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Abstract
We consider the problem of utilizing human
power to categorize a large number of objects.
In this problem, we are given an initial catego-
ry hierarchy and a set of objects, and our goal
is to find the most efficient strategy that asks
the crowd questions in order to assign each ob-
ject to its appropriate category in the hierarchy,
such that the long-term expected monetary cost
is minimized. We develop a machine-crowd hy-
brid framework and propose an online algorithm,
in which we can gradually learn the category dis-
tribution and adaptively decide an effective order
of asking questions. We prove that even if the
true category distribution is known in advance,
the problem is computationally intractable. We
develop a natural approximation algorithm, and
prove that it achieves an approximation factor of
2. We also show that there is a fully polynomi-
al time approximation scheme for the problem.
Furthermore, we adopt the Follow the Perturbed
Leader strategy to guarantee that the framework
achieves nearly the same performance as the of-
fline optimal strategy. We evaluate the effective-
ness and efficiency of our algorithms on the real-
world crowdsourcing platform.

1. Introduction
During the past few years, crowdsourcing has emerged as a
major technique for solving large-scale problems that are
considered easy for human beings, but very difficult for
computers to solve completely. In this paper, we focus
on one such problem: object categorization (Parameswaran
et al., 2011). We are given a set of categories and a set of
uncategorized (i.e., unlabeled) objects. We would like to
ask the crowd to find the most suitable category (i.e., la-
bel) for each object. Each question incurs a certain amount
of monetary cost. If the number of categories is large (say
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≥ 10, 000), we usually need to ask many questions to pin
down the final category (we cannot possibly list all 10,000
options in a single multiple-choice question). Hence, our
goal is to find the best question-asking strategy which min-
imizes the overall cost. We assume that the set of categories
forms a hierarchical structure, which is known to us. This
is justified in many real-world applications (for instance,
“fish”, “birds” are subcategories of “animals”). Further-
more, the hierarchy naturally defines a set of very intuitive
(for human beings) questions, each corresponding to a node
in the hierarchy.

For example, Alice is a photographer. She once took a lot
of photos during her visit to several cities in Asia. Now
she wants to classify the photos into the geographical hi-
erarchy, shown in Figure 1. Due to the large number of
photos, she decides to seek help from the crowd. For each
photo, each time she selects a node from the hierarchy, and
asks people a multiple-choice question of the form, depict-
ed in Figure 2. She repeats the procedure until she finally
identifies the most suitable category for that photo.

Motivating Applications: Besides the above toy example,
our problem applies to, but is not limited to, the following
scenarios:

Product Categorization: Categories of products naturally
form a hierarchical structure. Companies seek to optimize
their product taxonomies, which makes their product eas-
ier for consumers to find. To achieve this, we can ask the
crowd to manually categorize products following the hi-
erarchy. More concretely, we can post a picture as well as
descriptions of a product, then select a category as the ques-
tion, and list all of its subcategories as options. Workers on
the crowdsourcing platform should either pick a subcate-
gory for this product, or just click the “None of the above”
option indicating that the product does not belong to this
category or any of its subcategories. It is worth noting that
Amazon has been posting product categorization tasks on
Amazon Mechanical Turk (AMT) 1, which are quite simi-
lar to what we described above.

Hierarchical Entity Resolution: Different entities, such

1http://www.mturk.com/
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Figure 1. An example of a category hierarchy.

The picture may or may not be taken 

in China. Please choose the most 

suitable option:

(a) It is taken in Beijing;

(b) It is taken in Shanghai;

(c) It is taken in other cities of China;

(d) None of the above: it is not taken 

in China.

Figure 2. An example of a multiple-choice question. This ques-
tion corresponds to the “China” node in the hierarchy.

as locations (Vesdapunt et al., 2014) and products (Wang
et al., 2012) typically form hierarchical structures. If we
further assume that the transitive closure property holds in
a cluster (see Vesdapunt et al. (Vesdapunt et al., 2014)),
we could post entity resolution tasks that allow us to iden-
tify duplicates in a parallel manner. Specifically, we can
choose a record from one category, provide the subcate-
gories by listing a record for each subcategory and request
human workers to identify duplicates.

For instance, suppose we have known that “Tsinghua Uni-
versity” and “Peking University” are different universities
and they both serve as subcategories an entity called “U-
niversities in Beijing”. Suppose now we want to identify
“THU” (abbreviation for Tsinghua University). We shal-
l ask the question: “Which of the following best catego-
rizes THU? a) Tsinghua University; b) Peking University;
c) Other Universities in Beijing; d) None of the above”.
The answer should be b) Tsinghua university. In this case,
we bind “THU” into the “Tsinghua University” cluster.

Image Classification: We would like to categorize the im-
ages into the predefined category hierarchy by asking peo-
ple questions depicted in Figure 2. The task is of central
importance in supervised learning as it can provide a large
amount labeled data for training the learning algorithm.

For example, consider the hierarchy in Figure 1 and a set
of uncategorized photos. The simplest strategy is to fol-
low the original hierarchy depicted in Figure 1. Namely,
we always ask the first question corresponding to the root
of the hierarchy (a question at “Asia”). Depending on the

answer, we ask the second question corresponding to a n-
ode in the second level of the hierarchy. Although this s-
trategy is fairly reasonable, there may be better strategies,
depending on the distribution of categories. Consider the
case where most of the photos are taken in South Asia. A
better strategy would be to first ask the question at “South
Asia” (this strategy incurs an average cost per photo close
to 1, while the previous one at least 2).

From the above example, we can see that it is possible to
design a strategy better than the one suggested by the orig-
inal hierarchy, if we know the category distribution before-
hand. However, in many situations, it is impossible to know
the a-priori distribution (for example, Alice cannot remem-
ber even roughly how many pictures she took in each coun-
try). Moreover, we will see that even if we know the distri-
bution, it is still quite challenging to come up with a plan
that minimizes the total cost.

Therefore, based on the observations we made from the
above examples, we propose the following natural but chal-
lenging question: how can we construct a unified plan of
asking questions to minimize the overall cost, even if we
have no knowledge of the category distribution?

Our Contributions: The technical contributions of this
paper are summarized as follows:

• (Section 2) We propose a hybrid machine-crowd
framework for categorizing objects in a crowdsourc-
ing platform.

• (Section 3) We model the plan of asking questions as
a decision tree construction problem. Then, we prove
that the problem is NP-hard. To approximate the op-
timal decision tree, we develop a simple and intuitive
greedy algorithm, and prove that its approximation ra-
tio is 2. Moreover, we develop a non-trivial fully poly-
nomial time approximation scheme (FPTAS) 2.

• (Section 4) We adopt Follow the Perturbed Leader al-
gorithm as the online learning part. The algorithm
gradually learns the true distribution of the object set
and can achieve a nearly optimal performance in the
worst case, comparing with the best offline optimal
decision tree in hindsight.

• (Section 5) Finally, we conduct extensive evaluation-
s on the proposed strategies and compare the perfor-
mance with that of other strategies, on both synthetic

2An algorithm A is an FPTAS for an optimization problem
P , if for any instance I and any constant ε > 0, A computes
solution S in polynomial time w.r.t. problem size n and 1/ε, of
which the value of S satisfies the following:

|OPT− val(A)| ≤ εOPT

where OPT stands for the value of the optimal solution and
val(A) is the solution returned by A.
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Figure 3. A hybrid machine-crowd framework.

and real data. Our results demonstrate that our strate-
gies can lead to more than 30% cost savings on a real
crowdsourcing platform.

2. Framework
2.1. Workflow

LetO = {o1, . . . , o|O|} be the set of objects. Let T denote
the given hierarchy, which can be represented as a tree, in
which each node corresponds to a distinct category. With
slight abuse of notation, for a node u ∈ T , we also use
u to represent the corresponding category. For any object
o ∈ O, we denote tar(o) as its target category. For each
node u ∈ T , we use Tu to denote the subtree rooted at u.
Denote by childT (u) the set of children of u. Denote by
fatherT (u) the father node of u and let root(T ) denote the
root of T .

As shown in Algorithm 1, the hybrid machine-crowd
framework works as follows: Each time the framework
takes in an uncategorized object from O (Line 5). It fol-
lows the strategy constructed by the optimization compo-
nent, proceeds with iteratively generating new tasks and
collecting answers from the workers on the crowdsourc-
ing platform, until the most suitable category for the object
is obtained (Lines 6-9). The learning component then re-
estimates the distribution based on the results of the catego-
rized objects (Line 10). Finally the learning component no-
tifies the optimization component of the possibly changed
distribution so that it can adjust the plan of asking ques-
tions, correspondingly, hoping to minimize the cost (Line
11).

Definition 1. (Multiple-choice Question) Given an object
o ∈ O and an internal node u ∈ T , we request human to
answer a multiple-choice question, which corresponds to
node u, by selecting an option from the following ones:

• For each v ∈ childT (u), we have an option: The ob-
ject belongs to category v (i.e., tar(o) ∈ Tv);

Algorithm 1 Framework(O, T )
1: Input: O, T
2: L ← ∅
3: Set the initial category distribution
4: Generate a plan P of asking questions
5: while there is an uncategorized object o in O do
6: while o is not categorized do
7: Ask a question to the crowd following P
8: Collect answers from the crowd
9: end while

10: L ← L ∪ {(o, tar(o))}
11: Re-estimate the category distribution
12: Reconstruct the plan P
13: end while
14: Output: L

• The object does not belong to any of the children hi-
erarchy of u, but does belong to category u itself (i.e.,
tar(o) = u);

• (“None of the above” option) The object does not be-
long to Tu.

For the second type of options, the object is labeled by u
as the most suitable category. For the first or third type, we
may have to proceed with further questions in order to find
the most suitable category for it.

Remark: Some nodes in the hierarchy may have a large
number of children (for instance, the “Books” category in
Amazon has more than 30 subcategories). Therefore, it is
impossible to list all of its children as options in one human
intelligence task (HIT). However, in practice, options can
often be grouped together into a cluster (for instance, books
about “Military history”, “United States History” and “His-
tory” can be grouped into “History”). In this manner, if we
decide to ask a question at this node, we could first list the
clusters as options, which essentially reduces the number of
options for this node. Based on the answer from the crowd,
we could ask a question at the resulting cluster, and list the
original options that are grouped into the cluster.

Example 1. The question corresponding to node “China”
from Figure 1 is shown in Figure 2. A photo of Tsinghua
University should lead to the answer (a) Beijing, i.e., the
most suitable category is “Beijing” for the photo.

If Alice posts a photo of Terracotta Warriors and Horses,
she would receive the answer (b), which means that the
most suitable category for this photo is “China”. In fact,
the photo was taken in Xi’an, which is a city in China, but
not included in the given hierarchy. Thus “China” should
be the most suitable category for this photo.

Finally, if the photo is about Mount Fuji, the right option
would be (d) “None of the above”. Then a couple more
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questions are needed to finally categorize that picture.

Our framework works in the online setting, in the sense that
the question-asking strategy for the current object should
only depend on the objects we have processed so far, but
not those unprocessed ones. We do not even assume that
all objects are given before we run our crowd categorization
algorithm. They may arrive in an online streaming fashion.

For each object, our question-asking strategy can be adap-
tive. Namely, the next question we choose to ask may de-
pend on the outcomes of the previous questions. In next
section, we show this is in fact equivalent to constructing a
new decision tree based on the original given hierarchy.

Assume that each question costs a fixed price (for instance,
$0.02 per question), the total monetary cost is proportional
to the total number of questions in need for categorizing
all objects in O. Hence, our goal is to minimize the total
number of questions.

