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Discrete-phase-randomized coherent state source and
its application in quantum key distribution

Zhu Cad, Zhen Zhang, Hoi-Kwong L¢?, Xiongfeng Md

LCenter for Quantum Information, Institute for Interdidaiary Information Sciences, Ts-
inghua University, Beijing, China
2Center for Quantum Information and Quantum Control, Depant of Physics and Depart-

ment of Electrical & Computer Engineering, University ofrdato, Toronto, Ontario, Canada

Coherent state photon sources are widely used in quantum iofmation processing. In

many applications, a coherent state is functioned as a mixte of Fock states by assuming
its phase is continuously randomized. In practice, such a acial assumption is often not
satisfied and, therefore, the security of the protocol is noguaranteed. To bridge this gap,
we show that a discrete phase randomized source can well apgpdimate its continuous
counterpart. As an application, we give security bounds fodiscrete phase quantum key
distribution schemes, which can be easily realized in praate and our simulation shows
that with only a small number (say, 10) of discrete phases, thperformance of discrete
phase randomization is very close to the continuous one. Cgraring to the conventional

continuous phase randomization case, where an infinite amot of random bits are re-

quired, our result shows that only a small amount (say, 4 bitsof randomness is needed.

In many quantum optics applications, such as quantum kégison (QKD)*4, linear
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optics quantum computidgbit commitmert, coin flipping® and blind quantum computifiga
perfect single photon source is assumed to be used, whiat feasible with current technol-
ogy. Instead, a weak laser is widely used to replace theespigdton source in practice. A laser

can be well described by a coherent state
lo® a’
la) = e 2 —|n), 1)

on which a phase modulation I8y € [0, 27) implements the operatioja) to }ae“’}. For a
coherent state, there is a nonzero probability to get commtsrother than single photons, such
as vacuum states and multi photon states. To model this fegtem, a photon number channel

model is use¥ which assumes the phase of the coherent state is randgmized

[e.e]

2m 2
e (ae'®|df = Z e~loP o] |n)(n|. (2)

n!

1

2m Jo ~
A physical interpretation behind Ed.] (2) is that when thegghaf a coherent state is random-
ized, it is equivalent to a mixed state of Fock states whosggoshnumber follows a Poisson

distribution with a mean dfx|?. In other words, the Fock states are totally decohered frach e

other with continuous phase randomization.

We remark that phase randomization as specified in[Eq. (2r@ranon assumption in
the theoretical models of many quantum information prdogsgrotocols including QKB-,
blind quantum computirfgand quantum coin tossifgin practice, as will be discussed further
below, the assumption of continuous phase randomizatiofteés not satisfied in experiments.
Therefore, the security of a protocol (e.g. the security gfeaerated key in QKD) isiot
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guaranteed.

To illustrate the problem, for simplicity, let us consideetexample of QKD. The first
QKD protocol is published in 1984 by Bennett and Brassardd## Lots of progress has been
made since then both theoretically and experimerfialgr the BB84 protocol, secure key bits
can be transmitted only when single photon states are usenh the study of photon-number-
splitting (PNS) attack$, one can see that multi photon components are not securdior The
key idea to take this imperfection into consideration is byf@rming privacy amplification on
key bits from good (single photon) states and bad (multi phpstates separatély Meanwhile,
in order to accurately quantify the amounts of key bits framodjand bad states, the decoy-state

method has been propo$éed-2and experimentally demonstratéd®

For all the existing security analysis for coherent-stakb(@rotocols, including the re-
cent RRDPS QKD protoc&i, continuous phase randomization, Ed. (2), is assumeds béen
shown that when the phase is nhot randomized, either theigeaauld be compromised or the
performance will be reducéd In fact, there are experimental quantum hacking demaitstsa

showing that a QKD system may be attacked when the phase iamamized late&22,

There are two means to randomize the phase in practiceypassi active. In a passive
phase randomization process, the laser is turned on and gtrerate pulses. In this case,
there can still be some residue correlations between attjacéses®, especially in the case of

high-speed applicatio#s One might be tempted to make a naive argument that by swichi



laser on and off, the phase is fully randomized. Howevergitake such an argument seriously,
it essentially claims that one can generate an infinite amnaflandomness in a finite period of
time, which is clearly not true from the study of quantum ramdnumber generatiéh Thus

we avoid this approach here.

