĥ

1D
o Γ−1|−1〉Γ−1|1〉〈−1|Γ

N(E−1−E1) . Let the system
be initially in topological trivial phase. Without loss of generality, we suppose the chain length N is large enough, and the
lowest excitation (annihilation) energy E1(E−1) of H̄1D

o with OBC is almost equivalent to that of H̄1D
o (k) with PBC, and the

corresponding eigenstates can be approximately expressed by

|±1〉 ≈ C̄†k0,A(B)|Vac〉

for large N , where k0 corresponds to the lowest excitation momentum of H̄1D
o (k) with PBC in Eq. (S10). By diagonalizing

H̄1D
o with Fourier transformation in the momentum bases {C†k,A, C

†
k,B}, one obtains

H̄k =

π∑
k=−π

EkC̄
†
k,AC̄k,A−EkC̄

†
k,BC̄k,B , C†k,A(B) =

1√
N

N∑
j=1

e−ikjC†j,A(B), (S29)

where C̄†k,A = 1√
2
(ξkC

†
k,A+C†k,B) and C̄†k,B = 1√

2
(−ξ∗kC

†
k,A+C†k,B) are the fermionic quasiparticle operators, ξk =√

(t̄1+t2e−ik)/(t̄1+t2eik) is just a phase for real t̄1 in Eq. (S10).
We first estimate the value of the term 〈−1|Γ∂t1Ĥ1D

o Γ−1|1〉/N ,

1

N
〈−1|Γ∂t1Ĥ1D

o Γ−1|1〉

=
1

2N

π∑
k=−π

〈Vac|C̄k0,B
(

(
r

ξk
+
ξk
r

)(C̄†k,AC̄k,A−C̄
†
k,BC̄k,B)+(

r

ξk
−ξk
r

)(C̄†k,AC̄k,B−C̄
†
k,BC̄k,A)

)
C̄†k0,A|Vac〉

=
1

2N
(
ξk0
r
− r

ξk0
).

(S30)

Correspondingly, the term 〈1|Γ∂t1Ĥ1D
o Γ−1|−1〉/N = 1

2N ( r
ξk0
− ξk0

r ).

Then we analyze the singularity of the term Γ−1|−1〉〈1|Γ. Recalling the definition of the L1-norm for the matrix ‖P‖L1 =∑
i,j |Pij |, here we choose the fermionic bases in real space {C1,A, C1,B , C2,A, ..., CN,B}. The term can be expressed as

Γ−1|−1〉〈1|Γ = Γ−1C̄†k0,B |Vac〉〈Vac|C̄k0,AΓ =
1

2
Γ−1(−ξ∗k0C

†
k0,A

+C†k0,B)|Vac〉〈Vac|(ξ∗k0Ck0,A+Ck0,B)Γ. (S31)

It is easy to find that in the fermionic bases, Γ-matrix would contribute the exponential infinite term ∼ rN , hence we choose
the element set {C†i,A|Vac〉〈Vac|Ci,B |i ∈ [1, N ]} as the raw data instead of the full projective matrix P to overcome the

obstacle. In Γ−1|−1〉〈1|Γ, the term C†i,A|Vac〉〈Vac|Ci,B has parameter− ξ
∗
k0
r

2N , while in Γ−1|1〉〈−1|Γ, the C†i,A|Vac〉〈Vac|Ci,B
has parameter ξk0

r

2N . Thus for each matrix element C†i,A|Vac〉〈Vac|Ci,B , the total parameter contributed from the two energy
levels E±1 is

〈−1|Γ∂t1Ĥ1D
o Γ−1|1〉Γ−1|−1〉〈1|Γ+〈1|Γ∂t1Ĥ1D

o Γ−1|−1〉Γ−1|1〉〈−1|Γ
N(E−1−E1)

∣∣∣∣∣
C†i,A|Vac〉〈Vac|Ci,B

=
− ξ
∗
k0
r

2N 〈−1|Γ∂t1Ĥ1D
o Γ−1|1〉+ ξk0

r

2N 〈1|Γ∂t1Ĥ
1D
o Γ−1|−1〉

N(E−1−E1)

=
− ξ
∗
k0
r

2N
1

2N (
ξk0

r −
r
ξk0

)− ξk0
r

2N
1

2N (
ξk0

r −
r
ξk0

)

N(E−1−E1)

=
r(ξk0+ξ∗k0)

4N3(E−1−E1)
(
r

ξk0
−ξk0

r
).

