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Discrete-phase-randomized coherent state source and
its application in quantum key distribution

Zhu Cao1, Zhen Zhang1, Hoi-Kwong Lo2, Xiongfeng Ma1

1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Ts-

inghua University, Beijing, China

2Center for Quantum Information and Quantum Control, Department of Physics and Depart-

ment of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada

Coherent state photon sources are widely used in quantum information processing. In

many applications, a coherent state is functioned as a mixture of Fock states by assuming

its phase is continuously randomized. In practice, such a crucial assumption is often not

satisfied and, therefore, the security of the protocol is notguaranteed. To bridge this gap,

we show that a discrete phase randomized source can well approximate its continuous

counterpart. As an application, we give security bounds fordiscrete phase quantum key

distribution schemes, which can be easily realized in practice and our simulation shows

that with only a small number (say, 10) of discrete phases, the performance of discrete

phase randomization is very close to the continuous one. Comparing to the conventional

continuous phase randomization case, where an infinite amount of random bits are re-

quired, our result shows that only a small amount (say, 4 bits) of randomness is needed.

In many quantum optics applications, such as quantum key distribution (QKD)1, 2, linear

1

http://de.arxiv.org/abs/1410.3217v1


optics quantum computing3, bit commitment4, coin flipping5 and blind quantum computing6, a

perfect single photon source is assumed to be used, which is not feasible with current technol-

ogy. Instead, a weak laser is widely used to replace the single photon source in practice. A laser

can be well described by a coherent state7,

|α〉 = e−
|α|2

2

∑ αn

√
n!
|n〉, (1)

on which a phase modulation byθ ∈ [0, 2π) implements the operation|α〉 to
∣

∣αeiθ
〉

. For a

coherent state, there is a nonzero probability to get components other than single photons, such

as vacuum states and multi photon states. To model this imperfection, a photon number channel

model is used8, which assumes the phase of the coherent state is randomized,

1

2π

∫ 2π

0

∣

∣αeiθ
〉〈

αeiθ
∣

∣dθ =

∞
∑

n=0

e−|α|2 |α|2
n!

|n〉〈n|. (2)

A physical interpretation behind Eq. (2) is that when the phase of a coherent state is random-

ized, it is equivalent to a mixed state of Fock states whose photon number follows a Poisson

distribution with a mean of|α|2. In other words, the Fock states are totally decohered from each

other with continuous phase randomization.

We remark that phase randomization as specified in Eq. (2) is acommon assumption in

the theoretical models of many quantum information processing protocols including QKD1, 2,

blind quantum computing6 and quantum coin tossing5. In practice, as will be discussed further

below, the assumption of continuous phase randomization isoften not satisfied in experiments.

Therefore, the security of a protocol (e.g. the security of agenerated key in QKD) isnot
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guaranteed.

To illustrate the problem, for simplicity, let us consider the example of QKD. The first

QKD protocol is published in 1984 by Bennett and Brassard (BB84)1. Lots of progress has been

made since then both theoretically and experimentally9. For the BB84 protocol, secure key bits

can be transmitted only when single photon states are used. From the study of photon-number-

splitting (PNS) attacks10, one can see that multi photon components are not secure for QKD. The

key idea to take this imperfection into consideration is by performing privacy amplification on

key bits from good (single photon) states and bad (multi photon) states separately11. Meanwhile,

in order to accurately quantify the amounts of key bits from good and bad states, the decoy-state

method has been proposed8, 12, 13and experimentally demonstrated14–18.

For all the existing security analysis for coherent-state QKD protocols, including the re-

cent RRDPS QKD protocol19, continuous phase randomization, Eq. (2), is assumed. It has been

shown that when the phase is not randomized, either the security would be compromised or the

performance will be reduced20. In fact, there are experimental quantum hacking demonstrations

showing that a QKD system may be attacked when the phase is notrandomized lately21, 22.

There are two means to randomize the phase in practice, passive and active. In a passive

phase randomization process, the laser is turned on and off to generate pulses. In this case,

there can still be some residue correlations between adjacent pulses23, especially in the case of

high-speed applications24. One might be tempted to make a naive argument that by switching a
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laser on and off, the phase is fully randomized. However, if we take such an argument seriously,

it essentially claims that one can generate an infinite amount of randomness in a finite period of

time, which is clearly not true from the study of quantum random number generation23. Thus

we avoid this approach here.

In the active phase randomization process, a phase modulator is used to randomly modu-

late the phases. In this case, it can only perform discrete phase randomization, unless it uses an

infinite amount of random numbers. In a recent experiment25 with coherent state, each global

phase is chosen from one of the over 1000 possible values. First, such a large number of phases

demands high precision control, which is a challenge for real-time implementations. Second,

even with 1000 phases, the phase is still discrete andno rigorous bound on key rate was de-

rived. Since the work of Lo and Preskill was published20, it has been a long standing question

to analyze the security of a practical QKD system with discrete phases.