Problem 1 (Cost Minimization Problem). Find an online
adaptive question-asking strategy to categorize all objects
in O such that the total number of questions is minimized.

2.2. Adaptive Strategies and Decision Trees

To categorize an object, we first select a node from the giv-
en hierarchy T as the question. Based on different out-
comes, the node partitions T into several subtrees, one of
which includes the most appropriate category for the ob-
ject. Let us examine the effect of one question closely, in
graph theoretic terms. Suppose the question corresponds to
the internal node u ∈ T . Removing all edges incident on u
in T , we obtain several subtrees:

1. One subtree for each child of u, which corresponds to
the first type of options in Definition 1.

2. Node u itsef, which corresponds to the second option.
3. One subtree containing the parent of u, which corre-

sponds to the “None of the above” option.
We use ΦT (u) to denote the set of subtrees obtained above.
Hence, the answer to the question can help us to identify
which subtree in ΦT (u) contains the target category. Any
reasonable adaptive strategy should ask the next question
corresponding to a node from the resulting subtree. 3 Re-
peating the process, we can identify the best category until
only one node is left.

Such adaptive strategy can be modeled as a decision tree,
in which each internal node is a (multiple-choice) question
(say it corresponds to u ∈ T ), whose ancestors are the pre-
vious questions, and each of its children corresponds to a

3 Assuming the crowd users do not make mistakes, it is easy
to see that asking a question in any other subtree does not help,
since we can only obtain the “None of the above” answer from
that question.
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Figure 4. Optimal decision tree to the category tree in Figure 1.
Question nodes are represented by green round rectangles and
leaves (resulting categories) are represented by purple rectan-
gles. Category probabilities are labeled beside the corresponding
leaves.

question in the set ΦT (u) of subtrees. All leaves are target
categories. Given a leaf, the root-to-leaf path in the tree
represents the series of questions we ask if the target cat-
egory corresponds to that leaf, and the cost spent for this
object is the depth of the leaf (i.e., the length of the path
minus 1). Please refer to Figure 4 for an example.

Now, we are ready to formally define the decision trees cor-
responding to adaptive strategies.

Definition 2 ((Decision Tree)). Given the initial hierarchy
T , a decision tree w.r.t. T is a decision tree D, which sat-
isfies the following properties:

• Each leaf of D is a category in T ;
• Each internal node v of D corresponds to an internal

node u ∈ T . v partitions T into ΦT (u), and thus it
has |ΦT (u)| children. Each such child w corresponds
to a subtree in ΦT (u), and Dw (i.e., the subtree of D
rooted at w) represents the decision tree for the corre-
sponding subtree.

For ease of presentation, for each internal node u ∈ D,
we fix its leftmost subtree as the decision tree for the sub-
tree corresponding to the “None of the above” option in
Definition 1. We fix its rightmost child as the category cor-
responding to the question (i.e., the second option). For
instance, in Figure 4, we place questions at “China” as the
leftmost child of the question at “India” and we place the
category “India” as the rightmost child of it.

Let leftpath(D) denote the leftmost path of D. Define
Lvs(D) (Int(D)) as the set of leaves (internal nodes) of D.
With slight abuse of definition, for any u ∈ T , we also use
u to denote the question (internal) node in D asked at u 4.
For any category u, let leafD(u) denote the leaf in D that
corresponds to u. For any v ∈ D, denote by depD(v) the
depth of v in D.

To define the cost of a decision tree, it is convenient to de-
fine the category distribution, as follows: Let Pr be the

4In the paper, for any category u, we use u as its correspond-
ing node in T , and a question node asked at u in D.
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probability distribution over category set V , defined by

Pr(u) , |{tar(o) = u | o ∈ O}|/|O|.

We call Pr the the category distribution. For T ′ ⊆ T , we
define Pr(T ′) ,

∑
u∈T ′ Pr(u). Now, we can define our

cost metric.

Definition 3. (Cost Metric) Given a decision tree D, the
expected cost, denoted by cost(D), is

cost(D) ,
1

|O|
∑
o∈O

depD(tar(o)) =
∑

u∈Lvs(D)

Pr(u) depD(u)

(1)

Problem 2. (Min-cost Decision Tree (MDT) Problem) Giv-
en (T ,Pr), construct a decision tree D∗ w.r.t. T with the
minimum expected cost.

Remark: By the definition of a decision tree, we can treat
the initial category hierarchy T as a slightly “incomplete”
decision tree. The only difference is that any internal node
in a decision tree has a child leaf corresponding to the sec-
ond type of options (in Definition 1). Therefore, we can
easily extend T to a decision tree. In this decision tree,
we always start from the root of the hierarchy. Therefore,
the “None of the Above” answer to any question is unnec-
essary since it would always lead to an empty set. For in-
stance, consider a photo of the Great Wall and the hierarchy
in Figure 1. Alice can consecutively ask questions at “Asi-
a”, “East Asia”, “China” and finally obtain “Beijing” as its
most suitable category.

Example 2. For an object set with the category distribution
shown in Figure 4, the decision tree directly obtained from
Figure 1 incurs an expected cost of 2.9, while the expected
cost of the optimal decision tree D∗ for this hierarchy is
1.85, depicted in Figure 4.

3. Decision Tree Construction
In this section, we focus on the MDT problem. We assume
the category probability Pr is known to us throughout this
section. We first prove that constructing the optimal deci-
sion tree is computationally intractable. Then we propose
a natural greedy approach and analyze the approximation
ratio for the algorithm. Finally, we propose a non-trivial
FPTAS for the problem.

3.1. NP-Hardness

To prove that constructing an optimal decision tree is NP-
complete, we utilize a non-trivial polynomial time reduc-
tion from the Exact Cover by 3-Sets with multiplicity 3
problem (X3C-3), defined as follows:

Definition 4 (X3C-3). An instance of the X3C-3 problem
I = (X,Y) contains the following:

(a) a finite set X with |X| = 3q for q ∈ N+;

(b) a collection Y of 3-element subsets of X , i.e., Y =
{Y1, . . . , Y|Y|}, and for each i = 1, . . . , |Y|, it holds
that Yi ⊆ X and |Yi| = 3.

(c) each element x ∈ X appears in at most 3 sets of Y .

Definition 5 (X3C-3 Problem). Given an instance I =
(X,Y), the X3C-3 problem decides whether Y contains an
exact cover for X , i.e., to find a subcollection Y ′ ⊆ Y such
that members of Y ′ form a disjoint partition of X .

The X3C-3 problem is known to be NP-complete (Cicalese
et al., 2011). We now state the following theorem. Please
refer to Appendix A for the complete proof.
Theorem 1. MDT problem is NP-complete.

3.2. Greedy Strategy

To minimize the expected cost, a “good” strategy should
first ask questions that are capable of partitioning the cat-
egory hierarchy fairly evenly (w.r.t. the distribution Pr).
Intuitively, this could avoid the case where a high probabil-
ity node has a large depth (which would incur a large cost).
For example, if a node u has probability Pr(u) > 0.9, we
probably want to first ask the question that can directly lead
us to u (i.e., the question at node u if u is an internal node
of T , or fatherT (u) if u is a leaf).

A heuristic approach is to choose a question for some cate-
gory which makes the heaviest resulting subtree as light as
possible. Formally, Given an instance (T ,Pr) to the prob-
lem, we choose an internal node u0 such that

u0 = arg min
u∈Int(T )

max{Pr(T ′)|T ′ ∈ ΦT (u)} (2)

For ease of analysis, we assume that distinct subtrees of T
have different probabilities, to guarantee the uniqueness of
each question.

Remarks: (1) This natural greedy algorithm is much simi-
lar to the classic Huffman Algorithm, not only in the prob-
lem formulation, but in the sense that they both try to bal-
ance the decision tree. The main difference is that our ap-
proach is to construct a tree from top to down while the
Huffman tree is constructed in a bottom-up manner.

(2) Prior to our work, Parameswaran et al. (Parameswaran
et al., 2011) proposed a graph-based categorization prob-
lem, in which they asked yes-or-no questions and develope-
d algorithms to rule out as many candidates as possible in
each phase locally in order to save money. However, in this
paper, we focus on minimizing the overall cost, which can
be seen as a global objective. Moreover, they assumed that
the category distribution was uniformly distributed, while
we do not require any knowledge of the category distribu-
tion.
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The approximation ratio of the greedy algorithm is guaran-
teed by the following theorem:

Theorem 2. Given any instance (T ,Pr) to the MDT prob-
lem, let D denote the decision tree constructed by Greedy.
It holds that

cost(D) ≤ 2cost(D∗) (3)

where D∗ is the optimal decision tree to the problem.

3.3. FPTAS

In this section, we present an FPTAS for the problem,
which can achieve (1 + ε) approximation ratio for any
ε > 0. For this purpose, we first develop an exact pseudo-
polynomial time algorithm based on dynamic program-
ming (DP). Then we show that by rounding the probability
of each node in the tree, we can transform the DP into an
FPTAS.

Due to space constraints, we only state the key results in
the section. Please refer to Appendix C for full details.

Theorem 3. Given any instance (T ,Pr), there exists a
pseudo-polynomial time dynamic programming-based al-
gorithm that constructs the optimal decision tree.

Theorem 4. Given any instance (T ,Pr), there exists an
FPTAS for the MDT problem.

4. Learning A-Priori Probabilities
In this section, we show how the learning component in
Figure 3 works. Our goal is to develop an online learning
algorithm which can learn the category distribution along
the way so that the overall long-term cost is close to the of-
fline optimal cost. By combining the learning component
with the decision tree component, each time we obtain new
categorized objects from the decision tree component, we
re-estimate the category distribution in the learning com-
ponent. We can adaptively modify the decision tree, and
possibly propose a new decision tree for further object in-
puts, without knowing their actual distribution in advance.

We adopt Follow the Perturbed Leader(FPL) strategy: we
maintain the fraction of each node in the hierarchy. Each
time we estimate the probability as the fraction plus an
exponentially distributed perturbation (Kalai & Vempala,
2005).

The workflow of the algorithm is depicted in Algorithm 2.
In each loop, we take in an uncategorized object, we mod-
ify the weights of each node by adding a random variable
∼ exp(λ) (Lines 3-5) and normalize the weights as prob-
abilities in Line 6. Then we generate the decision tree us-
ing the greedy algorithm or the FPTAS in Section 3 (Line
7). We iteratively ask a question and collect an answer fol-
lowing the decision tree, until we finally obtain the target

category (Lines 8-9). Finally, we update the corresponding
weight in Line 10.

Algorithm 2 PerturbedLeader(T,O, λ)
1: Input: T,O, ε
2: while there is an uncategorized object in o ∈ O do
3: for u ∈ T do
4: choose q(u) ∼ exp(λ)
5: w′(u)← w(u) + q(u)
6: end for
7: Normalize the probability of each node by w′.
8: Construct the decision tree using Greedy (or the F-

PTAS).
9: Ask questions on the crowdsourcing platform based

on the decision tree
10: Collect the target category tar(o)
11: w(tar(o))← w(tar(o)) + 1
12: end while

In fact, Algorithm 2 realizes the hybrid machine-crowd
framework in Section 2. The time cost for categorizing the
object set consists of two parts: (a) the total latency in-
curred on the crowdsourcing platform; (b) the running time
of the decision tree construction algorithm and FPL,O(n2)
per object for Greedy and poly(n/ε) for the FPTAS given
ε > 0.

