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Abstract—In wireless sensor networks, knowing real signal
interferences (received signal strength or RSS) from other sensors
to cared sensor is critically important for protocol design and
for many applications. However, the real interferences generally
differ much from those calculated by theoretical or empiri-
cal models, because these models cannot capture the dynamic
impacts of the environments. This paper presents EIM, an
efficient method for sensors to online measure their interference
vectors, where the interference vector of a sensor indicates
the real interferences from other sensors to it when other
sensors are transmitting packets. EIM conducts interference
vector measurement passively during the natural working process
of the sensor network. Because a sensor may be interfered
by quite a few neighbors and the environments may change
over time, the efficiency i.e. latency for real-time interference
vector estimation is a very challenging issue. EIM exploits three
facts to improve the efficiency of interference vector calculation.
First, by exploiting the additivity property of the received signal
strength, a linear interference vector reconstruction model is
developed. Secondly, EIM exploits not only the received and
overheard packets from other sensors, but also the collided
packets to construct the observation matrix of the linear model.
Third, compressive sensing technologies are developed to recover
the interference vector even when the observation matrix is
partly determined. These methods help sensors much reduce the
latency for calculating real-time interference vectors. Extensive
simulations were carried out to verify the effectiveness and
efficiency of the proposed methods.

I. INTRODUCTION

In wireless sensor networks, knowing real interferences at
sensors is crucially important for protocol design and prac-
tical applications[1, 2], such as scene analysis based indoor
localization. In the conventional interference models, such
as graphic model or physical model [4, 5], the interference
from a sensor to another sensor is calculated according to
transmission power and the distance among nodes, which
cannot capture the field effects in real environments, such
as signal blocked by obstacles or multi-path fading effects in
indoor environments.

Some recent empirical works [3, 5, 6, 9] studied the
impacts of the environments to the signal propagation, such
as the multi-path effect, shadowing effect or temperature
effect. Because these environment impacts change dynamically
and are unpredictable, the signal interferences are hard to
predict or calculate. Therefore, online interference measure-
ment in real environments has attracted increasing research
attentions[1, 9, 13]. It is crucial not only for improving the

accuracy and efficiency of existing interference models, but
also important for designing high performance protocols.

But online interference measurement is generally a very
challenging problem. First, real-time interference measure-
ment should not interrupt the normal working process of the
network. Therefore, the interference measurement should be
conducted passively during the natural working process of
the network. Second, because a sensor may be interfered by
quite a few neighboring sensors and the environments may
change over-time, calculating the real-time interferences of
these neighbors should have low latency for keeping adaptivity
to the environment dynamics.

In this paper, we define interference vector for each sensor,
which tracks its real-time interferences posed by other sensors.
Each item in this vector indicates the disaggregated interfer-
ence caused by an individual sensor when other sensors are
silent. Because a sensor can only passively listen to online
messages to infer its interference vector, the efficiency of
interference vector calculation is generally a very challenging
issue.

In traditional methods, a receiver measures the RSS from
a sender only when it receives or overhears packets from the
sender. But the measured RSS value may be impacted by other
interfering signals from multiple transmitters, which can not
reflect the real signal strength of the sender. The worse case
is that when the undergoing interference is high, although a
receiver can measure an aggregated signal strength, it cannot
decode any packet and cannot know who are generating the
interference. In such cases, the efficiency of online interference
measurement is limited.

To address these challenges, we present following contribu-
tions to improve the efficiency of online interference vector
measurement.

1) A novel linear interference vector detection model is
developed based on the generally assumed additive
property of RSS. We conduct hardware experiments to
verify the additive property using sensor networks of
RF230 radio chips, which validates the proposed model.

2) To resolve the linear model, rank-N observation ma-
trix is required to be constructed for disaggregating
interferences from N interfering neighbors. This can
be done by exploiting the working logs (transmission
and measurement logs) of the sensor nodes, which
associates the transmission events of the neighbors to
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the signal detection events at the cared sensor. However,
this step is generally time consuming in the normal
working process of the network. EIM proposes to use
not only the received and overheard messages from
other sensors, but also the collided messages that cannot
be decoded to construct the observation matrix. This
scheme improves the efficiency of observation matrix
construction effectively.