In this work, we analyze the effect of discrete phase randomization and show that, as the

number of phases goes up, coherence between the Fock states in Eq. (1) decreases rapidly. As

an application, we provide tight security bounds for both non-decoy and decoy state QKD pro-

tocols with discrete phase randomization. In simulation, we compare the performance of our

security bounds with the one provided by continuous phase randomization, which shows that

our security bounds are tight when the number of phases goes to infinity. From a practical point

of view, for small number of phases (say, onlyN = 10 phases!), with a typical set of experi-
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mental parameters, we observe that secret keys can be securely distributed over a fiber length

of up to138 km, very close to140 km in the continuous phase randomized case. Thus Alice

needs only less than 4 bits (24 > 10) of random numbers per pulse for phase randomization.

In contrast, all previous security proofs essentially assume an infinite number of bits of random

numbers per pulse. Therefore, we are making a huge improvement here. Moreover, our scheme

is very simple to implement. For instance, a much harder implementation of active phase ran-

domization with 1000 discrete phases has been reported in literature25. Besides QKD protocols,

our analysis of discrete phase randomization is also readily applicable to quantum computation

and other quantum cryptographic primitives.

Results

Coherent state mixture Here, we consider a coherent state source whose phase is randomly

picked fromN different values. For the sake of simplicity, we assume the random phases are

evenly distributed in[0, 2π),

{θk =
2πk

N
|k = 0, 1, . . . , N − 1}. (3)

In the case of continuous phase randomization (whenN → ∞), Eq. (2) essentially shows that

one can decompose the phase-randomized coherent mixed state into a statistical mixture of Fock

states,|n〉〈n|. In the application of QKD, as well as quantum computing3, the single photon

state,|1〉〈1|, is the most important component.
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In the case of a finiteN , one can decompose the mixed state to a set of pure states and

hopefully, one of which is close to single photon state. First let us consider the caseN = 2. We

start with the initial state

|Ψ2〉 = |0〉A
∣

∣

√
2α
〉

B
+ |1〉A

∣

∣−
√
2α
〉

B
, (4)

where the phase of coherent state
∣

∣

√
2α
〉

B
is controlled by a quantum coinA. The factor

√
2

is included in the state for system B to simplify later discussions. The normalization factor is

ignored throughout the paper unless it matters. By performing a Schmidt decomposition

|Ψ2〉 = (|0〉A + |1〉A)|λ0〉B + (|0〉A − |1〉A)|λ1〉B, (5)

where the two pure states are given by

|λ0〉 =
∣

∣

√
2α
〉

+
∣

∣−
√
2α
〉

,

|λ1〉 =
∣

∣

√
2α
〉

−
∣

∣−
√
2α
〉

.

(6)

By substituting the definition of coherent state, Eq. (1), itis not hard to see that|λ0〉 (|λ1〉) is

a superposition of even (odd) photon number Fock states. By this decomposition, the Hilbert

space is divided into the even and odd number Fock state spaces,Heven⊕Hodd. Since|λ1〉 only

contains odd photon number Fock states, we expect it is closeto a single photon state, which

can be confirmed from the calculation of fidelity later.

In the case of generalN ≥ 1, the decomposition is similar but a bit more complex,

|ΨN〉 =
N−1
∑

k=0

|k〉A
∣

∣

√
2αe2kπi/N

〉

B

=
N−1
∑

j=0

|j〉A|λj〉B

(7)
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where|j〉A can be understood as a quantum coin withN random outputs and theN pure states

are given by

|λj〉 =
N−1
∑

k=0

e−2kjπi/N
∣

∣e2kπi/N
√
2α
〉

. (8)

By substituting Eq. (1), we have the following observationsfor |λj〉. It is a superposition of

Fock states whose photon numbers moduloN are the samej,

|λj〉 =
∞
∑

l=0

(
√
2α)lN+j

√

(lN + j)!
|lN + j〉. (9)

Then, it is not hard to see that|λj〉 becomes close to a Fock state whenN is large since

√

(lN + j)! increases fast. WhenN → ∞, it becomes a Fock state|λj〉 = |j〉. Later in

the simulation, one can see that whenN = 10, the mixed coherent state becomes very close to

Fock state mixture in terms of performance of QKD. Similar tothe case ofN = 2, the Hilbert

space is divided intoH0 mod N ⊕H1 mod N ⊕ · · · ⊕H(N−1) mod N .

Next, we can figure out the probability if Alice performs a projection measurement on the

photon state in the basis of|λj〉, which is simply the norm of Eq. (9),

Pj =
〈λj|λj〉

∑N−1
j=0 〈λj |λj〉

=
∞
∑

l=0

µlN+je−µ

(lN + j)!
,

(10)

whereµ = 2|α|2. WhenN → ∞, it becomes a photon number channel and follows a Poisson

distributionµje−µ/j!.

Coherent state schemeA phase encoding QKD scheme using a coherent state source is shown

in Fig. 1, which is essentially an interferometer. In the state preparation stage, Alice prepares a

7



weak coherent state
∣

∣

√
2α
〉

, whose phase is modulated randomly by the first phase modulator

PM1. The state is separated into two pulses,|α〉r and|α〉s, by a beam splitter. And then Alice

encodes the bit and basis information (say, according to theBB84 protocol) in the relative phase

via the second phase modulatorPM2.