Theorem 5. Given any object set O and any constant λ >
0, PerturbedLeader (using FPTAS in step 7) achieves the
following:

E{cost} ≤ (1 + λ)offline∗(O) +O

(
n2 lnn

λ

)
(4)

where E{cost} is defined as the expectation of our online
cost and offline∗(O) is the offline optimal total cost.

5. Experimental Evaluation
In this section, we perform experimental study on our tech-
niques. Due to limited space, the synthetic data evaluation
is deferred to Appendix F.1.

5.1. Real Data Evaluation

The settings of our experiments on AMT are detailed as
follows:

• We pruned the “artifact, artefact” sub-hierarchy of Im-
ageNet 5 (Deng et al., 2009), which is a large-scale
hierarchical image dataset of over 15 million labeled
images.. There are 687 nodes in the resulting hierar-
chy. The height of the hierarchy is 9. The maximum
degree is 21 and the average degree is 2.9.

5http://image-net.org/

http://image-net.org/
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• 200 pictures were generated from ImageNet. 80%
of them belong to the sub-hierarchy of “conveyance,
transport”, and the others (20%) are artifacts belong-
ing to other categories.

• We asked the crowd to categorize 50 photos in parallel
and re-estimated the distribution after all the 50 photos
were categorized.

• Four questions were bathced into one HIT. One HIT
was replicated three times and we paid workers five
cents for completing each replication. We adopted
majority voting to decide the final answers to each
HIT.

• Workers, who had at least 200 HITs approved with
at least 90% accuracy in history, were qualified for
completing our tasks.

• We implemented the following algorithms:
– Breadth-first This algorithm asks questions for

the first k internal nodes encountered in a weight-
ed breadth-first traversal starting from the root.
By “weighted”, we mean that after visiting a n-
ode u, we add all its internal children v into the
queue by the descending order of the total weight
of Tv .

– Greedy: The natural greedy algorithms we pro-
posed in this paper, of which the strategy is to
choose k questions to minimize the heaviest re-
sulting group.

In ImageNet, each image belongs to exactly one catego-
ry. However, we found in many cases that an image may
as well belong to some other categories (in particular, the
parent category, sibling categories or the child categories).
For instance, there are a number of images in ImageNet
under “car, automobile”, which should be best categorized
by “sports car”. Therefore, we define the following quality
measure, based on the similarity among categories: We use
sim(u, v) to denote the similarity score between two nodes
in T . sim(u, v) = 1 for all u ∈ T and its descendant v.
sim(u, v) = 0.8(or 0.4, 0.1) if u is the direct parent (2-hop,
3-hop parent) of v, and sim(u, v) = sim(w, u)× sim(w, v)
where w = LCA(u, v) is the least common ancestor of u
and v. This means that, for example, if an object is asso-
ciated with category u ∈ T and a worker labels it as the
parent of u, we get a score of 0.8. 6

Greedy results significant cost savings while main-
tains the same quality, compared with Breadth-first.

We first constructed Greedy and Breadth-first given the
a-priori probability distribution of the object set. From Ta-

6 There are a few pairs of categories that are quite similar
but far away in the given ImageNet hierarchy. For instance, the
“cap” and “baseball cap” synsets. We plan to address such issues
systematically in the future work.

Algorithm Number of Questions Quality Score
Greedy 728 0.78

Breadth-first 1240 0.79
FPL with Greedy 854 0.82

Table 1. Comparisons of different algorithms
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Figure 5. Average number of questions using FPL (for differ-
ent batches of images) (blue), Breadth-first (red) and Greedy
(green).

ble 1, we can see that the number of questions asked using
Greedy is 728, while Breadth-first asked 1240 question-
s. That amounts to a 41.3% saving, without sacrificing the
quality.

(1) Our framework can quickly learn the category dis-
tribution and construct an efficient strategy; (2) Our
framework can achieve a high categorization quality.

We next examined the effectiveness of the framework. As
depicted in Figure 5, when the framework took in the first
batch of images, for each image, it took 5.18 questions
for the crowd to find the most suitable category. After the
first batch of images were categorized, FPL tried to learn
the a-priori distribution and the framework adaptively con-
structed an efficient strategy by Greedy for the subsequent
batches of images. The average number of questions for
each image remains around 4. The overall questions asked
by the framework is comparable to that of Greedy with
the exact knowledge of the a-priori distribution, and out-
performs Breadth-first.

Somewhat surprisingly, from Table 1, we see that by us-
ing the framework, the quality of the categorization is pret-
ty high (0.85), beating the quality of Greedy (0.78) and
Breadth-first (0.79).

6. Related Work
For crowdsourcing applications, there are three main is-
sues: how to guarantee the quality of the answers, how
to reduce the monetary cost and how to reduce the laten-
cy. Gao et al. (Gao & Parameswaran, 2014) developed
pricing algorithms that could dynamically adjust prices for
each task to meet the deadline while minimizing the cost.
Parameswaran et al. (Parameswaran et al., 2012; 2014)
proposed a filtering framework in order to minimize cost,
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while to control the latency as well as the accuracy. Karger
et al. (Karger et al., 2011) proposed iterative algorithms for
efficiently allocating resources on noisy data gathered from
the crowd. Tran-Thanh et al. (Tran-Thanh et al., 2013) later
derived an algorithm that significantly improved their the-
oretical guarantee.

Researchers have proposed several methods for improving
the efficiency of the crowdsourcing systems, by assigning
only “necessary” questions to human, and leaving the me-
chanical jobs to computers (Das Sarma et al., 2014; Boim
et al., 2012; Parameswaran et al., 2011; Wang et al., 2013;
Zhang et al., 2014b). In real world crowdsourced applica-
tions where multiple rounds/batches of questions are asked,
there exist two approaches. One is to maximize the in-
formation gain in each round (Parameswaran et al., 2011;
Whang et al., 2013; Zhang et al., 2014b;a). The approach
works in Bayesian settings and greedily selects the most
“desirable” questions. For instance, Zhang et al. (Zhang
et al., 2014a) models the question selection problem as
maximizing information gain using entropy. They (Zhang
et al., 2014b) later explored the submodularity of the en-
tropy functions when generating multiple questions for one
batch. The other approach tries to directly minimize the
overall cost (Kaplan et al., 2013; Vesdapunt et al., 2014;
Wang et al., 2013). The resulting combinatorial optimiza-
tion problems are often computationally intractable. In
addition to the two approaches, some machine-crowd hy-
brid approaches have been proposed to further reduce the
amount of tasks assigned to human (Whang et al., 2013;
Zhang et al., 2014a).

Comprehending images and natural languages are fairly
easy for human beings, but in contrast hard for comput-
ers. Recently Parameswaran et al. (Parameswaran et al.,
2011) proposed a model of utilizing human power to cate-
gorize object in a graph. Their methods could be used for
collecting large-scaled data, which is of crucial importance
for machine learning algorithms. Singla et al. (Singla et al.,
2014) tried to teach the crowdsourcing workers to catego-
rize objects in order to improve the effectiveness and accu-
racy. Sun et al. (Sun et al., 2015) utilized human power to
build the hierarchy of concepts which used to be expensive
and time-consuming even for experts to construct.

Decision Trees: Decision trees have been used to model
adaptive question-asking strategies (Kaplan et al., 2013).
There are also several work on constructing decision trees
with various objectives (Cicalese et al., 2010; 2011; cic,
2014; Gupta et al., 2010). In particular, the algorithm in
(cic, 2014) could be used directly for approximating the op-
timal plan for yes-or-no questions in (Parameswaran et al.,
2011), in which the categories form a hierarchy and the
problem is to construct a cost-saving decision tree by ask-
ing yes-or-no questions. Cicalese et al. (Cicalese et al.,

2011) first proved that it is NP-hard to construct an opti-
mal decision strategy. Later, they (cic, 2014) developed an
FPTAS for trees with bounded degree, based on dynamic
programming. They also analyzed a natural greedy algo-
rithm, and proved the approximation ratio is 1+

√
5

2 . Our
MDT problem is different from theirs, and their results can-
not be used directly. Nevertheless, our NP-hardness reduc-
tion and approximation algorithms are heavily inspired by
the above line of work and we adopt several proof ideas
there.

Learning and Prediction: For the learning component of
our framework, we directly adopt the results of Kalai et
al. (Kalai & Vempala, 2005), in which they analyzed the
performance of FPL in problems with linear generaliza-
tion. Herbster et al. (Herbster & Warmuth, 1998) devel-
oped strategies for tracking the best linear predictor.

7. Future Work
There are several interesting future directions we would
like to pursue. One important direction is to incorporate
various machine learning techniques into our framework.
Machine learning algorithms can be used to classify certain
instances that are amenable to algorithms, or to make pre-
liminary classification to reduce the search space for human
workers, which could potentially bring further savings. On
the theoretical side, the approximability for constructing
the optimal decision tree in the multiple-question setting re-
mains an open problem . We suspect that the natural greedy
algorithms can still achieve a constant approximation ratio.



A Unified Framework for Human-Powered Categorization

References
Improved approximation algorithms for the average-case

tree searching problem. Algorithmica, 2014.

Boim, Rubi, Greenshpan, Ohad, Milo, Tova, Novgorodov,
Slava, Polyzotis, Neoklis, and Tan, Wang Chiew. Asking
the right questions in crowd data sourcing. In ICDE,
2012.

Cicalese, Ferdinando, Jacobs, Tobias, Laber, Eduar-
do Sany, and Molinaro, Marco. On greedy algorithms
for decision trees. In ISAAC, 2010.

Cicalese, Ferdinando, Jacobs, Tobias, Laber, Eduardo, and
Molinaro, Marco. On the complexity of searching in
trees and partially ordered structures. Theor. Comput.
Sci., 2011.

Das Sarma, A., Parameswaran, A., Garcia-Molina, H., and
Halevy, A. Crowd-powered find algorithms. In ICDE,
2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR, 2009.

Gao, Yihan and Parameswaran, Aditya. Finish them!: Pric-
ing algorithms for human computation. PVLDB, 2014.

Gupta, Anupam, Nagarajan, Viswanath, and Ravi, R. Ap-
proximation algorithms for optimal decision trees and
adaptive tsp problems. In Automata, Languages and Pro-
gramming, pp. 690–701. 2010.

Herbster, Mark and Warmuth, Manfred K. Tracking the
best expert. Machine Learning, 32(2):151–178, 1998.

Kalai, Adam and Vempala, Santosh. Efficient algorithms
for online decision problems. J. Comput. System Sci.,
2005.

Kaplan, Haim, Lotosh, Ilia, Milo, Tova, and Novgorodov,
Slava. Answering planning queries with the crowd.
PVLDB, 2013.

Karger, David R, Oh, Sewoong, and Shah, Devavrat. It-
erative learning for reliable crowdsourcing systems. In
NIPS, 2011.

Kundu, Sukhamay and Misra, Jayadev. A linear tree parti-
tioning algorithm. SIAM J. Comput., 1977.

Parameswaran, Aditya, Sarma, Anish Das, Garcia-Molina,
Hector, Polyzotis, Neoklis, and Widom, Jennifer.
Human-assisted graph search: It’s okay to ask questions.
PVLDB, 2011.

Parameswaran, Aditya, Boyd, Stephen, Garcia-Molina,
Hector, Gupta, Ashish, Polyzotis, Neoklis, and Widom,
Jennifer. Optimal crowd-powered rating and filtering al-
gorithms. PVLDB, 2014.

Parameswaran, Aditya G., Garcia-Molina, Hector, Park,
Hyunjung, Polyzotis, Neoklis, Ramesh, Aditya, and
Widom, Jennifer. Crowdscreen: Algorithms for filtering
data with humans. In SIGMOD, 2012.