In the active phase randomization process, a phase modidateed to randomly modu-
late the phases. In this case, it can only perform discreaggohandomization, unless it uses an
infinite amount of random numbers. In a recent experidiemith coherent state, each global
phase is chosen from one of the over 1000 possible valuesd, §iich a large number of phases
demands high precision control, which is a challenge foktiege implementations. Second,
even with 1000 phases, the phase is still discreterandgorous bound on key rate was de-
rived. Since the work of Lo and Preskill was publisfedt has been a long standing question

to analyze the security of a practical QKD system with discphases.

In this work, we analyze the effect of discrete phase randatiwn and show that, as the
number of phases goes up, coherence between the Fock st&gs(ll) decreases rapidly. As
an application, we provide tight security bounds for both-aecoy and decoy state QKD pro-
tocols with discrete phase randomization. In simulatioa,compare the performance of our
security bounds with the one provided by continuous phaséomization, which shows that
our security bounds are tight when the number of phases gaefirtity. From a practical point

of view, for small number of phases (say, oMfy= 10 phases!), with a typical set of experi-



mental parameters, we observe that secret keys can be Igetdistebuted over a fiber length

of up to 138 km, very close tal40 km in the continuous phase randomized case. Thus Alice
needs only less than 4 bitg*(> 10) of random numbers per pulse for phase randomization.
In contrast, all previous security proofs essentially assan infinite number of bits of random
numbers per pulse. Therefore, we are making a huge improwdmee. Moreover, our scheme

is very simple to implement. For instance, a much harderemeintation of active phase ran-
domization with 1000 discrete phases has been reporteeiatliré®. Besides QKD protocols,
our analysis of discrete phase randomization is also neagplicable to quantum computation

and other quantum cryptographic primitives.

Results

Coherent state mixture Here, we consider a coherent state source whose phase amignd
picked from N different values. For the sake of simplicity, we assume #melom phases are

evenly distributed in0, 27),

{ek:#m:o,h..,z\r—u. 3)

In the case of continuous phase randomization (WNer> ~o), Eq. (2) essentially shows that
one can decompose the phase-randomized coherent mixethsted statistical mixture of Fock

states,n)(n|. In the application of QKD, as well as quantum compuijrtfpe single photon

state,|1)(1|, is the most important component.



In the case of a finitéV, one can decompose the mixed state to a set of pure states and
hopefully, one of which is close to single photon state.tH@us consider the casé = 2. We

start with the initial state

W) = [0) o[ v20) , + 1) 4| —V20) “)
where the phase of coherent st{a{é@B is controlled by a quantum coid. The factory/2
is included in the state for system B to simplify later dissioes. The normalization factor is

ignored throughout the paper unless it matters. By perfograi Schmidt decomposition

[W2) = (1004 + 1)) o5 + (10)4 = 1)) A1), ®)
where the two pure states are given by

o) = [V20) + |-v2a),
(6)
A1) = [V2a) — [-V20a).

By substituting the definition of coherent state, Eq. (1)s ihot hard to see thad,) (|\1)) is
a superposition of even (odd) photon number Fock stateshiBydecomposition, the Hilbert
space is divided into the even and odd number Fock statespgage, ® H,qq- Since|\;) only
contains odd photon number Fock states, we expect it is ttoaesingle photon state, which

can be confirmed from the calculation of fidelity later.

In the case of generdV > 1, the decomposition is similar but a bit more complex,
N-1

(W) = D k)] V2ae?V)

B
Il
o

(7)

r

=D 1DalX)g

<.
Il
o



where|j) , can be understood as a quantum coin withandom outputs and th¥ pure states
are given by
N-1
)\j) _ Z 6—2kj7ri/N‘62k7ri/N\/§a>. (8)
k=0
By substituting Eq.[(1), we have the following observatidms|)\;). It is a superposition of

Fock states whose photon numbers moduilare the samg,

(v2a) lN+J
Z V(N +

Then, it is not hard to see thak;) becomes close to a Fock state wh¥&nis large since

N+ ). (9)

V (IN + j)! increases fast. Whel¥ — oo, it becomes a Fock state;) = [j). Later in
the simulation, one can see that wh€n= 10, the mixed coherent state becomes very close to
Fock state mixture in terms of performance of QKD. Similathte case ofV = 2, the Hilbert

space is divided int@7y moa v D H1 mod ¥ D+ ® H(N-1) mod N-

Next, we can figure out the probability if Alice performs a jeaiion measurement on the

photon state in the basis pY;), which is simply the norm of EqL{9),

-
> im0 (AilA))

[e.e]

(10)

,ulN+je—u
T
— (IN + 7)!

wherey = 2|al?>. WhenN — oo, it becomes a photon number channel and follows a Poisson

distributiong/e=* /5.