Figure 1: Schematic diagram for the phase-encoding QKD scheme with coherent states. The

first phase modulator,PM1, is used for phase randomization according to Eq. (3), and the

second one,PM2, is used for QKD encodingφ ∈ {0, π/2, π, 3π/2}.

Here, for simplicity, we consider the case that the reference pulse has the same intensity

with the signal. Our results can be extended to the strong reference case26, 27 and the asym-

metric case28, as well as other encoding schemes such as polarization encoding and time-bin

encoding29.

In the scheme with discreteN-phase randomization, the photon source is decomposed

into states|λj〉 as shown in Eq. (8). After going through the phase encoding scheme as shown

8



in Fig. 1, the four BB84 states encoded in|λj〉 can be written as

∣

∣0Lx
〉

=
N−1
∑

k=0

e−2kjπi/N
∣

∣e2kπi/Nα
〉
∣

∣e2kπi/Nα
〉

∣

∣1Lx
〉

=

N−1
∑

k=0

e−2kjπi/N
∣

∣e2kπi/Nα
〉
∣

∣−e2kπi/Nα
〉

∣

∣0Ly
〉

=
N−1
∑

k=0

e−2kjπi/N
∣

∣e2kπi/Nα
〉
∣

∣ie2kπi/Nα
〉

∣

∣1Ly
〉

=

N−1
∑

k=0

e−2kjπi/N
∣

∣e2kπi/Nα
〉
∣

∣−ie2kπi/Nα
〉

,

(11)

where we omit the subscriptj on the left side, but it should be understood that the four states

do depend onj.

The key point to guarantee the security of the BB84 protocol is that Eve cannot distinguish

the state in two conjugate bases,X andY . The two density matrices in the two bases can be

written as

ρx =
∣

∣0Lx
〉〈

0Lx
∣

∣ +
∣

∣1Lx
〉〈

1Lx
∣

∣

ρy =
∣

∣0Ly
〉〈

0Ly
∣

∣ +
∣

∣1Ly
〉〈

1Ly
∣

∣.

(12)

Note that each logical state should be regarded as a pure normalized state. In the ideal case,

where a basis-independent source, such as a single photon source, is used, the density matrices

in the two bases should be the same,

ρx = ρy. (13)

In the security analysis, one of the key parameters is the basis dependence of the source, which

9



is the fidelity between the two states in theX andY bases,

Fj(ρx, ρy) = tr
√√

ρyρx
√
ρy (14)

≥
∣

∣

∣

∣

∣

∑∞
l=0

µlN+j

(lN+j)!
2−

lN+j
2 (cos lN+j

4
π+sin lN+j

4
π)

∑∞
l=0

µlN+j

(lN+j)!

∣

∣

∣

∣

∣

whereµ = 2|α|2 and the detailed fidelity evaluation is shown in Supplementary Materials.

DenoteF (t)
j as thet-th order approximation of the fidelity, by takingl = 0, . . . , t in the

summation. The zeroth order is

F
(0)
j ≥

∣

∣

∣

∣

2−j/2

(

cos
j

4
π + sin

j

4
π

)
∣

∣

∣

∣

+O

(

µNj!

(N + j)!

)

. (15)

One can see thatF (0)
0 = F

(0)
1 = 1 andF (0)

2 = 1/2, F (0)
3 = 0, F (0)

4 = 1/4, . . . . Since when

F < 1/
√
2 would not render any positive key rate20, it is confirmed that multi photon states are

not secure for QKD due to their large basis dependence in the BB84 protocol.

Take the first order for|λ0〉 and|λ1〉,

F
(1)
0 ≥ 1−

(

1− 2−
N−1

2 cos
N − 1

4
π

)

µN

N !
+O

(

µ2N

(N !)2

)

F
(1)
1 ≥ 1−

(

1− 2−
N
2 cos

N

4
π

)

µN

(N + 1)!
+O

(

µ2N

[(N + 1)!]2

)

.

(16)

The fidelity approaches to 1 rapidly asN becomes large, especially whenµ is small, as shown

in Fig. 2. This shows with enough discrete phases, one can approximate the vacuum state and

the single photon state infinitely well, which is extremely useful in applications such as QKD.
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0.995

1

N

F
0

µ=0.4
µ=0.2
µ=0.1

Figure 2: (Color Online) Plots of fidelity for different values of mean photon numberµ. The

fidelity here refers toF0, which is always smaller thanF1 by the numerical evaluation.

Key rate The key rate formula given by the standard security analysisfor QKD with imperfect

devices8, 11 is

R ≥ −Iec +Q1[1−H(ep1)],

Iec = fQµH(Eµ).

(17)

Here,Iec is the cost of error correction;Qµ andEµ are the overall gain and quantum bit error rate

(QBER) which can be directly measured in QKD experiments;µ denotes the expected photon

number of the signal state;f denotes the error correction efficiency; andH(e) = −e log2(e)−

(1 − e) log2(1 − e) is the binary Shannon entropy function. We assume that Aliceand Bob

run the efficient BB8430 and take the basis sift factor to be 1. The core of the securityanalysis

is to figure out the privacy amplification termQ1[1 − H(ep1)], Q1 = Y1µe
−µ is the gain of

single photon state;Y1 andep1 are the yield and the phase error rate of the single-photon signal

state, respectively, which are estimated by the decoy-state method. Here,µe−µ is the (Poisson)

11



probability that Alice sends single photon states.