Simpson, Edwin, Venanzi, Matteo, Reece, Steven, Kohli,
Pushmeet, Guiver, John, Roberts, Stephen, and Jennings,
Nick. Language understanding in the wild: Combining
crowdsourcing and machine learning. In WWW, 2015.

Singla, Adish, Bogunovic, Ilija, Bartók, Gábor, Karbasi,
Amin, and Krause, Andreas. Near-optimally teaching
the crowd to classify. In ICML, 2014.

Sun, Yuyin, Singla, Adish, Fox, Dieter, and Krause, An-
dreas. Building hierarchies of concepts via crowdsourc-
ing. In IJCAI, 2015.

Tran-Thanh, Long, Venanzi, Matteo, Rogers, Alex, and
Jennings, Nicholas R. Efficient budget allocation with
accuracy guarantees for crowdsourcing classification
tasks. In AAMAS, pp. 901–908, 2013.

Vesdapunt, Norases, Bellare, Kedar, and Dalvi, Nilesh.
Crowdsourcing algorithms for entity resolution. PVLD-
B, 2014.

Wang, Jiannan, Kraska, Tim, Franklin, Michael J, and
Feng, Jianhua. Crowder: Crowdsourcing entity resolu-
tion. PVLDB, 2012.

Wang, Jiannan, Li, Guoliang, Kraska, Tim, Franklin,
Michael J., and Feng, Jianhua. Leveraging transitive re-
lations for crowdsourced joins. In SIGMOD, 2013.

Whang, Steven Euijong, Lofgren, Peter, and Garcia-
Molina, Hector. Question selection for crowd entity res-
olution. PVLDB, 2013.

Zhang, Chen Jason, Chen, Lei, and Tong, Yongxin. Mac:
A probabilistic framework for query answering with
machine-crowd collaboration. In CIKM, 2014a.

Zhang, Chen Jason, Tong, Yongxin, and Chen, Lei. Where
to: Crowd-aided path selection. PVLDB, 2014b.



A Unified Framework for Human-Powered Categorization

vYj

rj

fj

ej

sj3

sj2

sj1

yj1

yj2

yj3

(a) Component for Ỹj (TvYj
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Figure 6. Input tree components.

A. Hardness
A.1. Preliminaries

Recall that in the X3C-3 problem (X,Y), we would like
to investigate whether Y includes a partition of X , i.e.,
whether there exists a sub-collection C ⊆ Y , such that
3|C| = |X | and ∪Y ∈CY = X .

Order of X3C-3 Instance: To begin, we first define an
order < among the elements of X: x1 < x2 < . . . <
x|X|. We then extend this and define an order ≺ on X ∪
Y (Cicalese et al., 2011) as follows:

• for any two sets A = {a1, a2, a3} ∈ Y (a1 < a2 <
a3), B = {b1, b2, b3} ∈ Y (b1 < b2 < b3), it holds
that A ≺ B iff. a3a2a1 < b3b2b1 in the lexicographi-
cal order;

• for any x ∈ X , x ≺ A iff. xx1x1 is lexicographically
smaller than a3a2a1.

Given (X,Y), we order Y = {Y1, . . . , Y|Y|} such that
Y1 ≺ . . . ≺ Y|Y|. Denote by Π = (π1, π2, . . . , π|X|+|Y|)
the ascending order of elements of X ∪ Y . For any j ∈
[|Y|], define Yj , {yj1, yj2, yj3} such that yj1 < yj2 <
yj3.

Remark: Given any instance (X,Y) to the X3C-3 prob-
lem, each x ∈ X appears in at most 3 set of Y . It must be
true that in Π, there are at most 3 sets of Y between any
adjacent elements x, x′ ∈ X .

Example 3. Let X = {a, b, c, d, e, f}(a < b < c < d <
e < f) and Y = {{a, b, c}, {b, d, e}, {c, e, f}, {d, e, f}}.
The order of Y is Y1 = {a, b, c}, Y2 = {b, d, e}, Y3 =
{c, e, f}, Y4 = {d, e, f}. The order of X ∪Y is as follows:

Π = {a, b, c, Y1, d, e, Y2, f, Y3, Y4}

The solution to the X3C-3 problem (X,Y) is {Y1, Y4}.

A.2. Input Tree Construction

Given (X,Y), for any j = 1, . . . , |Y|, based on Yj =

{yj1, yj2, yj3}, we define Ỹj , {ej , yj1, yj2, yj3}. For any
xk ∈ X (k = 1, . . . , |X|), we define a related variable ak
for future use.

Structure: The input category tree is constructed for
(X,Y). For any j = 1, . . . , |Y|, the component for Ỹj is
depicted by TvYj in Figure 6a. Please refer to Figure 6b for
the component for Xk (i.e., TvXk ), for any k = 1, . . . , |X|.

Given (X,Y), we now recursively define the structure of
the hierarchy T based on the ascending order Π. We start
from i = 1, and each time we consider the following two
cases:

• If πi = xk, for some k ∈ [|X|], we create a node
ui = uXk , which takes ui−1 (u0 , ∅) as its left child
and TvXk (Figure 6b) as its right subtree;

• If πi = Yj , for some j ∈ [|Y|], we create a node
ui = uYj , which takes ui−1 as its left child and TvYj
(Figure 6a) as its right subtree.

Please refer to Figure 7 for the input tree corresponding to
the instance in Example 3.

Weight: Define the weight assignment w : T → R+ ∪
{0} 7. All internal nodes of the tree weigh 0, i.e., w(u) =
0,∀u ∈ Int(T ). For any x ∈ X , w(x) > 0. Moreover, for
any category u that corresponds to x, it holds that w(u) =
w(x). For instance, in Example 3, if we set w(a) = 1, then
w(y11) = 1 since y11 refers to category a.

For any k = 1, . . . , |X|, define Wxk
as follows:

Wxk
,
∑
Yj≺xk

w(Ỹj) +

k−1∑
k′=1

w(xk′)

We now assign weights to the leaves based on the order Π:

To begin, w(x1) = 1. Starting from i = 2, we iteratively
assign weights to leaves that are associated with πi.

• If πi = xk, for some k = 1, . . . , |X| we set w(ak)
and w(xk) as the following:

w(xk) = 1 + 8 max{|n|3w(xk−1),Wxk−1
}

w(ak) = 1 + max
xk<Yj<xk+1

{Yj}

where n , |T |.
7Here we only assign non-negative weights to the nodes,

which could be normalized to obtain the probabilities.
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Figure 7. Tree structure for the instance in Example 3.

• If πi = Yj , for some j = 1, . . . , |Y|,

w(ej) = Wyj3 + α(Yj)w(Yj) + w(Yj)/2

where α(Yj) , |{Yj′ |yj3 ≺ Yj′ � Yj}|.

It can be calculated by induction that w(Ỹj) = O(n3j) and
the total weight of the tree is w(T ) = O(n3(|X|+|Y|)).
Thus the encoding of the weights needs O((|X| +
|Y|)n log n) bits. Therefore, the size of the instance
(T ,Pr) of the MDT problem is polynomial in the size of
the instance (X,Y) of the X3C-3 problem.

It is worth noting that the weight assignment is quite similar
to the assignment in (Cicalese et al., 2011). In addition, we
are highly inspired by the construction of input trees and
decision trees, as well as the proofs ideas in (Cicalese et al.,
2011).

A.3. Potential Optimal Decision Trees

Given (X,Y) and the corresponding (T , w), we first define
two potential structures for Y ∈ Y in the optimal decision
tree.

For any j = 1, . . . , |Y|, Let DAj be the decision tree with
root rj , with one subtree a question at fi, another subtree
sequentially asking questions at sj3, sj2, sj1. Please refer
to Figure 8a 8 for this.

Let DBj be the decision tree with root fj . The decision
tree for Tsj3 , denoted by Daux

j , would be sequentially ask-
ing questions at sj3, sj2, sj1. Daux

j is placed down on the
leftmost path of DBj . Figure 8b illustrates this.

8In the decision trees, we omit the leaves with zero weight,
since they do not contribute to the costs.

rj

.. fj

ej

sj3

sj2

sj1

yj1

yj2

yj3

(a)DAj

fj

..

sj3

.. sj2

sj1

yj1

yj2

yj3

ej

(b)DBj
Figure 8. Two possible decision tree structures for Ỹj .

Definition 6 (Extension). Given decision treeD1, in which
the answer to the “None of the above” option of root(D1)
is ∅, the emphextension ofD1 with another decision treeD2

is constructed by assigning root(D2) as the leftmost child
of root(D1).

By appending D2 to D1, D2 simply corresponds to the de-
cision tree for the “None of the above” answer of root(D1).

Definition 7 (Realization (Cicalese et al., 2011)). Giv-
en S ⊆ Y, for any i ∈ [|X| + |Y|], a realization of
πi, . . . , π|X|+|Y| w.r.t. S, denoted by DSi , is defined re-
cursively as an extension of DSi+1,

• If πi = Yj , for some j = 1, . . . , |Y|, then we simply
append DAj to DSi+1;

• If πi = xk for some k = 1, . . . , |X|, we first extend
DSi+1 with a subtree with root fj . We traverse {k′ :
xk ≺ Yk′ ≺ xk+1, } (may be empty) in the descending
order and iteratively append Daux

k′ iff Daux
k′ does not

appear in DSi+1.

Please refer to Figure 9a and b for the realization of Π w.r.t.
∅ and {Y1, Y4}, respectively, for the instance in Example 3.

The above definition introduces a specific type of decision
trees, which is crucial to the optimal decision tree. Given
(X,Y) and (T , w), correspondingly, we will prove that the
optimal decision tree for (T , w) is a realization of Π w.r.t.
the exact cover for (X,Y).

Notation: Given S ⊆ Y , denote byDS the realization of Π
w.r.t. S. For any Yj ∈ S, denote by ∆(Yj ,S) the difference
between the depth of sj3 inDS and that of sj3 inDS−{Yj},
i.e.,

∆(Yj ,S) , depDS (sj3)− depDS−{Yj}(sj3)
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In the remainder of the section, we propose several proper-
ties of the realization of Π.

Proposition 1. Given S ⊆ Y , for any j ∈ [|Y|] such that
Yj ∈ S,

∆(Yj ,S) = α(Yj) + β(Yj ,S) (5)

where α(Yj) , |{Yj′ |yj3 ≺ Yj′ � Yj}| and β(Yj ,S) ,
|{Yj′ ∈ S|Yj ≺ Yj′ , yj′3 = yj3}|.

Proof. By definition of DS , for some k ∈ [|X|] such that
yj3 = xk, it holds that the depth of fj in DS remains
unchanged w.r.t. that of DS−{Yj}, since the change from
DAj to DBj only affects nodes that place below it (see Fig-
ure 8 and 9). Moreover, for any j′ = 1, . . . , |Y| such that
yj′3 ≥ xk, the depths of rj′(fj′) in DS and DS−{Yj} are
the same.

Therefore, to convert DS−{Yj} into DS , it takes α(Yj)
steps to place root(Daux

j ) one stair below vXk (see Figure 9).
We need |{Yj |Yj ≺ Yj′ , yj′3 = yj3}| more steps to finally
place root(Daux

j ) in the appropriate position.