Coherent state schemeA phase encoding QKD scheme using a coherent state soutuayg s

in Fig.[d, which is essentially an interferometer. In theéestareparation stage, Alice prepares a

7



weak coherent stada/§a>, whose phase is modulated randomly by the first phase madulat
PM]1. The state is separated into two puldes, and|«a),, by a beam splitter. And then Alice
encodes the bit and basis information (say, according tBB&4 protocol) in the relative phase

via the second phase modulaton/?2.

reference ﬂ |a>

Schmidt
Decomposition

] e e l
L I

PM1 PM2

Figure 1: Schematic diagram for the phase-encoding QKDrmsehegith coherent states. The
first phase modulator’ M1, is used for phase randomization according to Efy. (3), aed th

second oneP M2, is used for QKD encoding € {0, 7 /2, 7w, 37/2}.

Here, for simplicity, we consider the case that the refezgmdse has the same intensity
with the signal. Our results can be extended to the stroreyerte ca$e?’ and the asym-
metric cas®, as well as other encoding schemes such as polarizatiomliegcand time-bin

encoding®.

In the scheme with discret®d-phase randomization, the photon source is decomposed

into stateg)\;) as shown in Eq[(8). After going through the phase encodihgrse as shown



in Fig.[1, the four BB84 states encoded y) can be written as

N-1
}0£> _ Z e—zkjm/N}erm/Na>‘e2km/Na>

k=0

N-1
}1£> _ Z 6—2kj7ri/N}e2k7ri/Na>‘_62km'/Na>

k=0

N1 (11)
‘05> _ Z 6—2kj7ri/N‘e2k7ri/Na>‘Z-62km'/Na>

k=0

N-1

‘15> _ Z e—zkjm'/N‘ezkm/Na>‘_ie2km/Na>7
k=0

where we omit the subscrigton the left side, but it should be understood that the fouesta

do depend orj.

The key point to guarantee the security of the BB84 protacthlat Eve cannot distinguish
the state in two conjugate baseés,andY. The two density matrices in the two bases can be

written as

pr = [0E)(OF| + [1E)(1F]
(12)

py = [05)(05| + [15)(L5].

Note that each logical state should be regarded as a pureatipech state. In the ideal case,
where a basis-independent source, such as a single phataresis used, the density matrices
in the two bases should be the same,

Pz = Py- (13)

In the security analysis, one of the key parameters is this dapendence of the source, which



is the fidelity between the two states in tNeandY” bases,

Fj(pxa py) = t1\/\/PyPar\/Py (14)

IN+j _ IN+j IN ,
o0 p T g —g IN+j in WN+J
2o eI (cos T2 m+sin == 7r)
S Wl N+
1=0 (IN+j)!

>

whereu = 2|a|? and the detailed fidelity evaluation is shown in Supplemgritéaterials.

DenoteFj(t) as thet-th order approximation of the fidelity, by takirig= 0, ..., ¢ in the

summation. The zeroth order is

(0) ) J . J wJ:
Fj 2 ‘2 il <COS Z’TF"—SIH Zﬂ-) ‘ -+ O (m) . (15)
One can see that” = F” = 1andF” = 1/2, £ =0, F{” = 1/4, .... Since when

F < 1/+/2 would not render any positive key réfgit is confirmed that multi photon states are

not secure for QKD due to their large basis dependence in B&lprotocol.

Take the first order fop\y) and|\,),

B N —1 N 2N
F()(l)21—<1—2_NTcos W)M——FO(M )

4 N (N1)2 16)
) _% N :uN :u2N
Fl 21—(1—2 COSZW)W—FO(W)

The fidelity approaches to 1 rapidly Asbecomes large, especially whens small, as shown
in Fig.[2. This shows with enough discrete phases, one camxipmte the vacuum state and

the single photon state infinitely well, which is extremesetul in applications such as QKD.

10
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—6—=0.2 |1
——p=0.1
7 8 9 10

Figure 2: (Color Online) Plots of fidelity for different vada of mean photon number The

fidelity here refers td+, which is always smaller thaf; by the numerical evaluation.

Key rate The key rate formula given by the standard security anafgsi@KD with imperfect

device$is

R> —I.+ Qi1 — H(el)],
17

I..= fQ.H(E,).