In this case of discrete phase randomization, the photon source is not decomposed of Fock

states. Instead, we decomposed the channel into|λj〉 according to Eq. (7). The single photon

state will be replaced by|λj〉 and the Poisson distribution will be replaced by Eq. (10).

Now we can slightly modify Eq. (17) to fit our case

R ≥ −Iec +
∑

j

PjYj[1−H(epj)], (18)

wherePj is given in Eq. (10). The yieldYj and bit error rateebj of |λj〉, can be estimated by the

decoy state method. Here, without any confusion, we use the same notation as the Fock state

case for simplicity. One can bound the phase error rateepj from ebj similar to the work of Lo and

Preskill20, which is shown in the Supplementary Materials.

From the basis dependence we know that onlyj = 0 andj = 1 would contribute posi-

tively to the final key rate. Thus, the key rate evaluation becomes the following minimization

problem.

min
0≤Yj ,ebj≤1

{P0Y0[1−H(ep0)] + P1Y1[1 −H(ep1)]}. (19)

There are other constraints based on the gain and QBER obtained from the experiments. Note

that with other security proof techniques the key rate givenin Eq. (18) can be improved. For

example, the vacuum componentQ0 is showed31 to have no phase errors when the photon

number channel model is applied.
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Parameter estimation Now, we need to estimate key parameters,Yj andebj . First, let us con-

sider the no-decoy state case, where we assume all the lossesand errors come from|λ0〉 and

|λ1〉, in the worst case scenario,

P0Y0 + P1Y1 ≥ Qµ −
N−1
∑

j=2

Pj,

e0P0Y0 + e1P1Y1 ≤ EµQµ.

(20)

Since the right side of Eq. (53) can be obtained from the experiment directly, one can easily

solve the minimization problem presented in Eq. (19) to get the key rate.

We simulate a typical QKD system32 and compare various cases ofN . The result is shown

in Fig. 3, from which we can see that with only 4 random phases,the performance of discrete

phase randomization is very close to the one of continuous phase randomization. We can also

observe the key rate of one phase and two phases are similar, but there is a gap when the phase

number becomes three. This can be explained as follows. We note thatF (2)
0 of N = 1 coincides

with Eq. (22) in the work of Lo and Preskill20, thus our fidelity formula also extends to the

N = 1 case. Also we notice that the first order term ofN = 1 vanishes, making the key rate

performance ofN = 1 andN = 2 to be similar, both of order1 − O(µ2). ForN ≥ 3, the

performance is improved greatly to1−O(µN). The details of this simulation and all following

simulations are shown in Supplementary Materials.

For the case of the decoy-state method, the analysis is trickier. In the security proof of the

13



0 10 20 30 40 50
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Distance [km]

K
ey

 r
at

e 
R

 

 

∞ phases
1 phase
2 phases
3 phases
4 phases

Figure 3: (Color Online) Plots of key rates for different numbers of random phasesN . When

N = 1, it refers to no phase randomization case. WhenN → ∞, it approaches to continuous

phase randomization case.

decoy-state method, the photon number channel model guarantees the following equalities,

Yn(signal) = Yn(decoy),

en(signal) = en(decoy)

(21)

since all the Fock states|n〉〈n| are the same in the signal and decoy states. This is not so

straightforward inN discrete phase randomization case, because

∣

∣λµ
j

〉

6=
∣

∣λν
j

〉

(22)

as defined in Eq. (9), whereµ andν are the intensities of signal and decoy states. Thus, we do

not have the simple relations as the continuous phase randomization case, Eq. (21). Fortunately,

we have shown that|λj〉 is very close to the Fock state|j〉. We expect the inequality shown in

Eq. (22) to be an approximate equality.
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Following the quantum coin argument used in the GLLP security analysis11, the yield and

error rate difference between the signal and decoy states are given by

|Y µ
j − Y ν

j | ≤
√

1− F 2
µν ,

|eµj Y µ
j − eνjY

ν
j | ≤

√

1− F 2
µν ,

(23)

where

Fµν = 1− O

(

µN

N !

)

. (24)

Now the extra constraints added to the minimization problemof Eq. (19) for the decoy-

state method are, along with Eq. (54),

Qµ =
N−1
∑

j=0

P µ
j Y

µ
j ,

EµQµ =

N−1
∑

j=0

eµjP
µ
j Y

µ
j ,

(25)

whereP µ
j are given in Eq. (10). If more decoy states are used, more linear equations will be

added to Eq. (25).