Proposition 2. Given S ⊆ Y , it holds that

cost(D∅)− cost(DS)

=
∑

j:Yj∈S

(
w(ej)−Wyj3 −∆(Yj ,S)w(Yj)

)
(6)

Proof. W.l.o.g., we assume that S = {Yj1 , Yj2 , . . . , Yj|S|}
(Yj1 ≺ Yj2 ≺ . . . ≺ Yj|S|). We fix a sequence S|S| =
∅,S|S|−1 = {Yj|S|}, . . . ,S0 = S. It suffices to show that
for any p = 1, . . . , |S|, we have

cost(DSp−1)−cost(DSp) = w(ejp)−Wyjp3
−∆(Yjp ,S)w(Yjp)

Observe that in DSp , the decision tree part for Ỹjp is DAjp
while that in DSp−1 is DBjp . To turn DSp into DSp−1 , we
first need to move fjp and ejp one level up, which consti-
tutes the positive term in the above equation.

For the negative terms, Daux
jp

is moved down by ∆(Yjp ,S)
steps. Moreover, all the decision subtrees that correspond
to πq(1 ≤ q < p) have to be moved down one level, which
constitutes the Wyjp3

part.

In the remainder of the section, to prove Theorem 1, we
propose and prove two key lemmas that could bind the
MDT problem and X3C-3 problem together.

A.4. Key Lemma 1

Lemma 1. Given any instance (T , w), the optimal deci-
sion tree is a realization of Π w.r.t. some S ⊆ Y .

To prove the lemma, we first state the following proposi-
tions:

Proposition 3. for any 1 ≤ j′ < j ≤ |Y|, it holds that

w(ej) > w(ej′) + w(yj′1) + w(yj′2) + w(yj′3) (7)

Proof. We prove this by breaking j′ into two cases:

(a) yj3 = yj′3. By definition of α(Yj), it holds that
α(Yj) ≥ α(Yj′) + 1. Thus we have the following:

w(ej)− (w(ej′) + w(yj′1) + w(yj′2) + w(yj′3))

=

(
α(Yj) +

1

2

)
w(Yj)−

(
α(Yj′) +

3

2

)
w(Yj′)

≥ 3

2
w(Yj)−

3

2
w(Yj′)

> 0

where the inequality holds since α(Yj) ≥ α(Yj′) + 1
and w(Yj) > w(Yj′).

(b) yj3 > yj′3. (7) holds since

w(ej) > Wyj3 > w(ej′)+w(yj′1)+w(yj′2)+w(yj′3)

Proposition 4. For any j ∈ |Y| and k = 1, . . . , |X| such
that yj3 = xk, it holds that

w(Yj) < w(ak) < w(ej) (8)

Proof. The left part of the inequality holds by definition of
w(ak). For the right part, it holds that

w(ej) > Wxk
+

3

2
w(xk) > w(ak)

Now we prove Lemma 1 as follows:

Proof of Lemma 1. Let D∗ be the optimal decision tree for
the instance (T ,Pr). Denote by p the node with the lowest
level on the left most path such thatD∗−D∗p is a realization
of πi+1, . . . , π|X|+|Y| for some i ≥ 0. If i = 0, the lemma
directly follows.

Assume by contradiction that i > 0. We construct D′
from D∗ by modifying D∗p such that D′ is a realization
of πi, . . . , π|X|+|Y|, and we will prove that cost(D′) <
cost(D∗), which leads to a contradiction.

After this, we proceed by induction in the decreasing order
i, until finally we end up with a decision tree which realizes
Π, and thus conclude its optimality.

We consider the following two cases:

Case 1: πi = Yj , for some j = 1, . . . , |Y|.
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Figure 9. Realizations of Π for the instances in Example 3.

First we argue that p /∈ {uYj , v
Y
j } in D∗p: Assume by con-

tradiction that p = uYj . In this case, we construct D′p as
follows: we replace uYj with rj ; we assign fj as its sec-
ond child; and for the third subtree, we remain the order
of asking questions at Yj in D∗p . It can be easily verified
that D′p (and the corresponding D′) is a valid decision tree.
Moreover, it holds that

cost(D′) ≤ cost(D∗)
−min{w(Yj), w(yj1), w(yj2), w(yj3)}

< cost(D∗)

which contradicts the optimality of D∗.

By similar analysis, we could constructD′ by replacing vYj
with σrj and show that cost(D′) < cost(D∗), which means
that p 6= vYj .

Next we prove that p ∈ {rj , fj}. Based on the positions of
rj and fj , we could consider the following two cases:

Subcase 1.1: fj is an ancestor of rj in D∗p . Define q to be
the father of fj . In this case, fj must be the leftmost child
of q. We swap fj with q. By swapping, we mean that the
two nodes exchange positions and their subtrees except the
leftmost ones are carried along with them.

If q ∈ {uXk , vXk } for some k ≥ 1, it holds that xk ≥ yj3 by
definition of p. Therefore, we have that

cost(D′) ≤ cost(D∗)− w(ej) + w(ak) < cost(D∗)

where the second inequality is guaranteed by Proposition
4.

If q corresponds to some node in Yj′ , for some j′ =

1, . . . , j − 1, then we have

cost(D′)
≤ cost(D∗)− w(ej) + w(ej′) + w(yj′1) + w(yj′2) + w(yj′3)

< cost(D∗)

where the second inequality is stated by Proposition 3.

Subcase 1.2: rj is an ancestor of fj . In this case fj must
be a child of rj . Now denote by q the father of rj .

If q ∈ {sj1, sj2, sj3}, we first replace q with fj ; then we
assign q as a child of rj (all subtrees of q or fj except the
leftmost one are carried along with it), and append the o-
riginal sub-decision trees of rj corresponding to Yj to q. In
this case, we have

cost(D′)
≤ cost(D∗)− w(ej) + w(yj1) + w(yj2) + w(yj3)

< cost(D∗)

If q ∈ {uXk , vXk } for some k ≥ 1, or q corresponds to nodes
in Yj′ , for some j′ = 1, . . . , j − 1, we can swap rj and q.
By similar analysis, we show that cost(D′) < cost(D∗),
which leads to a contradiction.

Therefore, p ∈ {rj , fj}.

If p = fj , D∗ would be a decision tree which realizes
πi, . . . , π|X|+|Y|, leading to a contradiction.

If p = rj , we must have fj as one of its children. In ad-
dition, the decision tree for Yj serves as the other subtree
(than the leftmost one) of p. Since w(yj3) � w(yj2) �
w(yj1), it is not hard to verify that the optimal decision tree
for Yj is to ask questions for sj3, sj2, sj1 in order. This
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makes Dp a realization of πi and thus contradicts the prop-
erty of i.

Case 2: πi = xk for some j = 1, . . . , |X|.

By similar analysis in case 1, we can argue that p 6= uXk .

Let U denote the set that includes nodes of T , which are
associated with xk but not queried inD∗−D∗p . We also add
ak into U . Let W denote the set of all nodes that queried
in D∗p . W − U contains nodes that are in ∪Y≺xk

Y and
nodes that are associated with xj′(j′ < j) but not queried
in D∗−D∗p . Therefore, w(W −U) can be upper bound by
the following:

w(W − U) < Wxk
+ |T |w(xj−1) <

w(xk)

4
(9)

We first argue that all nodes in U are placed on the top |U |
nodes of leftpath(D∗p) (recall that leftpath(D∗p) is denoted
by the leftmost path of D∗p). Assume by contradiction that
the top |U | levels include at least one node that is not as-
sociated with xk or ak. In this case, we construct D′p from
Dp as follows: we place questions at nodes in U (along
with their subtrees other than the leftmost one) on the top
|U | levels of leftpath(D∗p). On leftpath(D∗p), we append all
the other nodes to the first |U | nodes in the original order.
We have the following:

cost(D′) ≤ cost(D∗)− w(xk) + |U |w(W − U)

≤ cost(D∗)− w(xk) + 4w(W − U)

< cost(D∗)

where first inequality holds since w(ak) > w(xk) and all
nodes in W − U are moved down at most |U | steps, the
second one holds since |U | ≤ 4 by Definition 4 and the
last inequality holds because of (9). Therefore, it leads to a
contradiction.

Define U , {ak, yj13, . . . , yj|U|−13}, where yjm3 is asso-
ciated with xk for any m = 1, . . . , |U | − 1 and j1 > . . . >
j|U |−1. It follows that

w(ak) > w(Yj1) > . . . > w(Yj|U|−1
)

Therefore, the top |U | nodes of leftpath(D∗p) should be
vXk , sj13, . . . , sj|U|−13 from top down, since otherwise we
could just swap two nodes that violate the order and achieve
a decision tree with less cost.

Finally, for any m = 1, . . . , |U | − 1, since w(Yjm2) �
w(Y yjm1), we would first ask the question for sjm2 before
one for sjm1. Therefore, D∗p should be a realization of πi
which contradicts the fact that p is the deepest node such
that D∗ −D∗p is a realization of πi+1, . . . , π|X|+|Y|.

A.5. Key Lemma 2

For any S ⊆ Y , by plugging (5) and w(ei) into (6), we
have

cost(D∅)− cost(DS)

=
∑

j:Yj∈S

(
w(ej)−Wyj3 −∆(Yj ,S)w(Yj)

)
=

|X|∑
k=1

∑
Yj∈S,xk∈Yj

(
w(xk)

2
− β(Yj ,S)w(xk)

)
(10)

where the last equality holds by changing the order of sum-
mation.
Lemma 2. Let D∗ be an optimal decision tree for (T , w)
and let S ⊆ Y be the set such that D∗ is a realization
of Π w.r.t. S∗. It holds that cost(D∗) ≤ cost(D∅) −
1
2

∑|X|
i=1 w(xk) iff. S∗ is a solution for the corresponding

X3C-3 instance (X,Y).

Proof. ⇐= If S∗ is a solution for the X3C-3 instance
(X,Y), for any Y ∈ S∗, it holds that β(Y,S∗) = 0.

=⇒ We prove the sufficient part by induction on k′ =
|X|, . . . , 1.

We assume that given k′ ∈ [|X|], for any k > k′, there
exists exactly one Y ∈ S∗ such that xk ∈ Y . But for k′,
there exists either no Y or multiple sets that include xk′ .

From (10), it holds that

cost(D∅)− cost(D∗)

=

|X|∑
k=1

∑
Yj∈S∗,xk∈Yj

(
w(xk)

2
− β(Yj ,S∗)w(xk)

)

≤
∑
k>k′

w(xk)

2
+ (

1

2
− β(Yj ,S∗))w(xk′)

+3(k′ − 1)(n+
1

2
)
w(x′k)

8n3

<
∑
k>k′

w(xk)

2
+ (

1

2
− β(Yj ,S∗))w(xk′) +

w(xk′)

2

where the first inequality holds since (a) there are at most
3 sets in S∗ that include xk; (b) β(Yj ,S∗) can be lower
bounded by −n; (c) for any k < k′, w(xk) <

w(x′k)
8n3 .

By the assumption that either no set in S∗ includes xk′ or
there are multiple sets in S∗ including xk′ . In both cases,
we have β(Yj ,S∗) >= 1

2 . From the above inequality, we
have

cost(D∅)−cost(D∗) <
∑
k>k′

w(xk)

2
+
w(xk′)

2
<
∑
x∈X

w(x)

2

which contradicts that cost(D∗) ≤ cost(D∅) −
1
2

∑|X|
k=1 w(xk).
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Finally, Theorem 1 directly follows from Lemma 1 and 2.

B. Greedy
B.1. Proof of Theorem 2

Given any instance (T ,Pr), denote byD andD∗ the greedy
decision tree and the optimal decision tree, respectively.
Define D′ as the decision tree whose root is root(D), and
all the resulting groups are constructed by the optimal strat-
egy.

We first prove the following lemma, the proof of which is
similar to the ideas in (Cicalese et al., 2010):

Lemma 3. cost(D′) ≤ cost(D∗) + 1
2 .