Here, .. is the cost of error correctioi),, andE, are the overall gain and quantum bit error rate
(QBER) which can be directly measured in QKD experimentdenotes the expected photon
number of the signal stat¢;denotes the error correction efficiency; alide) = —elog,(e) —

(1 — e)log,(1 — e) is the binary Shannon entropy function. We assume that Adic Bob
run the efficient BB8 and take the basis sift factor to be 1. The core of the secani@ysis

is to figure out the privacy amplification ter;[1 — H(el)], @1 = Yiue * is the gain of
single photon state;; andef are the yield and the phase error rate of the single-photpraki

state, respectively, which are estimated by the decog-stethod. Hereye * is the (Poisson)

11



probability that Alice sends single photon states.

In this case of discrete phase randomization, the photarcsa@sinot decomposed of Fock
states. Instead, we decomposed the channel ijjcaccording to Eq.(7). The single photon

state will be replaced bi;) and the Poisson distribution will be replaced by [EQq] (10).

Now we can slightly modify Eq[(17) to fit our case
R>—I.+ Y PYjll—H(), (18)
j

whereP; is given in Eq.[(ID). The yield; and bit error rate’ of |};), can be estimated by the
decoy state method. Here, without any confusion, we usedimne siotation as the Fock state
case for simplicity. One can bound the phase errordateom eg similar to the work of Lo and

Preskilf%, which is shown in the Supplementary Materials.

From the basis dependence we know that gnky 0 andj = 1 would contribute posi-
tively to the final key rate. Thus, the key rate evaluationdnees the following minimization
problem.

min {PYo[l — H(eh)] + PYi[1 — H(eD)]). (19)

ogyj,eggl
There are other constraints based on the gain and QBER edbtaimm the experiments. Note
that with other security proof techniques the key rate giveBq. (18) can be improved. For
example, the vacuum compone®t is showed! to have no phase errors when the photon

number channel model is applied.

12



Parameter estimation Now, we need to estimate key parametéf]—sandeﬁ. First, let us con-
sider the no-decoy state case, where we assume all the msdesrors come from\,) and

|A1), in the worst case scenario,

N-1
PYo+PYi>Qu— Y P,
i=2 (20)

eo oYy + e P Yy < E,Q,.
Since the right side of Eql_(53) can be obtained from the éxymat directly, one can easily

solve the minimization problem presented in Eq] (19) to hetkey rate.

We simulate a typical QKD systethand compare various casesf The result is shown
in Fig.[3, from which we can see that with only 4 random phagesperformance of discrete
phase randomization is very close to the one of continuoasg@handomization. We can also
observe the key rate of one phase and two phases are siriléingoe is a gap when the phase
number becomes three. This can be explained as follows. Wetftho(Q) of N =1 coincides
with Eqg. (22) in the work of Lo and Presk¥ thus our fidelity formula also extends to the
N = 1 case. Also we notice that the first order termof= 1 vanishes, making the key rate
performance ofV = 1 and N = 2 to be similar, both of ordet — O(u?). For N > 3, the
performance is improved greatly to- O(x""). The details of this simulation and all following

simulations are shown in Supplementary Materials.

For the case of the decoy-state method, the analysis isaridk the security proof of the

13
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Figure 3: (Color Online) Plots of key rates for different nagns of random phases. When
N =1, it refers to no phase randomization case. Wher+ oo, it approaches to continuous

phase randomization case.
decoy-state method, the photon number channel model geasathe following equalities,

Y, (signal) = Y, (decoy),
(21)
en(signal) = e, (decoy)
since all the Fock statgs)(n| are the same in the signal and decoy states. This is not so

straightforward inV discrete phase randomization case, because

[X5) # 14%) (22)

as defined in Eq[{9), whegeandr are the intensities of signal and decoy states. Thus, we do
not have the simple relations as the continuous phase ramdtom case, EqL(21). Fortunately,
we have shown thd#\;) is very close to the Fock statg). We expect the inequality shown in
Eq. (22) to be an approximate equality.

14



Following the quantum coin argument used in the GLLP seganitlysis?, the yield and

error rate difference between the signal and decoy stagegian by

Y-y <\ 1= B

(23)
|e5Y) — SV <\ /1 -,
where
N
B u
P@_l—O(NO. (24)

Now the extra constraints added to the minimization probééraqg. (19) for the decoy-

state method are, along with EQ. [54),

N-1
Qu=Y_ P},
j=0
N-1
BuQu =) PV},

J=0

(25)

where P} are given in Eq.[(T0). If more decoy states are used, morarlieguations will be

added to Eq[(25).