We simulate a QKD system33 with vacuum+weak decoy state34 and compare various cases

of phase numberN . The decoy and signal intensities are numerically optimized to maximize

the key rate. The result is shown in Fig. 4, from which we can see that with only 10 random

phases, the performance of discrete phase randomization isvery close to the one of continuous

phase randomization.
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Figure 4: (Color Online) Plots of key rates for different numbers of random phasesN . Dashed

line refers to the continuous phase randomization case. Solid lines from left to right refer to

increasingN from 3 to 10.

Discussion

In summary, we just need 10 random phases for the discrete phase randomization, the fidelity of

which is very close to the continuous case. We demonstrate the effect of discrete phase random-

ization by taking the QKD protocol as an example and show thatit gives a big improvement

on the performance. Without phase randomization, the key rate decays rapidly as a function

of the transmittance of the channel and drops to zero after less than 15km of optical fibers as

shown in Fig. 3. In contrast, with discrete phase randomization, the key rate scales linearly as

a function of the transmittance and QKD remains feasible over 138km of fibers as shown in

Fig. 4. Since only four bits of random numbers per pulse, which already give24 = 16 > 10

possible phases, are required for phase randomization, ourscheme is highly practical. Note that

16



a much harder discrete phase randomization experiment with1000 phases25 has already been

demonstrated. Moreover, our method may not only apply to thesame signal and reference pulse

amplitudes case, but also to the asymmetric amplitude case and the strong reference pulse case.

We remark that our discrete phase randomization idea applies to other quantum information

processing protocols including blind quantum computing and quantum coin tossing.

There are a few interesting prospective projects. First, due to the finite length of the key,

statistical fluctuation needs to be taken into consideration which can be dealt with by finite key

analysis as in a recent work.35 Second,N discrete phase randomization process is not perfect

in an actual system, i.e., there will be a small error in the phase modulation such that the actual

phase applied will beδ+ 2πk
N

whereδ is a small number that can be positive or negative. The im-

perfect phase modulation can be dealt with by modifying our fidelity calculations. Besides the

usual BB84 QKD protocols, our idea can also be extended to Measurement-Device-Independent

QKD36 by treating both sources as discrete phase randomized.
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A Basis dependence

This document provides the Supplementary materials to the manuscript, “Quantum key distri-

bution with discrete-phase-randomized coherent states”.In Section A, the basis dependence

between theX andY (fidelity of two density matrices) for|λj〉 is calculated whenN discrete

randomized phases are used. In Section B, we present the parameter estimation of the decoy-

state method. In Section C, the pseudo codes for both nondecoy and decoy simulation are given

as well as the bound for phase errorepj .

In order to make the derivation easier to understand, we use indexn to represent the

photon number, indexk to represent the discrete phase, indexj to represent the decomposed

Fock state approximations.

We restate the four BB84 states phase encoded in the decomposed state|λj〉 as presented

in Main Text,
∣

∣0Lx
〉

=

∑N−1
k=0 e−2kjπi/N

∣

∣e2kπi/Nα
〉
∣

∣e2kπi/Nα
〉

√

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

∣

∣1Lx
〉

=

∑N−1
k=0 e−2kjπi/N

∣

∣e2kπi/Nα
〉
∣

∣−e2kπi/Nα
〉

√

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

∣

∣0Ly
〉

=

∑N−1
k=0 e−2kjπi/N

∣

∣e2kπi/Nα
〉
∣

∣ie2kπi/Nα
〉

√

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

∣

∣1Ly
〉

=

∑N−1
k=0 e−2kjπi/N

∣

∣e2kπi/Nα
〉
∣

∣−ie2kπi/Nα
〉

√

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

,

(26)

where the denominators are the normalization factors.
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To evaluate the fidelity between the two states in the two bases, we calculate the related

inner products of these four states,

〈

0Lx |0Ly
〉

=
〈

1Lx |1Ly
〉

=
Ne−2|α|2∑N−1

k=0 e2kjπi/Ne|α|
2(1+i)e−2kπi/N

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

,

〈

0Lx |1Ly
〉

=
〈

1Lx |0Ly
〉

=
Ne−2|α|2∑N−1

k=0 e2kjπi/Ne|α|
2(1−i)e−2kπi/N

Ne−2|α|2∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

,

(27)

The detailed calculations of inner products and norms are shown in Section A. Now we

substitute these values to evaluate fidelity,

F (ρx, ρy) = F
(
∣

∣0Lx
〉〈

0Lx
∣

∣+
∣

∣1Lx
〉〈

1Lx
∣

∣,
∣

∣0Ly
〉〈

0Ly
∣

∣+
∣

∣1Ly
〉〈

1Ly
∣

∣

)

≥ F
(

|−〉
∣

∣0Lx
〉

+ |+〉
∣

∣1Lx
〉

, |+i〉
∣

∣0Ly
〉

+ |−i〉
∣

∣1Ly
〉)

=
1

2
|(〈−|

〈

0Lx
∣

∣+ 〈+|
〈

1Lx
∣

∣)(|+i〉
∣

∣0Ly
〉

+ |−i〉
∣

∣1Ly
〉

)|

=

√
2

4

∣

∣

〈

0Lx |0Ly
〉

+ i
〈

0Lx |1Ly
〉

+ i
〈

1Lx |0Ly
〉

+
〈

1Lx |1Ly
〉
∣

∣

=

√
2

2

∣

∣

∣

∣

∣

∣

∑N−1
k=0 e2kjπi/N

[

e|α|
2(1+i)e−2kπi/N

+ ie|α|
2(1−i)e−2kπi/N

]