3) To solve the linear equations model, two recovery
schemes are developed. When the observation matrix
has rank N , least square estimation (LSQ) is exploited to
calculate the interference vector. In case the observation
matrix is undetermined, compressive sensing method
[23, 24, 26] is proposed to treat the problem as a
sparse signal recovery problem to calculate the major
interferences. The effectiveness of both schemes are
validated by extensive simulations, which improves the
online interference measurement efficiency by 20% than
existing methods at least.

The rest of the paper is organized as follows. Section II
introduces the problem model. Section III presents the hard-
ware experiments of the interference additive property. Section
IV and V show the methodology of constructing observation
matrix and two schemes for recovering interference vector.
Section VI presents the simulation results. SectionVII and VIII
review the related works and conclude the paper with future
works.

II. PROBLEM MODEL

A. Network model

We consider a sensor network of N + 1 sensors, which are
deployed in a sensing field to perform some specific tasks.
The sensors are labelled from 0 to N , which are assumed
time synchronized. Let’s consider time is divided into discrete
time slots with same length. At the beginning of a time slot, a
sensor can choose to transmit a packet following some MAC
and routing layer protocols. Each sensor is equipped with a RF
transceiver, which can detect received signal strength when the
sensor receives packets or detects undergoing interferences.

We assume sensors will not change their positions or their
transmission powers frequently and consider the environments
change slowly. In such conditions, the signal interference
conditions change slowly. Interference measurement under
such assumptions can capture environment effects from tem-
perature, indoor furniture or outdoor slowly moving objects
etc. The highly dynamic effects, such as impacts by quickly
moving people are hardly to be captured even using online
interference measurement.

Since all the nodes can be treated equally in the interference
measurement, we take node 0 as the cared node to consider its
interference vector measurement. It is called ”host node”, and
the other nodes are called ”guest nodes”, which may generate
interferences to it.

Definition 1 (interference vector). The interference vector of
the host node at a time t is donated by St = {si|1 ≤ i ≤ N}

where si indicates the interference value generated by the ith
guest node when the guest node transmits packet alone.

Definition 2 (measurement vector). The host node online
tracks all the signal detection events. Such events can
be packet receiving, overhearing or collision at the host
node. The events from t − ∆ to t compose a length
L event vector E = {ei}. Each event is a triple of
〈Eventtime,PacketID,RSSvalue〉. PacketID = null if the
packet is not successfully decoded. Let yi denote the RSS value
in event ei. Let Yt = {yj |1 ≤ j ≤ L} denote the RSS value
vector of all events. ∆ is the period of interference vector
updating.

Corresponding to each measurement event, there must be
some sensors transmitted packets at Eventtime , which cause
the signal detection event at the host node. We define a
matrix to indicate the transmission states of the guest nodes
corresponding to the event vector of the host node.

Definition 3 (transmission log matrix or TLM). Let At
={ai,j , 1 ≤ i ≤ L, 1 ≤ j ≤ N} be the transmission state
matrix of guest nodes corresponding to the L detected events.
ai,j = 1 if the jth sensor transmits packet at the time of
event ei; ai,j = 0, otherwise. Each row of TLM indicates the
transmission states of the guest nodes at a measurement event
ei, which is called transmission log vector and is denoted as
Vi = {ai,j |1 ≤ j ≤ N}.

The host node can construct its TLM via the transmission
logs and its own measurement log. The detail of the TLM
associating process will be introduced in section IV.

B. Linear Interference Vector Measurement Model
With above definitions, the key problem for real-time inter-

ference measurement is how to calculate St based on Yt and
At. If the signal interference has additive property, i.e. if the
RSS of the mixed signals is equal to the sum RSS of each
signal, we can have following linear model:

N∑
j=1

ai,jsj = yi (1)

The vector type presentation is:
a11 · · · a1N

a21 · · · a2N
...

...
...

aL1 · · · aLN




s1

s2
...
sN

 =


y1

y2
...
yL

 (2)

Using this linear model to estimate interference vector, the key
problems to be addressed are as following:

1) The validity of the model depends on the additive
property of RSS, which needs to be verified.