(S32)

The above term is non-zero when ξk0+ξ∗k0 6= 0 and r
ξk0
− ξk0

r 6= 0, which is usually satisfied by the non-Hermitian case(r 6= 1).
Eq. (S32) tends to be infinite when the system approximates to the phase boundary ((E−1−E1)→ 0).
In conclusion, by analyzing the singularity of the values on {C†i,A|Vac〉〈Vac|Ci,B |i ∈ [1, N ]}, we show that the gap closure

point (phase transition point) where E±1 = 0 corresponds to the infinity of the L1-norm term in Gaussian kernel, which leads
to the zero kernel value as well as the non-diffusion probability. In such sense, the choice of the raw data we have made here is
reasonable and can be used for classifying the topological phases via the diffusion map method.
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FIG. S1. 1D Non-Hermitian SSH model with PBC. Parameters: number of unit cells N = 160, t2 = 1, non-Hermitian term γ = 0.3.
t1 ∈ [0, 3.0695], samples interval δt1 = 1/π4, ε = 0.001. (a-c) Three right eigenvectors ψ0,1,2 with the corresponding eigenvalues
λ0,1,2 ≈ 1. The horizontal axis denotes the sample number, and the vertical axis denotes the coefficients of each sample site in eigenvectors.
It is easy to verify that the two jumping points in the figures exactly match with the theoretically predicted phase transition points t1 =
0.7 and t1 = 1.3. The three types of topological phases are clustered around the points (−0.0577,−0.1148, 0.0338) with 69 samples,
(−0.0577,−0.0348,−0.1262) with 58 samples, (−0.0577, 0.0120,−0.0049) with 173 samples in R3 respectively, which can be easily
projected onto a 2D plane for visualization. The result matches the theoretically predicted phase transition points t1 = 0.7 and t1 = 1.3.
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FIG. S2. 1D Non-Hermitian SSH model with OBC. Parameters: number of unit cells N = 40, t2 = 0.6, non-Hermitian term γ = 0.4,
samples interval δt1 = 1/π5. (a) Heatmap for Gaussian kernel matrix of samples x(l) with varying t1 ∈ [0, 1.6306), hyper parameter
ε = 1×10−4. The non-diffusion zone around t1 ≈ 0.3921 originates from the singularity of parameter r−1 =

√
|(t1+γ)/(t1−γ)| → ∞.

(b, c) Hyper parameter ε = 1×10−6, for samples {x(l)} with t(l)1 varying from 0.4902 to 1.6306, two right eigenvectors ψ0,1 of P with
the eigenvalues λ0,1 ≈ 1, which indicate the two different topological phases in non-Hermitian SSH model in OBC. In (b, c), the horizontal
axis denotes the sample number, and the vertical axis denotes the coefficients of each sample site in eigenvectors. Each sample x(l) with
N = 80 features can be mapped to the reduced two dimensional feature space ((ψ0)l, (ψ1)l). The 350 samples {x(l)} with varying t(l)1 ∈
[0.4902, 1.6306] are clustered into two parts around the points (0.0535, -0.1223) with 65 samples and (0.0535, 0.0025) with 285 samples. The
phase transition point can be directly observed from the eigenvectors.

MORE DETAILED NUMERICAL RESULTS OF FIG. 2 AND FIG. 3 IN THE MAIN MANUSCRIPT

Here for details, we plot the eigenvectors of the one-step diffusion probability matrix P with the corresponding eigenvalues
λi ≈ 1. We have the following four cases in total: the 1D non-Hermitian SSH and the 2D non-Hermitian QWZ models with
PBC and OBC respectively, see Figs. (S1, S2, S3, S5).

DIFFUSION MAP IN CLASSIFYING PHASES WITH GAPLESS BAND SPECTRA

In this work, we have studied the classification of the 2D NH QWZ model with PBC based on the diffusion map algorithm.
Theoretically, for PBC the diffusion map cannot be directly utilized for clustering topological phases with the gapless bulk
spectra, since the input data d̂(k) =

~d√
~d2

could be singular at the gapless momentum points. The reason has been shown in

Sec. , which demonstrates that the samples with the gapless point (~d)2 = 0 lead to the zero diffusion probability, and the kernel
matrix is separated into diagonal blocks by such samples. Adding samples at exactly or near the gapless point could result in
artificial zero diffusion probability, and consequently lead to more predicted phases than the true number of phases hosted by
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FIG. S3. 2D non-Hermitian QWZ model with OBC. Parameters: number of unit cells N = 24×24 = 576, tx = ty = 1, vx = vy = 1,
non-Hermitian term γx = γy =