∑N−1
k=0 e2kjπi/Ne2|α|2e−2kπi/N

∣

∣

∣

∣

∣

∣

(28)

where |±〉 and |±i〉 are the normalized eigenstates of theX andY bases. The inequality

comes from the fact that the fidelity of two mixed states is themaximal of the fidelity of all the

purifications. Here, we use the intuition that two Bell states are the same,

|+〉|−〉+ |−〉|+〉 = |+i〉|+i〉+ |−i〉|−i〉. (29)

Now, let us simplify Eq. (28) and we expect it to be very close to 1 whenN is large.

F (ρx, ρy) ≥
√
2

2

∣

∣

∣

∣

∣

∣

∑

x−j
[

e|α|
2(1+i)x + ie|α|

2(1−i)x
]

∑

x−je2|α|2x

∣

∣

∣

∣

∣

∣

(30)
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where the summation is taken overx = 1, e2πi/N , . . . , e2πi(N−1)/N , N dots evenly distributed on

the unit circle of the complex plane. Take the Taylor expansion ofµ = 2|α|2 ≥ 0 around 0,

F (ρx, ρy) ≥
∣

∣

∣

∣

∣

∑

x−j
∑∞

n=0
(µx/

√
2)n

n!
(cos nπ

4
+ sin nπ

4
)

∑

x−j
∑∞

n=0
(µx)n

n!

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑∞
n=0

(µ/
√
2)n

n!
(cos nπ

4
+ sin nπ

4
)
∑

xn−j

∑∞
n=0

µn

n!

∑

xn−j

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑∞
l=0

µlN+j

(lN+j)!
2−

lN+j
2

(

cos lN+j
4

π + sin lN+j
4

π
)

∑∞
l=0

µlN+j

(lN+j)!

∣

∣

∣

∣

∣

∣

.

(31)

The the details of Taylor expansion and the calculation of
∑

xn−j are shown in Section A.

Approximations: large N or small µ Here, we want to check the fidelity given in Eq. (31)

whenN is large orµ is small. Zeroth order, by takingl = 0 in the summation,

F
(0)
j =

∣

∣

∣

∣

∣

µj

j!
2−

j
2

(

cos j
4
π + sin j

4
π
)

µj

j!

∣

∣

∣

∣

∣

+O

(

µNj!

(N + j)!

)

≈
∣

∣

∣

∣

2−j/2

(

cos
j

4
π + sin

j

4
π

)
∣

∣

∣

∣

(32)

One can see thatF (0)
0 = F

(0)
1 = 1 andF (0)

2 = 1/2, F (0)
3 = 0, F (0)

4 = 1/4, . . . . It is confirmed

that multi photon states are not secure for the BB84 QKD protocol.
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First order approximation, by takingl = 0 andl = 1 in the summation,

F
(1)
j =

∣

∣

∣
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∣
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µj
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cos j
4
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SinceN ≥ j, the secondO(·) in the last equality can be neglected. The first order approxima-

tion will approach to the zeroth order exponentially fast,O(µN/N !). We are interested in the

first two casesj = 0 andj = 1,
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(34)

We notes that the second order approximation ofF0 whenN = 1 coincides with Eq. (22) in20,

thus our fidelity formula also extends toN = 1 case. Also we notice the first order term when

N = 1 vanishes, making the key rate performance ofN = 1 andN = 2 to be similar, both of

order1− O(µ2). ForN ≥ 3, the performance is improved greatly to1−O(µN).
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Inner products and norms Inner products,
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where we use the fact thate2kjπi/N ande−2kπi/N each forms a ring in the complex plane, and
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N−1
∑

k=0

e2(l−k)jπi/N
〈

e2lπi/Nα|e2kπi/Nα
〉〈

e2lπi/Nα| − ie2kπi/Nα
〉

=

N−1
∑

l=0

N−1
∑

k=0

e2(l−k)jπi/Ne−|α|2[2−(1−i)e2(k−l)πi/N ]

= Ne−2|α|2
N−1
∑

k=0

e2kjπi/Ne|α|
2(1−i)e−2kπi/N

(36)
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Norms,

〈

0Lx |0Lx
〉

=

(

N−1
∑

l=0

e2lπi/N
〈

e2lπi/Nα
∣

∣

〈

e2lπi/Nα
∣

∣

)(

N−1
∑

k=0

e−2kπi/N
∣

∣e2kπi/Nα
〉
∣

∣e2kπi/Nα
〉

)

=

N−1
∑

l=0

N−1
∑

k=0

e2(l−k)πi/N
〈

e2lπi/Nα|e2kπi/Nα
〉2

=
N−1
∑

l=0

N−1
∑

k=0

e2(l−k)πi/Ne−2|α|2[1−e2(k−l)πi/N ]

= Ne−2|α|2
N−1
∑

k=0

e2kπi/Ne2|α|
2e−2kπi/N

(37)

Here, we use the inner products between two coherent states,

〈α|β〉 = exp

(

−1

2
|α|2 + α∗β − 1

2
|β|2
)

〈

αeiφ|αeiθ
〉

= e−|α|2(1−exp[i(θ−φ)]).