We simulate a QKD systethwith vacuum-+weak decoy st&feand compare various cases
of phase numbelN. The decoy and signal intensities are numerically optichizemaximize
the key rate. The result is shown in Hig. 4, from which we camtbat with only 10 random
phases, the performance of discrete phase randomizatenjiglose to the one of continuous

phase randomization.
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Key generation rate [per pulse]

0 2‘0 4‘0 Gb 86 160 léO 140
Transmission Distance [km]
Figure 4: (Color Online) Plots of key rates for different nogns of random phaséé. Dashed

line refers to the continuous phase randomization casead &oés from left to right refer to

increasingV from 3 to 10.

Discussion

In summary, we just need 10 random phases for the discresepaadomization, the fidelity of
which is very close to the continuous case. We demonstrateftéct of discrete phase random-
ization by taking the QKD protocol as an example and showithgites a big improvement
on the performance. Without phase randomization, the kieydacays rapidly as a function
of the transmittance of the channel and drops to zero afssrtlean 15km of optical fibers as
shown in Fig[B. In contrast, with discrete phase randonarathe key rate scales linearly as
a function of the transmittance and QKD remains feasible @28km of fibers as shown in
Fig.[4. Since only four bits of random numbers per pulse, Whikceady give2* = 16 > 10

possible phases, are required for phase randomizatioscbeme is highly practical. Note that

16



a much harder discrete phase randomization experimentl®@0 phasées has already been
demonstrated. Moreover, our method may not only apply te&mee signal and reference pulse
amplitudes case, but also to the asymmetric amplitude cabtha strong reference pulse case.
We remark that our discrete phase randomization idea apgi®ther quantum information

processing protocols including blind quantum computing @mantum coin tossing.

There are a few interesting prospective projects. Firg,tduhe finite length of the key,
statistical fluctuation needs to be taken into considematibich can be dealt with by finite key
analysis as in a recent wo?k Second,NV discrete phase randomization process is not perfect
in an actual system, i.e., there will be a small error in thagghmodulation such that the actual
phase applied will bé+ % where) is a small number that can be positive or negative. The im-
perfect phase modulation can be dealt with by modifying aleliy calculations. Besides the
usual BB84 QKD protocols, our idea can also be extended tsMement-Device-Independent

QKD=® by treating both sources as discrete phase randomized.
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A Basis dependence

This document provides the Supplementary materials to #euscript, “Quantum key distri-
bution with discrete-phase-randomized coherent states'Section[A, the basis dependence
between theX andY (fidelity of two density matrices) fof);) is calculated whetV discrete
randomized phases are used. In Sediibn B, we present thegtaraestimation of the decoy-
state method. In Sectidd C, the pseudo codes for both nop@ecbdecoy simulation are given

as well as the bound for phase erefr

In order to make the derivation easier to understand, we nbexin to represent the
photon number, indek to represent the discrete phase, ingdew represent the decomposed

Fock state approximations.

We restate the four BB84 states phase encoded in the decethgiadd )\ ;) as presented

in Main Text,
‘0L> B chv:_ol e—2kj7ri/N‘62k7ri/Na>‘62k7rz’/Na>
x \/Ne—2|a\2 Eg—_ol e2kjmi/N g2|a|2e=2kmi/N
‘1L> B chvz_ol 6—2kj7ri/N‘62k7ri/Na>}_62km'/Na>
z \/Ne—z\alz Eg_ol e2kjmi/N p2|a|2e=2kmi/N
" 26
‘0L> B Zivz_ol 6—2kj7ri/N}62k7ri/Na>}Z'62k7ri/Na> (26)
Yy \/Ne—2|a\2 Zg—_ol o2kjmi/N p2|a)2e=2kmi/N
‘1L> B Ziv:—(; 6—2kj7ri/N‘62k7ri/Na>}_,L'62k7ri/Na>
y b

\/N€—2\a|2 Z}iV:—()l erjﬂi/N€2|a‘2872km/N

where the denominators are the normalization factors.
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To evaluate the fidelity between the two states in the twodjase calculate the related

inner products of these four states,

Ne—2lal szjz_ol o2kimi/N plal?(14i)e=2mi/N

LinL\ _— Li1L\ _
0:10y) = (3=11) = Ne—2lal? STN=T 2kjri/N g2laf?e-2kxi/N o)