√
5/5, samples interval δM = 1/π5, M ∈ [1.4705, 2.9377), ε = 5×10−9. (a) Heatmap of the Gaussian

kernel values. The red arrow indicates the phase transition point. (b, c) Two right eigenvectors ψ0,1 of P with the eigenvalues λ0,1 ≈ 1, which
indicate the two different topological phases in non-Hermitian QWZ model in OBC. In (b, c), the horizontal axis denotes the sample number,
and the vertical axis denotes the coefficients of each sample site in eigenvectors. Each sample x(l) with N = 576 features can be mapped to
the reduced two dimensional feature space ((ψ0)l, (ψ1)l). With such two eigenvectors, the 450 samples {x(l)} with varying M are clustered
into two parts around two points: (0.0471, 0.0348) with 215 samples and (0.0471, -0.0560) with 235 samples. Each part corresponds to one
topological phase.

the system.
We first introduce how to identify the artificial phase boundaries owing to the samples with the gapless spectra. Given the

parameter region of a Bloch Hamiltonian, one can obtain different sample sets by choosing different lattice sizes. Although
different lattice size leads to the different feature dimension of an input sample, the matrix dimensions of kernels for different
lattice sizes are the same due to that the number of samples in each set are the same. The mechanism for detection is simple: If
the gapless bulk spectrums only occur at the phase boundaries (usually with the gapless spectra at the momentum 0 or π), then
the block boundaries of the kernel matrices should be same for different lattice sizes, hence the diffusion map approach applies
directly. While there exist phases with gapless spectra, like the 2D NH QWZ model, the appearance of momenta for the gapless
bulk spectra would depend on the choice of lattice sizes (note that for different lattice sizes, the discrete momentum points are
different after the Fourier transformation), i.e., whether the momenta for gapless bulk spectra is in the discrete momentum set.
Hence the blocks of the corresponding kernel matrices may change with the varying lattice sizes, then the failure of the machine
learning method can be detected by directly comparing the classification results in different lattice sizes. At the phase transition
point, the gapless momentum k0 is usually 0 or π, whose appearance in discrete momentum configuration is independent of the
lattice sizes. Those invariant block boundaries with varying lattice sizes are the real phase boundaries. We take the 2D NH QWZ
model as an example, detailed numerical calculations in Fig. S4 show that the artificial phases boundaries appear owing to the
samples with the gapless momenta within the gapless phases region.

To circumvent the above obstacle, one can construct an “effective” Gaussian kernel matrix by simply averaging the kernel
matrices of different input sample sets with varying lattice sizes (different discrete momentum configurations), so that the
artificial zero diffusion probabilities become nonzero after the average. The example of the 2D NH QWZ model is shown
in Fig.S5.

DISCREPANCY OF THE DIFFUSION MAP ALGORITHM IN PREDICTING PHASE BOUNDARIES

In locating the phase boundaries of models with PBC, the diffusion map algorithm performs high accuracy, i.e., the discrep-
ancy between the learned phase boundaries and the theoretical ones is very small. In the case of OBC, the phase boundaries
predicted by the unsupervised method behave∼ 1% discrepancy. We conclude that the following reasons lead to the discrepancy.

1) One prominent reason for the discrepancy should be the finite size of the model we study here. The numerical calculated
phase boundary approximates to the theoretical one when the size tends to be infinite. We carry out numerical calculations
to support this point. For the 1D NH SSH model with OBC, we numerically obtain the input data with different model
sizes for the diffusion map algorithm. We choose the same parameters as in the main manuscript with the theoretical
phase transition point 0.7211. We obtain that when the number of unit cells N=60, the learned phase transition point
is 0.6862; When N=80, the learned phase transition point is 0.6993; When N=100, the learned phase transition point is
0.7058. Fig. S6 demonstrates that with the model size increasing, the discrepancy between the learned phase transition
point and the theoretical prediction tends to be smaller.
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FIG. S4. 2D non-Hermitian QWZ model with PBC. Failed classification of samples with gapless momenta in the gapless regions of Hamilto-
nian. Parameters: number of unit cellsN = 20×20 = 400, tx = ty = 0.5, vx = vy = 0.5, non-Hermitian terms γx = 1/