(38)

It is not hard to see that by adding a same phase toφ andθ, the result is the same.

Taylor expansion and summation Taylor expansion:

e|α|
2(1+i)x + ie|α|

2(1−i)x = 1 +
1 + i

2
µx+

(1+i
2
µx)2

2!
+

(1+i
2
µx)3

3!
+ . . .

+ i+ i
1− i

2
µx+ i

(1−i
2
µx)2

2!
+ i

(1−i
2
µx)3

3!
+ . . .

= (1 + i)

∞
∑

n=0

(
µx√
2
)n

1

n!
(cos

nπ

4
+ sin

nπ

4
)

(39)

Summation:
∑

x

xn−j =

N−1
∑

k=0

e−2k(n−j)πi/N

=



















N, n− j mod N = 0

0, n− j mod N 6= 0

.

(40)
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where the summation is taken overx = 1, e2πi/N , . . . , e2πi(N−1)/N , N dots evenly distributed on

the unit circle of the complex plane.

B Parameter deviation in the decoy-state method

Here we consider the parameter (Yj andej) deviations between the signal states and the decoy

states in the case ofN discrete phase randomization. Denote the intensity of the signal state to

beµ and decoy state to beν, ν < µ. We want to figure out the relationships betweenY µ
j , eµj

andY ν
j , eνj , respectively.

We follow the tagged idea for the phase error estimation11. First, we need to evaluate the

fidelity between
∣

∣λµ
j

〉

and
∣

∣λν
j

〉

as defined in Main Text,

∣

∣λµ
j

〉

=
∞
∑

l=0

αlN+j

√

(lN + j)!
|lN + j〉

∣

∣λν
j

〉

=
∞
∑

l=0

βlN+j

√

(lN + j)!
|lN + j〉

(41)

whereµ = |α|2 andν = |β|2. We note that these are the states after phase randomizationand

before qubit encoding. Then the fidelity is given by

F (
∣

∣λµ
j

〉

,
∣

∣λν
j

〉

) =
|
〈

λµ
j |λν

j

〉

|
√

〈

λµ
j |λµ

j

〉〈

λν
j |λν

j

〉

=
|
∑∞

l=0
(α∗β)lN+j

(lN+j)!
|

√

∑∞
l=0

|α|2lN+2j

(lN+j)!

∑∞
l=0

|β|2lN+2j

(lN+j)!

=

∑∞
l=0

(µν)lN/2

(lN+j)!
√

∑∞
l=0

µlN

(lN+j)!

∑∞
l=0

νlN

(lN+j)!

(42)
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In the last equality, we assumeα∗β is a real number, which can be set when their phases are the

same. In experiment, one can think of the scenario where the decoy state intensity modulation is

done after phase randomization. WhenN → ∞, this fidelity will go to 1 as the photon number

channel model. Take the first order approximation whenN is large orµ is small,

F (
∣

∣λµ
j

〉

,
∣

∣λν
j

〉

) =
|1 + (µν)N/2j!

(N+j)!
|

[

(1 + µN j!
(N+j)!

)(1 + νN j!
(N+j)!

)
]1/2

+O

(

[

µNj!

(N + j)!

]2
)

= 1 +
(µν)N/2j!

(N + j)!
− 1

2

µNj!

(N + j)!
− 1

2

νNj!

(N + j)!
+O

(

[

µNj!

(N + j)!

]2
)

= 1−
[

µN + νN

2
− (µν)N/2

]

j!

(N + j)!
+O

(

[

µNj!

(N + j)!

]2
)

(43)

One can show that Eq. (42) is a non-decreasing function with increasingj,

F (
∣

∣λµ
j

〉

,
∣

∣λν
j

〉

) ≥ F (|λµ
0〉, |λν

0〉)

=

∑∞
l=0

(µν)lN/2

(lN)!
√

∑∞
l=0

µlN

(lN)!

∑∞
l=0

νlN

(lN)!

≡ Fµν

(44)

Apply the quantum coin idea from GLLP11,

√

Y µ
j Y

ν
j +

√

(1− Y µ
j )(1− Y ν

j ) ≥ F (
∣

∣λµ
j

〉

,
∣

∣λν
j

〉

)

√

eµj Y
µ
j e

ν
jY

ν
j +

√

(1− eµj Y
µ
j )(1− eνjY

ν
j ) ≥ F (

∣

∣λµ
j

〉

,
∣

∣λν
j

〉

)

(45)

Normally Yj is in the order of channel transmittanceη. One can see that ifF (
∣

∣λµ
j

〉

,
∣

∣λν
j

〉

) ≤
√
1− η, the difference can be from[0, 1], which would result in zero key rate. On the other

hand, ifF = 1, we haveY µ
j = Y ν

j , which is reasonable since the yields of the same states

should be the same.
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With the calculations presented in Section B, we can solve Eq. (46),

|Y µ
j − Y ν

j | ≤
√

1− F 2
µν

|eµj Y µ
j − eνjY

ν
j | ≤

√

1− F 2
µν

(46)

Note that onceN , µ andν are given,Fµν is given by Eq. (44) and hence the yield and error rate

differences are fixed.