—2|a? N-1 okjmi/N ,|a|?(1—i)e2kmi/N
(0811t = (axlogy = S g e
z 1Ty z 17y Ne_2|a‘2 Z]k\/_—ol62kj7ri/N62‘a|28—2km/N

The detailed calculations of inner products and norms ape/shn Sectioi A. Now we

substitute these values to evaluate fidelity,

0;){0y] + 1) (1])

> F (|=)[05) + [4) |12, [+0) [05) + =i} [15))

Flpz, py) = F (|07)(07] + [12)(15

Y

= I HO2] + (HQED ) 0g) + 1) [12))] (28)

? |(05[05) + i(0E|1L) +i(1E[0L) + (1E[1L)|

N—1 I 2 N, —2kmi /N . 201 _\p—2kmwi/N
/3 SN g2kmi/N [e|a\ (144)e 1 jelal?(=ie }

N—1 opiri/N ,2la|2e—2kmi/N
2 SONT g2k /N g2l

where |[+) and |+i) are the normalized eigenstates of theand Y bases. The inequality
comes from the fact that the fidelity of two mixed states isrttaximal of the fidelity of all the

purifications. Here, we use the intuition that two Bell stzee the same,

=) + =M = )+ + =] =) (29)

Now, let us simplify Eq.[(28) and we expect it to be very clasé whenN is large.

/3 | e [l o jlof?1=ia

2 S pie2lal? (30)
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where the summation is taken over= 1, e>/V ... 2 (N=D/N N dots evenly distributed on
the unit circle of the complex plane. Take the Taylor expamsif . = 2|«|? > 0 around O,

Soaiy >, (pa/V2)" (cos &F + sin 27)

l
Z r = Zn:O Hrf! -
Yoo (“/f) (cos BT + sin 2T) 3~ "

= = Z S (31)

LINYS o INE
(Cos lN4+J7r + sin lN4+] )

El 0 lN-‘rj

F(ps, py) >

(INTI

Zl =0 (lN—l—])

The the details of Taylor expansion and the calculatiop of" 7 are shown in SectidnlA.

Approximations: large N or small . Here, we want to check the fidelity given in EQ.31)

whenN is large oru is small. Zeroth order, by taking= 0 in the summation,

j u_? (N +j)!
! (32)
~ [279/2 (cos iﬂ' + sin iﬂ') ‘
One can see tha” = F¥ = 1andF” = 1/2, F{” =0, F”) = 1/4, .. .. Itis confirmed

that multi photon states are not secure for the BB84 QKD maito
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First order approximation, by taking= 0 and/ = 1 in the summation,

O _ %2_% (cos {m +sin ) + (N]iﬂ) 22" (cos Mt 4 sin Xtir) 12N 1
i uN+I + m
+ (N+]) J):

+Jj

_J 1 . | g N+J N+ N+j
2772 (cosiw+sm%7r)+ﬁ2 2 (cos—37r+sm Nt ) +O< 12N 1
(

1+ ety 2N + j)!

j ) ) j N+ N+ N1
=272 (cos iﬁ—i-sin iﬂ') — [1 —2_NT+ <cos Z]WjLsin Z]ﬂ'>:| (]\A;:j)!

co([# 5] ) o (@)

SinceN > j, the second)(-) in the last equality can be neglected. The first order appraxi

(33)

tion will approach to the zeroth order exponentially fast.” /N!). We are interested in the

first two caseg = 0 andj =1,

N N N 2N
Fo(l) =1- {1—2_12V (cosZWjLsinzw)] 'u—+0< a )

(34)
We notes that the second order approximatiofpivhen N = 1 coincides with Eq. (22) #,
thus our fidelity formula also extends 16 = 1 case. Also we notice the first order term when
N = 1 vanishes, making the key rate performancéVof 1 and N = 2 to be similar, both of

orderl — O(u?). For N > 3, the performance is improved greatlytte- O(u").