√
32, γy = 1/

√
32,

γz = 0. M ∈ [−1.9607, 1.9574] with the interval δt1 = 1/π5, number of samples: 1200, hyper parameter ε = 0.001. The six theoretical
phase boundaries should be {±1.25, ±0.75,±0.25}. (a) Heatmap of the Gaussian kernel values. It is obvious that there are more than seven
blocks, which is beyond the theoretical predicted clusters of phases. This is due to the existence of gapless momenta in discrete momentum con-
figuration within the gapless phase regions. (b-c) Two eigenvectors ψ1,2 of diffusion matrix P with eigenvalues λ1,2 ≈ 1. From the diagrams
of eigenvectors, one observes that the samples are clustered into at least nine parts labeled by different M domains: [−1.9607,−1.0751],
[−1.0718,−0.8300], [−0.8267,−0.2516], [−0.2484,−0.1209], [−0.1176, 0.1209], [0.1242, 0.2484], [0.2516, 0.8300], [0.8333, 1.0718],
[1.0751, 1.9574]. Owing to the accuracy of the figures, one can not directly observe the real phase boundaries ±1.25 and ±0.75 from the
figures. Such phase boundaries can be located by checking the numerical data of the two eigenvectors ψ1,2. The artificial phase boundaries
originate from the samples with the gapless momenta in the gapless phase regions.
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FIG. S5. 2D non-Hermitian QWZ model with PBC. Successful classification of samples with gapless momenta in the gapless regions of
Hamiltonian. Parameters: number of unit cells N = 20×20 = 400, tx = ty = 0.5, vx = vy = 0.5, non-Hermitian terms γx = 1/

√
32,

γy = 1/
√

32, γz = 0. M ∈ [−1.9607, 1.9509] with the interval δt1 = 3/π5, number of samples: 400, hyper parameter ε = 0.00005. (a)
Heatmap of the “effective” Gaussian kernel matrix, as an average of a set of seven kernel matrices with varying number of unit cellsN = {14×
14, 16×16, 18×18, 20×20, 22×22, 24×24, 26×26}. (b-h) Seven eigenvectors ψ0∼6 of diffusion matrix P with the largest seven eigenvalues
λ0∼6 ≈ 1. From the diagrams of eigenvectors, one obtains that the samples are clustered into seven parts labeled by different M domains:
[−1.9607,−1.2548], [−1.2450,−0.7549], [−0.7451,−0.2549], [−0.2451, 0.2451], [0.2549, 0.7451], [0.7549, 1.2450], [1.2548, 1.9509].
In comparison with Fig. S4, the artificial phase boundaries here are eliminated by averaging the kernel matrices with different lattice sizes.

2) Another reason should be that we choose only part of the projective matrix as the input raw data. For example, in the 1D
NH SSH model with N unit cells, to circumvent the obstacle of NHSE, we just choose a small part, i.e., N out of 4N2

projective matrix elements for each sample as the input data. This can be regarded as a trade-off between the compression
of features and the training precision. The similar trade-off also exists in another work [92] of the CNN-based supervised
learning topological phases based on the experimental data. In that work, the authors showed that the trained CNN could
successfully identify (with a probability > 90%) different topological phases with less than 10% of the experimental data.

3) In addition, for the 2D NH QWZ model with OBC, the theoretical predicted phase boundary itself is an approximation,
which is based on the perturbation theory. In the original paper of the 2D NH QWZ model [42], there already exists
discrepancy (∼ 0.6% for M ≈ 2.2) between the theoretical phase transition point and the numerical results. This also
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FIG. S6. Discrepancy between the learned phase transition point and the theoretical prediction of the 1D NH SSH model with OBC. The
discrepancy tends to be smaller with the number of unit cells increasing.

contributes to the discrepancy which appears in our learned results.

UNSUPERVISED LEARNING OF 2D NH QWZ MODEL WITH PBC BY VARYING OTHER PARAMETERS

In the main manuscript, we successfully classify the non-Hermitian topological phases in an unsupervised fashion. For the
2D NH QWZ model with PBC, the samples are obtained by varying the parameter M . Here for completeness, we utilize the
diffusion map to classify samples generated by varying other parameters. To circumvent the obstacle posed by the samples
with the gapless momenta within the gapless regions, here we choose the “effective” kernel matrix mentioned in Sec. for the
diffusion map algorithm.

Firstly, we discuss the case of varying the parameter tx while fixing other parameters. Without loss of generality, one can set
vx = vy = 1, γx = 0.6, γy = 0.8, γz = 0, M = 2 and ty = 2. Then from Eq. S13 one can theoretically obtain seven phases,
with the theoretical phase boundaries tx = {−5,−3,−1, 1, 3, 5}. Detailed numerical calculations based on the diffusion map
method show that the seven different phases are successfully classified, see Fig. S7 for details.