Proof. If root(D′) = root(D∗), the lemma directly fol-
lows.

Recall that for any u ∈ T , ΦT (u) is denoted by the result-
ing subtrees partitioned by u. We assume that root(D∗) ∈
T0 ∈ ΦT (root(D′)).

Let u1, u2, . . . be the path inD∗ from root(D∗) to the cate-
gory that corresponds to root(D). Let um (m > 1) denote
the first node on the path such that um ∈ T − T0. Re-
call that for any decision tree D0 and u ∈ T , denote by
depD0

(leaf(u)) the depth of leaf(u) in D0.

For any T ′ ∈ ΦT (root(D′)), denote by D∗T ′ the optimal
decision tree for T ′. It is trivial to see the followings:

depD∗(u)− depD∗T ′
(u)

≥
{
m− 1 if T ′ 6= T0&u ∈ Lvs(D′) ∩ T ′
1 if u ∈ Lvs(D′) ∩

(
T0 − ∪m−1

j=1 Tuj

)(11)

Therefore, it holds that

cost(D∗)−
∑

T ′∈ΦT (root(D′))

cost(D∗T ′)

=
∑

T ′∈ΦT (root(D′))

∑
v∈T ′∩Lvs(D′)

(depD∗(v)− depD∗(v)) Pr(v)

≥ (m− 1) Pr(T − T0) + Pr(T0 − ∪m−1
j=1 Tuj )

≥ (m− 1) Pr(T − T0) + Pr(T0) +

m−1∑
j=1

Pr(Tuj )

where the first inequality holds because of (11).

Moreover, we have the following proposition:

Proposition 5. Pr(Tuj ) ≤ max{ 1
2 ,Pr(T − T0)}, for any

j = 1, . . . ,m.

Then we obtain the following:

cost(D∗)−
∑

T ′∈ΦT (root(D′))

cost(D∗T ′)

≥ (m− 1) Pr(T − T0) + Pr(T0) +

m−1∑
j=1

Pr(Tuj
)

≥ Pr(T − T0) + Pr(T0)− Pr(Tu1)

≥ 1

2

where the last two inequalities hold due to Proposition 5
and m > 1.

Therefore, it holds that

cost(D′) =
∑

T ′∈ΦT (root(D′))

cost(D∗T ′)+1 ≤ cost(D∗)+
1

2

Proof of Proposition 5. Assume by contradiction that
Pr(Tuj

) > max{ 1
2 ,

Pr(T − T0)}. Since Tuj
⊆ T0, it must hold that

Pr(T0) > 1/2.

However, we can find a node u of T from bottom up, such
that Pr(Tu) > 1

2 and for any internal child v of u, it holds
that Pr(Tv) < 1

2 . If we choose u to partition T , it must
hold that

Pr(T ) ≤ 1

2
T ∈ ΦT (u)

Therefore, by choosing u over root(D) as the root node of
T , the total probability of the heaviest resulting group can
be reduce, which contradicts (2). Therefore, the proposi-
tion follows.

We finally prove Theorem 2:

Proof of Theorem 2. For any T ′ ∈ ΦT (root(D)), denote
by DT ′ the decision tree for T ′ using Greedy. By induc-
tion, assume that cost(D∗T ′) ≤ 2cost(D∗T ′). It follows that:

cost(D) = 1 +
∑

T ′∈ΦT (root(D))

cost(DT ′)

≤ 1 + 2
∑

T ′∈ΦT (root(D))

cost(D∗T ′)

≤ 2cost(D′)− 1

≤ 2cost(D∗)
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(c) Optimal decision tree for “East Asia”.

Figure 10. Subproblems of dynamic programming.

C. FPTAS
In this section, we provide an FPTAS for the problem. We
first define a closely related problem. Then we develop a
non-trivial dynamic programming algorithm taking the re-
vised problem as subproblems. At last, we transform the
dynamic programming into an FPTAS. It is worth noting
that in this section, we are highly inspired by the ideas
in (cic, 2014).

Recall that for each internal node, its leftmost subtree rep-
resents a decision tree to the resulting subtree of the “None
of the Above” option.

Intuitions: A natural idea to tackle the problem is to first
construct the optimal decision tree for the subtrees of T and
then somehow merge them into the optimal tree for the en-
tire problem. For instance, to generate the optimal decision
tree for “Asia” in Figure 1, it would be very tempting to
first construct the optimal decision trees for “South Asia”
and “East Asia”, and then merge them. However, the merg-
ing phase can be quite tricky in the sense that nodes from
two different subtrees may interlace quite arbitrarily (see
Figure 10(a)). Suppose we ask a question at “India” and
receive the “None of the Above” answer, we shall proceed

with asking about “China”. It occupies the second position
of leftpath(D). In other words, any internal node in “South
Asia” subtree other than “India” has to be placed in nodes
of depth at least 2, which essentially destroys the structure
of the “South Asia” decision tree.

From this, we could see that the second and third position-
s of leftpath(D) are reserved for questions in “East Asi-
a” and by no means could we place nodes “South Asia”
in those places. Likewise, we extract a revised decision
tree (with reserved positions in the leaf path) for “East A-
sia” (see Figure 10(c)). The first and fourth positions of
leftpath(D) are reserved for questions in “South Asia”, re-
spectively. Finally, we merge them together, appending the
leaf category “Asia”, and thus obtain the optimal decision
tree for “Asia” (see Figure 10(a)).

By generalizing the above toy example, we define
the subproblems of the dynamic programming to be
(T ,Pr, leftpath), where each leftpath contains two kinds
of nodes: reserved ones and freely used ones. By reserved
nodes on leftpath, we mean that these nodes are reserved
for questions asked in other subtrees, and questions at n-
odes in T can never be placed on reserved positions of
leftpath.

For each subtree of T , we consider all possible leftpaths
and compute the optimal solution for the subproblems. We
merge all decision trees for subtrees and finally output the
decision tree with the lowest cost.

Given leftpath, denote by height the number of nodes on
leftpath. leftpath can be represented by a bit vector, i.e.,
leftpath ∈ {0, 1}height, in which leftpathi = 0 if it is a
reserved nodes or 0 otherwise, for any i = 1, . . . , height.
Below we formally define the problem:

Problem 3. (Restricted Min-cost Decision Tree (RMDT)
Problem.) Given any instance (T ,Pr, leftpath), construc-
t a decision tree D w.r.t. T and leftpath, with height at
most height and incurring the minimum expected cost. the
minimum expected cost.

Given height, the following lemma which states the re-
lationship between the decision tree to RMDT problem
(T ,Pr, leftpath = 1height) and the optimal solution to
MDT problem of height at most height.

Lemma 4. Given the optimal decision tree D∗ to RMDT
problem (T ,Pr,1height), there exists a linear time algo-
rithm that converts D∗ to an optimal decision tree D1 for
MDT problem (T ,Pr) of height at most height. Moreover,
it holds that

cost(D∗) = cost(D1)

Proof. Denote by leftpath the leftmost path ofD∗. We first
argue that for any i = 1, . . . , height such that leftpathi is
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not assigned to any question of T , the total probability of
categories under D∗leftpathi must be 0.

Assume that this is not true, there must be some j > i
such that some leaves of D∗leftpathj are assigned to positive
probabilities. Among these nodes, we select the one with
the minimum index (denoted by j0) and denote by v s leaf
in D∗leftpathj0 such that Pr(v) > 0.

We can construct a tree D′ simply by deleting nodes be-
tween i and j0 − 1 from leftpath. It is trivial to see that
D′ is a decision tree to RMDT problem with height at most
height. It holds that

cost(D′) ≤ cost(D∗)− Pr(v) < cost(D∗)

which leads to a contradiction.

Finally to convert D∗ into D1, we simply delete all nodes
and their subtrees in D∗, which are not assigned to ques-
tions. This makes the resulting D1 a feasible decision tree
to MDT problem (T ,Pr) of height at most height.

Moreover, any decision tree D to MDT problem (T ,Pr) of
height at most height is a already a decision tree to RMDT
problem (T ,Pr,1height). Therefore, it must hold that

cost(D∗) = cost(D1) ≤ cost(D)

C.1. Dynamic Programming

We first introduce one more definition which will be used
in the algorithm:

Definition 8 (Compatibility). Given two positive integers
h, l ≤ h + 1 and a bit vector g ∈ {0, 1}h, a set S =
{s1, s2, . . . , s|S|} is said to be compatible w.r.t. (g, l) iff.
all of the following properties are satisfied:

(a) if l ≤ h, gl = 1;

(b) ∀i = 1, . . . , h, it holds that

s
|S|
i +s

|S|
i + . . .+s

|S|
i =

 gi if i ≤ l − 1
0 if i = l
|S| otherwise

(12)

We next present the dynamic programming algorithm DP.
Denote by OPT(T , leftpath) DP solution to the subprob-
lem (T ,Pr, leftpath).

Base Case: T is a star. In this case, if leftpath in-
cludes at least one node that is not reserved, then we can
place question at root(T ) to the top node leftpathi0 with
leftpathi0 = 1. Otherwise, there is no question to ask. In
this case, there does not exist a feasible solution and its

value is denoted by∞.

OPT(T , leftpath) =

{
∞, if leftpath = 0height
min{i|leftpathi = 1}, otherwise

(13)

General Case: We have the following

OPT(T , leftpath) = min

{ ∑
i:T i∈ΦT (root(T ))

OPT(T i, ti)

∣∣∣∣1 ≤ l ≤ h+ 1, {ti} compatible w.r.t. (leftpath, l)

}
(14)

To put this into words, DP considers all possible positions
for the question asked on root(T ), and for each position,
the algorithm considers all possible leftpaths for the sub-
trees, and finally outputs a decision tree with the minimum
expected cost:

1. If a question at root(T ) is not asked, l = h + 1.
We consider all possible compatible sets of ti w.r.t.
(leftpath, l) and obtain the decision tree with the min-
imum expected cost.

2. If a question at root(T ) is asked, then it must be
assigned to some leftpathl such that l ≤ h and
leftpathl = 1. For any subproblem for T i, its l-th
node on the leftmost path should be a reserved node
(for root(T )). We consider all possible compatible
sets of ti w.r.t. (leftpath, l) and select the minimum
one.

3. We finally compare the two results above and output
the decision tree with the smaller expected cost.

Time Complexity: There are at most n2height subproblem-
s in total. Each subproblem can be solved in O(n2height)
time. So the algorithm takes O(n22height) time.

Space Complexity: The space complexity is determined
by the number of subproblems in total, and is thus
O(n2height).

The correctness of the algorithm is guaranteed by the fol-
lowing theorem:

Theorem 6. DP computes the optimal solution to RMDT
problem (T ,Pr, leftpath).

To prove the theorem, for the base case, the correctness can
be easily verified; for the general case, it suffices to prove
the following two lemmas. The proof of the following lem-
mas can be illustrated by Figure 10.

Lemma 5. Given any instance (T ,Pr, leftpath), for
any l = 1, . . . , height + 1 and any set S with
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|S| = |ΦT (root(T ))| such that S is compatible w.r.t.
(leftpath, l), it holds that

OPT(T , leftpath) ≤
∑

i:T i∈ΦT (root(T ))

OPT(T i, si)

Proof. Denote by Di the optimal decision tree for the sub-
problem (T i,Pr, si). It suffices to show that we can merge
Dis (i = 1, . . . , |ΦT (root(T ))|) into a feasible solution D′
for the subproblem (T ,Pr, leftpath).