Bound the parameter difference between signal and decoy state To make it simpler, we

rewrite Eq. (46) in the following form,

√
ab+

√

(1− a)(1− b) ≥ F (47)

wherea, b ∈ [0, 1]. Let a = sin2 x andb = sin2 y, wherex, y ∈ [0, π/2], then

F ≤ sin x sin y + cos x cos y

= cos(x− y)

(48)

Thus,

|x− y| ≤ arccosF (49)

SinceF is very close 1,|x− y| is very close to 0. That is,a andb are very close to each other,

|a− b| = | sin2 x− sin2 y|

= | sin(x+ y) sin(x− y)|

≤ sin(arccosF )

=
√
1− F 2

(50)
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C Simulation

In this section, we calculate the key rates of both decoy and non-decoy methods derived in the

Main text. We use typical experimental parameters33 which areed = 0.033, η = 10−αL/10ηBob

whereα = 0.2 dB/km, ηBob = 0.045, Y0 = 1.7 × 10−6 and assumed an error-correction

inefficiencyf(e) = 1.16. Hereed is the intrinsic error rate of Bob’s detectors. For each value

of the distance, the signal strengthµ has been chosen to optimize the rate. In the simulation

model,Qµ = Y0 + 1− e−ηµ.

Bound for phase error To make simulation self-contained, we bound the phase errorepj from

bit errorebj of thejth component similar to the work of Lo and Preskill20,

epj ≤ ebj + 4∆j(1−∆j)(1− 2ebj) + 4(1− 2∆j)
√

∆j(1−∆j)e
b
j(1− ebj), (51)

where the basis dependence ratio is defined as

∆j =
1− Fj

2Yj

. (52)

Here, the fidelitiesFj are given in Eq. (28).

Non-decoy 1. First we calculatePj =
∑∞

l=0
µlN+je−µ

(lN+j)!
according to Eq. (10) from Main text.

2. Then we calculateFj(ρx, ρy) ≥
∣

∣

∣

∣

∣

∑∞
l=0

µlN+j

(lN+j)!
2−

lN+j
2 (cos lN+j

4
π+sin lN+j

4
π)

∑∞
l=0

µlN+j

(lN+j)!

∣

∣

∣

∣

∣

according to

Eq. (14) from Main text.
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3. For(e0, e1, Y0, Y1) in the domain defined by

P0Y0 + P1Y1 ≥ Qµ −
N−1
∑

j=2

Pj,

e0P0Y0 + e1P1Y1 ≤ EµQµ

(53)

according to Eq. (20) from Main text where the notations are defined in the Main text, we

calculate∆j andepj according to Eq. (51) and (52) in this Supplementary Material.

4. Substitute the above quantities intomin0≤Yj ,ebj≤1{P0Y0[1−H(ep0)]+P1Y1[1−H(ep1)]}

according to Eq. (19) from Main text and numerically optimize(e0, e1, Y0, Y1) for the minimum.

The signal intensityµ is numerically optimized to maximize the key rate. Typical value

of µ ranges from 0.001 to 0.02. When the number of phasesN is large,µ is approximately the

decay rateη.

Decoy 1. First we calculatePj =
∑∞

l=0
µlN+je−µ

(lN+j)!
according to Eq. (10) from Main text.

2. Then we calculateFj(ρx, ρy) ≥
∣

∣

∣

∣

∣

∑∞
l=0

µlN+j

(lN+j)!
2−

lN+j
2 (cos lN+j

4
π+sin lN+j

4
π)

∑∞
l=0

µlN+j

(lN+j)!

∣

∣

∣

∣

∣

according to

Eq. (14) from Main text.

3. Next we calculateFµν according toFµν = 1 − O
(

µN

N !

)

according to Eq. (24) from

Main text.
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4. For(e0, e1, Y0, Y1) in the domain defined by

|Y µ
j − Y ν

j | ≤
√

1− F 2
µν

|eµj Y µ
j − eνjY

ν
j | ≤

√

1− F 2
µν

Qµ =

N−1
∑

j=0

P µ
j Y

µ
j

EµQµ =
N−1
∑

j=0

eµjP
µ
j Y

µ
j

(54)

according to Eq. (23) and (25) from Main text, we calculate∆j andepj according to Eq. (51)

and (52) in this Supplementary Material.

5. Substitute the above quantities intomin0≤Yj ,ebj≤1{P0Y0[1−H(ep0)]+P1Y1[1−H(ep1)]}

according to Eq. (19) from Main text and numerically optimize(e0, e1, Y0, Y1) for the minimum.

The decoy and signal intensitiesµ andν are numerically optimized to maximize the key

rate. Typical value ofµ is 0.5. One weak decoy state with typical mean photon number of

ν = 0.001 and one vacuum state are used.
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