Then we discuss the case of varying the parameter γx and keeping other values fixed. Numerical results show that the phases
are successfully classified, see Fig. S8 for details.

DISCUSSION ABOUT THE OBSTACLE POSED BY NHSE IN MACHINE LEARNING METHODS

In this section, we would like to make a discussion about the universality of obstacle owing to NHSE for different machine
learning methods. Recently, a number of unsupervised learning methods have been proposed to classify topological phases,
such as clustering, variational autoencoders, divergence-based predictive method, learning by confusion, topological data aug-
mentation, and so on [93–104]. However, most of these methods are based on convolutional neural network (CNN) and have
only been applied to Hermitian systems. For non-Hermitian systems with NHSE, since all the eigenstates are exponentially
localized at the boundaries, the relevant features could be dramatically suppressed and consequently are hard to extract. This
leads to a notable obstacle owing to the NHSE, independent of which learning algorithm is utilized. In a recent work [91], the
authors successfully predicted the topological phases of non-Hermitian SSH model in the momentum space with PBC based on
the supervised CNN machine learning method. However, they noted that the CNN algorithm for learning the non-Hermitian
models in the momentum space (with PBC) could not carry over to the non-Hermitian topological phases with the skin effect in
the real space (with OBC), and further studies on NHSE and the classification of non-Hermitian topological phases with OBCs
based on machine learning algorithms would be conducted. The unsupervised methods based on CNN would suffer the same
obstacle owning to NHSE as for the diffusion map method.
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FIG. S7. 2D non-Hermitian QWZ model with PBC, samples are generated by varying parameter tx. Parameters: vx = vy = 1, γx = 0.6,
γy = 0.8, γz = 0, M = 2 and ty = 2. tx ∈ [−6.9295, 6.9295] with the interval δt1 = 3/π4, number of samples: 450, hyper parameter
ε = 0.00015. (a) Heatmap of the “effective” Gaussian kernel matrix, as an average of a set of five kernel matrices with varying number
of unit cells N = {18×18, 20×20, 22×22, 24×24, 26×26}. (b-h) Seven eigenvectors ψ0∼6 of the P -matrix with the largest eigenvalues
λ0∼6 ≈ 1. (b) also contains the figure of seven largest eigenvalues (red area) of the “effective” diffusion matrix P . From the diagrams of
eigenvalues and eigenvectors, one obtains that the samples are clustered into seven parts labeled by different tx domains: [−6.9295,−5.0201],
[−4.9893,−3.0182], [−2.9874,−1.0163], [−0.9855, 0.9855], [1.0163, 2.9874], [3.0182, 4.9893], [5.0201, 6.9295]. The numerical calcu-
lated phase boundaries coincide with the theoretical ones tx = {−5,−3,−1, 1, 3, 5} with a low discrepancy.
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FIG. S8. 2D non-Hermitian QWZ model with PBC, samples are generated by varying parameter γx. Parameters: tx = ty = 2, vx = vy = 0.5,
non-Hermitian terms γy = 1, γz = 0, M = 2. γx ∈ [0, 3.0798] with the interval δt1 = 1/π4, number of samples: 300, hyper parameter
ε = 0.001. (a) Theoretical phase diagram of 2D NH QWZ model with PBC, parameters tx = ty = 2, vx = vy = 0.5, γy = 1,
γz = 0. The horizontal axis represents the value of parameter M , and the vertical axis represents the value of parameter γx. The green
area represents the gapped phases with well defined topological indices, whereas the purple area represents the gapless phase without well
defined topological indices. In the parameter region {M = 2, γx ∈ [0, 3.0798]}, there is only one phase boundary at γx =

√
3 ≈ 1.7321.

(b) Heatmap of the “effective” Gaussian kernel matrix, as an average of a set of six kernel matrices with varying number of unit cells N =
{20×20, 22×22, 24×24, 26×26, 28×28, 30×30}. The red arrow line connects the corresponding phase boundary between the theoretical
(a) and numerical results (b). (c) The largest eigenvalues of “effective” diffusion matrix P . (d-e) Two eigenvectors ψ0,1 of P -matrix with the
largest eigenvalues λ0,1 ≈ 1. From the diagrams of eigenvectors, the samples are clustered into two parts labeled by different γx domains:
phase with the gapped spectra [0, 1.7350] and phase with the gapless spectra [1.7452, 3.0798]. The numerical calculated phase boundary
γx ≈ 1.7350 coincides with the theoretical one γx ≈ 1.7321 with a low discrepancy.
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