During the procedure, we try to merge the decision trees
by merging their leftpaths from top down. Starting from
j = 1, each time we consider one of the following cases:

Case 1: j < l. If
∑|ΦT (root(T ))|
i=1 sij = 0 , then leftpathj =

0, i.e., leftpathj is a reserved node. In this case, we simply
do nothing but increase j.

If
∑|ΦT (root(T ))|
i=1 sij = 1, we select i(j) such that si(j)j = 1,

assignsi(j)j to leftpathj and assign all the subtrees except

the leftmost one of si(j)j as subtrees of leftpathj .

Case 2: j = l and l ≤ height. It must hold that sij =
0,∀i = 1, . . . , |ΦT (root(T ))| but leftpathj = 1. In this
case, we simply ask a question at root(T ) on leftpathj .
Moreover, for any i, we assign Di

sij+1
as a subtree of

leftpathj and we are done.

It can be shown that the constructed D′ is a feasible deci-
sion tree to (T ,Pr, leftpath) of height at most height. In
addition, we have the following:

cost(D′) =
∑

i:T i∈ΦT (root(T ))

OPT(T i, si) (15)

Therefore, the lemma follows from the above relation and
(14).

Lemma 6. Given any subproblem (T ,Pr, leftpath), con-
sider the DP solution OPT(T , leftpath). Denote by l =
1, . . . , height + 1 the index such that in a question at
root(T ) is asked on leftpathl. It follows that there ex-
ists a set {si, 1 ≤ i ≤ |ΦT (root(T ))|} compatible w.r.t.
(leftpath, l), such that

OPT(T , leftpath) ≥
∑

i:T i∈ΦT (root(T ))

OPT(T i, si)

Proof. The proof of this lemma is the reverse of that of
Lemma 5. Denote by D∗ the decision tree returned by DP.

It suffices to show that we can transform D∗ into a set
of decision trees {Di, i = 1, . . . , |ΦT (root(T ))|}, such
that T i is a decision tree for the subproblem (T i,Pr, si)

, where Di ∈ ΦT (root(T )) and {si} is compatible w.r.t.
(leftpath, l).

By constructing a set of decision trees, we mainly build
their leftmost paths from top down and the rest is trivial.
Starting from j = 1, each time we consider one of the
following cases:

Case 1: j < l. If leftpathj = 0, then sij = 0,∀i =

1, . . . , |ΦT (root(T )), i.e., sij is a reserved node for any i
if leftpathj is a reserved node.

If leftpathj = 1, denote by i(j) the index such that
leftpathj is a question asked at some node of T i(j) ∈
ΦT (root(T )). We assign leftpathj along with all its sub-

trees except the leftmost one to si(j)j . For any i 6= i(j), we
set sij = 0.

Case 2: j = l and l ≤ height. leftpathj must be
a question at ΦT (root(T )). We set sij = 0,∀i =
1, . . . , |ΦT (root(T ))|. In addition, for any subtree of D′
of Dleftpathj , we find some T i such that D′ is a decision
tree corresponding to T i, and assign D′ as the only subtree
of sij . The set of decision trees are thus constructed.

It is trivial to verify that {si} is compatible w.r.t.
(leftpath, l), and the constructed Di is a feasible decision
tree to the subproblem (T i,Pr, si) of height at most height.
Therefore, we have

OPT(T , leftpath) ≥
∑

i:T i∈ΦT (root(T ))

OPT(T i, si)

By Lemma 4, to solve the MDT problem, we can solve the
RMDT problem (T ,Pr, leftpath = 1height) for sufficiently
large height, which could be n and thus incur the running
time of O(n22n) in the worst case. However, the theorem
below states that we only need to solve the RMDT problem
in which height is much smaller than n:

Theorem 7. For any MDT problem with instance(T ,Pr),
there exists an optimal decision tree, of which the height
is O(log( 1

pmin
) + log n), where pmin , min{Pr(u)|u ∈

T ,Pr(u) > 0}.

To prove this theorem, we first need the following lemma:

Lemma 7. Given any MDT problem with instance(T ,Pr),
let D∗ denote an optimal decision solution to the problem.
Then ∀v ∈ D∗ such that depthD∗(v) ≤ 4, it holds that
Pr(D∗v) ≤ Pr(D∗)/2.

Proof. The proof of this lemma is similar to (cic, 2014):
Assume by contradiction that there exists u∗ ∈ D∗ such
that depD∗ = 4 but Pr(D∗u∗) > Pr(D∗)/2. Denote T ′ by
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the category tree that corresponds to all the leaves of D∗v∗ ,
i.e., all the leaves of D∗v∗ compose the subtree T ′.

Now consider the path in D∗: u1 =
root(D∗), u2, u3, u4, u5 = u∗. Define X ,
{u1, u2, u3, u4}. Each element of X is a question
asked at some node in (T − T ′).

Recall that for any node u ∈ T , ΦT (u) is denoted by all
the resulting subtrees that is partitioned by u. It is worth
noting that there exists a node v ∈ T such that for all any
subtree T0 ∈ ΦT (v), it holds that |T0 ∩ X| ≤ 2. To see
this, we can traverse T starting at root(T ) and proceed as
follows: suppose currently we visit u, if |Tu ∩X| ≤ 2, we
return u as the target node; otherwise we set u as its child
u′ with largest |Tu′ ∩X|.

For any T0 ∈ ΦT (v), we construct a decision tree DT0
from D∗: For any node u ∈ D such that u is a question
asked at some node in T −T0, if u is a question asked at an
ancestor of root(T0), then there must be a child v of u such
that leaves of D∗v include at least one node of T0. In this
case, we simply replace u with v and delete all the subtrees
of u other than D∗v . Otherwise, we simply delete u and all
its subtrees except the leftmost one. It is obvious that D0 is
a feasible decision tree to T0.

In order to prove this lemma, we construct a decision tree
D′ as follows: D′ takes v as its root. Below v, we useD0 to
be the decision part for T0 ∈ ΦT (v). For any node u ∈ T ,
it holds that,

depD0
(leafD0

(u)) = depD′(leafD′(u))− 1 (16)

In the following we compare D′ and D∗ w.r.t. the depth of
the leaf associated with u. We consider two cases:

• If u ∈ T ′, since leafD∗(u) is a descendant of u∗ inD∗,
it follows that the path from root(D∗) to leafD∗(u)
must contain all 4 nodes of X . On the other hand,
from the construction of D0, we can see that at most
2 questions at elements of X are asked along the path
from root(D0) to leafDi(u). Thus we have

depD0
(leafD0(u)) ≤ depD∗(leafD∗(u))− 2

By combining this and (16), we obtain:

depD′(leafD′(u)) ≤ depD∗(leafD∗(u))− 1

• If u ∈ T − T ′, from the construction of D0, we have
depD0

(leafD0
(u)) ≤ depD∗(leafD∗(u)). Therefore,

we have:

depD′(leafD′(u)) ≤ depD∗(leafD∗(u)) + 1

By combining the above two cases, we have

cost(D′) =
∑
u∈T ′

depD′(leafD′(u)) Pr(u)

+
∑
u/∈T ′

depD′(leafD′(u)) Pr(u)

≤
∑
u∈T ′

(depD′(leafD′(u))− 1) Pr(u)

+
∑
u/∈T ′

(depD′(leafD′(u)) + 1) Pr(u)

= cost(D∗)− Pr(T ′) + Pr(T − T ′)
< cost(D∗)

where the second inequality holds since Pr(T ′) >
Pr(T )/2. This contradicts the optimality of D∗ and thus
the lemma follows.

The lemma essentially states the shrinkage property of the
optimal decision tree D∗. That is, after a constant number
of the questions, the resulting subtree weighs only a frac-
tion of that of the original decision tree. This lemma guar-
antees that the optimal decision tree has the properties that
it can distribute category candidates fairly “even” in terms
of the probability, which is quite intuitive.

Finally, we can utilize Lemma 7 repeatedly and thus bound
the height.

C.2. From DP to FPTAS

After bounding the height of the optimal decision tree, we
employ standard scaling and rounding techniques of the
probabilities in T in order to achieve an FPTAS.

The proof of Theorem 4 is much similar to the proof of
Theorem 2 in (cic, 2014) and thus omitted.

D. Learning Component
D.1. Proof of Theorem 5

Proof. For any t = 1, . . . , |O| (we do not assume that we
know |O| in advance), we define g(t) , blog2 tc. Suppose
that the t-th object arrives in our framework, we run the
FPTAS with the approximation ratio of λ/(6 ∗ 22g(t)).

From Theorem 1.1 in (Kalai & Vempala, 2005), we can
see that in our problem, it holds that |D| = n2 and |A| =
1. Denote by E{cost∗} the expectation of the online cost
by the framework for FPL and the optimal decision tree
strategy. By substituting ε = λ

3 into Theorem 1.1 of (Kalai
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& Vempala, 2005), we obtain the following:

E{cost} ≤
|O|∏
t=1

(
1 +

λ

6 ∗ 22g(t)

)
E{cost}

≤
d| log2O|e+1∏

i=1

(
1 +

λ

6 ∗ 22i

)i
E{cost}

≤
d| log2O|e+1∏

i=1

(
1 +

λ

6 ∗ 22i

)i
∗[(

1 +
λ

3

)
offline∗(O) +

12n2(1 + lnn)

λ

]
≤ (1 + λ)offline∗(O) +O

(
n2 lnn

λ

)

E. Extension to Parallelism
When publishing crowdsourcing tasks online, people of-
ten experience high latency since it takes time for workers
to find the tasks on the crowdsourcing platform, and peo-
ple need to spend time reading the instructions as well as
completing the tasks. To reduce the latency, instead of ask-
ing one question at a time sequentially, one can ask sev-
eral questions in a single Human Intelligence Task (HIT).
In other words, multiple questions can be asked in parallel
at the same time (we call it a phase), and we can proceed
with further questions in next phase based on the answers
we obtain.

E.1. Parallelism Workflow

In this section, we explore two dimensions of parallelism:
One is that we may ask questions about several objects at
the same time (of course, we may have to pay a bit more for
such a HIT). Letm denote the number of objects that arrive
at each time. The other is to ask multiple questions about
the same object in a single HIT. Let k denote the number
of questions asked at one object in each phase.

For example, consider the hierarchy in Figure 1. For the
first dimension, we could ask three questions in one HIT,
one about the Great Wall, one about the Blue House, and
the last about the Taj Mahal. For the second dimension, we
could ask questions at “India”, “China” and “Korea” at the
same time for the same photo.

Please refer to Algorithm 3 for the workflow. Each time
the framework takes in at most m uncategorized objects in
Line 2, it estimates the category distribution using FPL in
Line 3, and adaptively constructs the decision tree using
Greedy or the FPTAS in Line 4. Afterwards, for each ob-
ject, it generates at most k questions in each phase until the
target category is obtained (Lines 5-9). Finally, it updates

Algorithm 3 ParallelFramework(T ,O, λ,m, k)
1: Input: T ,O, λ,m, k
2: while there are uncategorized objects in O do
3: Take in at most m objects from O
4: Estimate the distribution by FPL(λ)
5: Construct the decision tree by Greedy (or the FP-

TAS)
6: while the objects are not categorized do
7: Generate k questions for each object
8: Post the questions on the crowdsourcing platform

9: Collect answers.
10: end while
11: Update the results of the categorized objects.
12: end while

the results of the categorized objects in Line 10.

It is worth noting that an adaptive strategy for asking multi-
ple questions can once again be modeled as a decision tree,
in which each internal node represents a set of k questions
(each corresponding to a different internal node in T ).

By Theorem 3.1, given k ≥ 1, to construct the optimal
decision tree in general is NP-hard. In the remainder of the
section, we propose a heuristic algorithm for this problem.