26



Inner products and norms Inner products,

N-1 N-1
<0£‘05> _ Z e2lj7ri/N<€217ri/Na‘<62lni/Na‘> (Z e—2kj7ri/N‘€2km'/Na>‘i€2kﬂi/Na>>
=0 k=0
N—-1N-
_ 62(l_k)jm/N<e2l“/Na|62k“/Noz><62l“/Na|z'e2km/Na>

=l
—

=y
|
— o
il
,l_.o

2(l—k‘)j7m'/N6_|a‘2 [2_(1+i)e2(k—l)m/1v]

(&
=

o
e
Il

o

N-1
olny|2 o 2 N\ —2kmi/N
— Ne 2| 2 e2kj7rz/N€\a| (1+4)e
k=0

(35)

where we use the fact that*’™/N ande—2*"/N each forms a ring in the complex plane, and

N-1 N—-1
<0£|15> _ €2ljm'/N<e2lm'/Na‘<€2l7ri/Na‘> (Z €—2kjni/N‘e2kwi/Na>‘_i€2k7ri/Na>>
l k=0

0
N—-1N-1

=

62(l—k)j7ri/N<€2l7ri/Na‘e2k7ri/NOé><€217ri/Na‘ _ Z’e2k7ri/Na>

=0

bl
o

=
=2

2(1=k)jmi/N ,~laf? [2—(1—3)e2(k=Dmi/N]

e

= 0

o
B
Il

N-1
—olal2 i 2(1_i)e—2kmi/N
e 2| 2 e2kjm/N6\a| (1—i)e

k=0

=

(36)
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Norms,

<0£|O£> — <NZI 62lm/N<62l7”/Na}<62l7”/NOz‘> <N . 6—2k7ri/N e2k7ri/Na> ‘62k7ri/Na>>
1=0 k=0
N-1N-1
_ Z 2(—k)mi/N < eAi/N | €2kni/Na>2
NNt 37
_ e2(l—k)7ri/N€—2\a|2[l—eQ(k’l)”i/N]
1=0 k=0
N-1
— N6—2\a|2 Z 62k7ri/N62|04\2e’2k”/N
k=0

Here, we use the inner products between two coherent states,

(a1} = exp (1ol +.a° - 5167
(38)

(ae]aei) = ¢la(1-ewli@-0),

It is not hard to see that by adding a same phageandd, the result is the same.

Taylor expansion and summation Taylor expansion:

14 (Fpx)®  (Fua)®
5 Ur + o + 3l

(Fpx)? N i(%u )
21 3l

elal? 4z solal?(-dz _ 1 4 + ...

T (39)

nm nm

= (1+1) Z(%)"%(Cosz + sin I)

Summation:
Z l,n—j _ e—2k(n—j)7ri/N

{N, n—j mod N = (40)

0, mn—j mod N #0
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where the summation is taken over= 1, e>/V ... 2 (N=D/N N dots evenly distributed on

the unit circle of the complex plane.

B Parameter deviation in the decoy-state method

Here we consider the paramet&; @nde;) deviations between the signal states and the decoy
states in the case df discrete phase randomization. Denote the intensity ofigrebstate to
be ;2 and decoy state to bg v < u. We want to figure out the relationships betweéh e

andY}, e7, respectively.

We follow the tagged idea for the phase error estimatiofirst, we need to evaluate the

fidelity between \/) and|\”) as defined in Main Text,

lN+J
‘)\> Z\/T
BN—H
Ay) = Z |lN+]>

[IN + j)
(41)

wherep = |a]? andv = |§|%. We note that these are the states after phase randomization

before qubit encoding. Then the fidelity is given by
[ A
\/<A~|Au><x|x,>

(") N+
|El 0 alN-i—j |

i) =

\/Z |a‘2lN+2J o IB‘2IN+2j (42)
I=0 (IN+j)! I=0 (IN+)!
Z (l/«V lN/2
=0 (IN+j)!

IN
\/Zl =0 (lN+] ) Ez 0 l],\/f-i-j
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In the last equality, we assuméj is a real number, which can be set when their phases are the
same. In experiment, one can think of the scenario wheregb@ycstate intensity modulation is
done after phase randomization. WhE€n— oo, this fidelity will go to 1 as the photon number

channel model. Take the first order approximation wheis large oru is small,

(N2 .
ity NI N 112 (N + j)!
0+ D+ (N+Jj>')}

RN R N R WA | g (43)
TR 2<N+j>!+0<[<zv+j>!]>

One can show that Eq. (42) is a non-decreasing function witeasingj,

F(ND, X)) = F(XM), 1A8))
/2
Z (l/«V lN
=0 AN _ (44)
\/Zl 0 lN'Zl 0 ( V
=Fu
Apply the quantum coin idea from GLEE

Yy Ja=yna=vy) = R, 3) -

Vevreny /(= ey - evy) = B,

i)

Normally Y; is in the order of channel transmittange One can see that F(\Aﬁ, })\j”.>) <

/1 —n, the difference can be frof, 1], which would result in zero key rate. On the other
hand, if ¥ = 1, we haveY;" = Y}, which is reasonable since the yields of the same states
should be the same.
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With the calculations presented in Sectidn B, we can solve{4f),

vi-vyl< 1o R,
(46)
Y} eyl <\ 1=,

Note that onceV, ; andv are givenF),, is given by Eq.[(44) and hence the yield and error rate

differences are fixed.