E.2. Greedy Strategy in Parallel Version

We propose a greedy algorithm similar to the one in the
previous section: we try to select k questions that makes
the heaviest resulting subtree as light as possible. Let U0 =
{u0

1, . . . , u
0
k} denote the selected questions. The strategy is

described as follows:

U0 = arg min
U⊆T ,|U |=k

max{Pr(v),∀v ∈ ΦT (U)} (17)

However, it is not trivial to select the k questions in each
phase. A naı̈ve strategy would traverse the whole search
space, incurring at least O(

(
n
k

)
) running time.

To solve the problem, we first solve a closely related prob-
lem: to select the minimum number of questions such that
the heaviest resulting subtree does not exceed a given con-
stantw ∈ (0, 1]. Using the algorithm for the above problem
as a subroutine, we can solve the original problem by sim-
ply performing a binary search (identifying the largest w
such that the number of required questions is at most k) 9.

Formally, the related problem is defined as follows:

Problem 4 (Partition Problem). Given (T ,Pr) and some

9 We are inspired by the ideas in (Parameswaran et al., 2011)
and (Kundu & Misra, 1977).
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constant w ∈ (0, 1], select the minimum number of ques-
tions such that for each resulting subtree, its total proba-
bility does not exceed w.

Please refer to Algorithm 4 for the algorithm to the partition
problem. The input to the Partition algorithm is the triple
(T ,Pr, w). The algorithm is a simple greedy algorithm:
We traverse the tree from the leaf level to the root (Lines
2-9). Each time we see a node u, we calculate the total
probability of the subtree Tu. We choose it as a question
node if the total probability exceeds the threshold w (Lines
3-7).

Algorithm 4 Partition(T ,Pr, w)
1: Input: T ,Pr, w
2: U ← ∅
3: for i := maximum level in T → 1 do
4: for node u on the i-th level do
5: if Pr(Tu) > w then
6: U ← U ∪ {u}
7: childT (fatherT (u) ← childT (fatherT (u)) −

{u}
8: end if
9: end for

10: end for
11: Output: U

The correctness of the algorithm is guaranteed by the fol-
lowing theorem:

Theorem 8. Given any instance (T ,Pr, w), Partition cor-
rectly solves the partition problem.

To prove the theorem, it suffices to prove the following two
lemmas, whose proofs are similar to the ideas in (Kundu &
Misra, 1977):

Lemma 8. For any instance (T ,Pr, w), let u be a node
such that Pr(Tu) > w, then there exists an optimal parti-
tion containing u.

Proof. It is trivial to see that any feasible partition U (in-
cluding the optimal one) must contain some node v ∈ Tu.
From some optimal partition U∗, we construct U ′ = U∗ −
v ∪ u. U ′ is a feasible partition. Thus the lemma follows
from |U ′| = |U∗|.

Lemma 9. For any v ∈ T , denote by U∗(Tv) an optimal
partition for Tv . Let u be a node which is included in
some optimal partition. It follows that U is also an optimal
partition for T , which is constructed as follows:

U = {u} ∪
⋃

T ′∈ΦT (u)

U∗(T ′)

where U∗(T ′) is the optimal partition for T ′.

Proof. Let U0 be an optimal partition that includes u. It
follows that for any T ′ ∈ ΦT (u), U0(T ′) is a feasible
partition for T ′ and thus |U0(T ′)| ≥ |U∗(T ′)|. It follows
that |U | ≤ |U0| and therefore, U is an optimal partition for
T .

F. Experimental Evaluation Continued
F.1. Synthetic Data Evaluation

Data Set: We took the whole ImageNet hierarchy in
the synthetic experiment. Let the a-priori probability
of the hierarchy be the fraction of images recorded in
each synset.
Object Set: We randomly sampled 10,000 images
from ImageNet, in which 80% of the images belong
to the “artifact, artefact” sub-hierarchy while other-
s (20%) were from other sub-hierarchies. Moreover,
80% images of artifacts are placed under the “instru-
mentality, instrumentation” sub-hierarchy. We repeat-
ed 20 times and recorded the costs as the average val-
ues.
Decision Tree Algorithms: Besides the algorithms
mentioned in Section 5, we implemented the follow-
ing algorithms:

– Random: The algorithm selects k internal n-
odes as questions by performing a weighted sam-
pling without replacement. For any internal node
u ∈ T , the weight assigned to it is the probabili-
ty of u plus the total probability of children of u
that are also leaves. In other words, the weight of
picking a question at u is equal to the total prob-
ability of categories that can be directly obtained
from u (for instance, in Figure 1, the weight of
“Sought Asia” is 0.05 (Maldives) + 0 (South A-
sia)=0.05). In this way, the total weight of all
the internal nodes adds up to 1. Intuitively, this
is a reasonable heuristic since it is better to first
pick nodes with larger probability so that they are
closer to the root. Each time we executed the al-
gorithm for 20 times and recorded the average
performance.

– Unweighted-Greedy (Parameswaran et al.,
2011): Each time the algorithm chooses k nodes
in order to minimize the size of the resulting sub-
tree in the worst case. This is equivalent to the
greedy strategy on the hierarchy, in which each
node is equally distributed.

• Framework Parameters: The parameters of our
framework we considered in the experiments are as
follows:

– Number of questions k asked for one object at
each phase (Section E).

– Number of arriving objects at each time m (Sec-
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tion E).
– Coefficient of the exponential distribution λ: The

default value is 0.2. The range is [0.1, 1].
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(b) Expected monetary cost.

Figure 11. Expected number of phases and expected monetary
cost varying k.

Evaluation on decision tree algorithms:

Expected number of phases: (1) the expected num-
ber of phases decreases as k increases. (2) The ex-
pected value of Greedy is slightly lower than that of
Unweighted-Greedy and both outperform Breadth-
first and Random.

Please refer to Figure 11(a) for the experiment that illus-
trates the results. The difference of the expected # phas-
es between Greedy and the minimum of other algorithms
ranges from 0.05 to 0.2.

Expected Monetary Cost: (1) the expected monetary
cost is almost a linear function of k. (2) the monetary
cost difference between Greedy and other algorithms
increases as k increases.

Recall in Section E, that we focus on minimizing the steps
or phases of categorization, where in each phase we post k
questions on crowdsourcing platforms for each item. How-
ever, in practice, the monetary cost for each phase increas-
es as k increases. The more questions we batch into one
HIT, the higher reward we should pay to crowdsourcing
workers. By assuming that each question costs a unit price
(for instance, $0.02 per question), we studied the expected
monetary cost by using the different strategies, varying on
k, shown in Figure 11(b).

Recall that asking multiple questions at the same time
would reduce the total time we wait for crowdsourcing
tasks. However, as depicted in Figure 11(b), we would
incur more monetary cost by distributing parallel tasks.
Therefore, a time-money tradeoff must be carefully con-
sidered by crowdsourcing users, which is beyond the scope
of this paper and will be studied in future work.

Evaluation on the framework: Next we examine how our
framework for FPL and Greedy captures the true category
distribution and approaches the offline near-optimal cost.

We evaluate the robustness of the framework with respect
to different algorithm parameters.

By Theorem 3.1, the offline optimal cost is NP-hard.
Therefore, we select some decision tree algorithm A and
use the offline cost incurred by A to approximate the of-
fline optimal cost.

For a fixed input sequence of the object set, after t im-
ages are categorized (using the decision tree constructed
by A), define offline(A, t) and online(A, t) as the average
offline cost and average online cost, respectively. Define
ratio(A, t) as follows:

ratio(A, t) ,
online(A, t)

offline(A, t)
(18)

We first compared the online and offline costs of different
algorithms:

Online and offline Costs of different algorithms: (1)
For all algorithms, the online cost approaches the of-
fline cost as t increases. (2) The ratio of Unweighted-
Greedy and Breadth-first is “immune” to the input
object, slightly better than that of Greedy, and out-
performs Random. (3) Greedy yields less online
cost than that of either Breadth-first or Random, and
they all outperform Random.

In the experiments, we set k = 4, λ = 0.2,m = 10, 000.
Please refer to Figure 12(a) and Figure 12(b) for the ra-
tios and average costs of different algorithms. The online
costs of Greedy gradually reaches the online cost as t in-
creases, finally arriving at 1.012 and the overall online cost
of Greedy is below the costs of Unweighted-Greedy and
Breadth-first, which incurs 7% and 18% savings, respec-
tively.

During our experiments, for each randomly generat-
ed image set, the online and offline costs of Greedy,
Unweighted-Greedy and Breadth-first remained stable,
which somewhat fit the form in Theorem 5. However, for
Random, during the executions, the online costs of were
relatively stable, the offline costs drastically changed.

In the remainder of the section, we evaluate different pa-
rameters of of the framework, in which Greedy was used
for constructing the decision trees.

Results on the Input Sequence: The framework can
quickly adapt to the change of distribution and finally
approaches the offline cost.

In our second experiment, we changed the sequence of the
input to evaluate the robustness of the framework, depict-
ed in Figure 12(c). The offline average cost cost is 2.906.
First, we selected the sequence such that the 20% noise
images (i.e., images from other sub-hierarchies) of the set
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Figure 12. Evaluation on the framework

were randomly distributed in the sequence, and obtained
the online cost of 2.93. Then, we changed the sequence
such that the first 20% of input were all noise. From Fig-
ure 12(c), we could observe that the framework first grad-
ually learned the distribution of the noises. After 20,0000
noisy images, the framework first incurred a lot of addi-
tional costs to categorize the informative images (i.e., im-
ages from the “artifact” sub-hierarchy). However, it quick-
ly adapted itself to the change of distribution, and finally
achieved an online cost of 2.962, which was quite close to
both the online costs in the random-noise setting and the
offline costs.

Varying k: For different number questions asked in
one phase, the online cost approaches the offline cost
closely.

Figure 12(d) illustrates the above result.

Varyingm: The online cost of the framework increas-
es as m increases.

From Figure 12(e), we can see that the marginal effect of
updating the estimated distribution more frequently is, in-
deed, quite limited. For instance, if we are only allowed to
update the distribution 9 times (m = 100, 000), the online
cost (2.937) is quite close to the online cost (2.930) in the
case where we update the estimated distribution 199 times
(m = 5, 000).

It is worth noting that even if we are allowed to update the
distribution only once (m = 500, 000), the resulting online

cost (2.974) is significantly lower than the cost if we simply
use the decision tree based on the initial distribution.

Varying λ: The online cost of the framework slightly
decreases as m increases.

Figure 12(f) shows the result of the framework varying λ.
Recall that we have proven that the online average cost of
the FPTAS can be arbitrarily close to the offline optimal
average cost. From Figure 12(f), the online cost varying λ
is quite close to the offline cost cost, when using Greedy
in the decision tree component.


	Introduction
	Framework
	Workflow
	Adaptive Strategies and Decision Trees

	Decision Tree Construction
	NP-Hardness
	Greedy Strategy
	FPTAS

	Learning A-Priori Probabilities
	Experimental Evaluation
	Real Data Evaluation

	Related Work
	Future Work
	Hardness
	Preliminaries
	Input Tree Construction
	Potential Optimal Decision Trees
	Key Lemma 1
	Key Lemma 2

	Greedy
	Proof of Theorem 2

	FPTAS
	Dynamic Programming
	From DP to FPTAS

	Learning Component
	Proof of Theorem 5

	Extension to Parallelism
	Parallelism Workflow
	Greedy Strategy in Parallel Version

	Experimental Evaluation Continued
	Synthetic Data Evaluation