Bound the parameter difference between signal and decoy & To make it simpler, we

rewrite Eq. [46) in the following form,

Vab++/(1—a)(1—b)>F (47)
wherea, b € [0, 1]. Leta = sin? x andb = sin® y, wherex, y € [0, 7/2], then

F <sinzsiny + cosx cosy
(48)
= cos(r — y)
Thus,
|z — y| < arccos F' (49)

SinceF is very close 1|z — y| is very close to 0. That ig, andb are very close to each other,
la — b| = |sin? 2 — sin? y|
= |sin(x + y) sin(z — y)|

(50)

< sin(arccos F)
— V- F?
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C Simulation

In this section, we calculate the key rates of both decoy amddecoy methods derived in the
Main text. We use typical experimental parametéveghich aree; = 0.033, n = 107/,
wherea = 0.2 dB/km, ng, = 0.045, Yy = 1.7 x 107% and assumed an error-correction
inefficiency f(e) = 1.16. Heree, is the intrinsic error rate of Bob’s detectors. For each @alu
of the distance, the signal strengithas been chosen to optimize the rate. In the simulation

model,Q, = Yy + 1 — e

Bound for phase error To make simulation self-contained, we bound the phase €efrivom

bit errore’ of the jth component similar to the work of Lo and Pres¥ill

e < eh 40 (1— A))(1—2¢0) +4(1—28)),/A;(1 = Apeb(1—eb), (D)
where the basis dependence ratio is defined as

Aj - J . (52)

Here, the fidelitieg”; are given in Eq.[(Z28).

ptN+ie—n according to Eg. (10) from Main text.

Non-decoy 1. First we calculate’; = >7° o550

oo N+ INAJ IN+j_ | o IN4j
S0 cos “ T r4sin =ty .
2. Then we calculaté’;(p,, p,) > |=—12H (#mﬂ.‘* i7) according to

320 twn

Eqg. (14) from Main text.
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3. For(eg, e1, Yo, Y1) in the domain defined by

N-1
PYo+PY1>Qu— Y P
=2 (53)

eoPoYo + e P Yy < EQ,
according to Eg. (20) from Main text where the notations aénéd in the Main text, we

calculateA; ande according to EqL(81) an@ (52) in this Supplementary Makteria

4. Substitute the above quantities imﬂimogn,e?g{PoYO[l — H(ep)]+ PYi[1—H()]}

according to Eq. (19) from Main text and numerically optim(z,, e, Y, Y;) for the minimum.

The signal intensity: is numerically optimized to maximize the key rate. Typicalue
of u ranges from 0.001 to 0.02. When the number of phaééslarge,u is approximately the

decay rate.

o) ulNﬂ'e*M

Decoy 1. First we calculaté®’; = according to Eqg. (10) from Main text.

1=0 (INTJ)!
oo pNHI 1N+ IN+j 4 o IN4j
S0 cos J 7 +sin J .
2. Then we calculatd’(p,, p,) > |=— 2 = (HWH‘* i) according to
1=0 (IN+;)!

Eq. (14) from Main text.

3. Next we calculaté,, according toF},, =1 — O (”VN,) according to Eqg. (24) from

Main text.
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4. For(eg, e1, Yo, Y1) in the domain defined by

‘Y;'H_Y;'V‘ < \ll_Fﬁu
vy ey < 1=

N1 (54)

according to Eqg. (23) and (25) from Main text, we calculateande!; according to Eq.[(81)

and [52) in this Supplementary Material.

5. Substitute the above quantities imtn,y, <, {F Yol — H(eh)]+ PYi[1—H ()]}

according to Eg. (19) from Main text and numerically optim(iz,, e, Yy, Y1) for the minimum.

The decoy and signal intensitipsandv are numerically optimized to maximize the key
rate. Typical value of: is 0.5. One weak decoy state with typical mean photon number o

v = 0.001 and one vacuum state are used.
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