2) How to efficiently construct transmission log matrix?
3) Efficient method to solve the linear equations to calcu-

late the interference vector.
We address these problems respectively in the following
sections.
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III. INTERFERENCE ADDITIVITY EXPERIMENTS

The validity of the proposed model depends on the inter-
ference additivity property, which has been verified in many
previous experiments based on the CC1000 and CC2420 com-
modity radio chips[1, 5, 10]. We conduct further experiments
on IRIS node equipped with RF230 radio chip, which further
confirms the additivity property of the interfering energy.

A. The Metric of the Experiments

RSS value is generally adopted to indicate the signal inter-
ference energy, which measures the received signal strength
at the signal detection circuits. For IRIS node, the range of
RSS value is 0 ∼ 28 in steps of 3dBm, whose granularity is
relatively coarse in presenting the signal strength. In order to
measure signal strength in finer-grained method, we use ED
(Energy Detection) value as an indicator of the interference
energy to replace the RSS, which is calculated by averaging
RSS values over eight symbols(128µs) and has 85 energy
levels with a resolution of 1dBm, which is better than RSS.

B. The Design of the Experiments

Experiments were conducted in a controlled indoor envi-
ronment where surrounding objects are static. 18 IRIS nodes
compose an interference measurement testbed. The communi-
cation channels of these sensor nodes are set to Channel 26
to avoid the influences from WiFi. The environment noises
are negligible, because they are less than −91dBm in this
environment. In experiment, the CCA (Clear Channel Assess-
ment) mode of each node is disabled to disable the embedded
collision avoidance in IRIS, which makes sure the sensors can
transmit packets simultaneously.

In the experiment, the sensor nodes are classified into
1)coordinator node , 2)host node, and 3) guest node. The
coordinator node is responsible for time synchronization and
process control. The host node is to measure the interference
values, and the guest nodes transmit packets using the same
transmission power to the host node under the control of the
coordinator node. The guest nodes have the same distances to
the host node.

C. Experiment Results

The experiment begins with each guest node transmitting
100 test packets following the order of their node IDs,
meanwhile, the host node records 100 measured ED values
for each guest node. The signal strengths of each guest
node without interference is stored by the most frequently
appeared ED value in these measured values of the guest node.
In the following experiments, the number of simultaneously
transmitting guest nodes will be doubled in each time. The host
node measures and records the measured ED values to indicate
the interfering signal strengths. The experiment process is
shown in Fig.1[5].

This experiment results are shown in Fig.2. The signal
strengths without interferences are shown in Fig.2(a). In the
following experiments, the ED value detected by the host node
will increase 2 ∼ 3 (i.e.2 ∼ 3dBm) in most times from
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Fig. 1. Interference Additive Experiment in Single-Hop WSN

Fig.2(b), which indicates that the interference value generated
by concurrent transmissions is roughly doubled due to the
formula (3)

P = 10(x/10)/1000 and x = 10log10(1000P ) (3)

where P is the power in W and x is the power ratio in
dBm. We also observe that there are a little part of values
are less than the expectation in every curve. The reason is due
to imprecise time synchronization, because some guest nodes
maybe transmit messages a little earlier or later sometimes.
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Fig. 2. The Hardware Experiment Results

The experiments verified the additivity of the interference
signal strengths, which helps us to validate the proposed
interference vector detection model.

IV. EIM: EFFICIENT INTERFERENCE VECTOR
MEASUREMENT

Based on the verification of the observation model, we
design and develop the Efficient Interference Measurement
(EIM) scheme.

A. Overview of EIM

Both the time latency and the communication cost issues
are considered in the design of EIM. The overview of EIM is
shown in Fig. 3. In EIM, each sensor calculate its online inter-
ference vector distributively, based on the fact that only sensors
within a limited range of a cared node can cause interference
to the node. Therefore, the host node collects information only
from neighborhood within k hops to construct its transmission
log matrix (TLM). In such case, the number of interfering
nodes, i.e., N in model (2) indicates the number of considered
neighbors within k hops.
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Fig. 3. Overview of EIM

All sensors run EIM with following local information:

1) transmission log, which records the time that the sensor
transmitted a message;

2) measurement log, which stores a vector of
〈Eventtime,PacketID,RSSvalue〉 triples of the
RSS detection events.

The transmission logs of guest nodes are smartly queried by
the host node in EIM to efficiently construct the TLM at the
host node. The TLM are refreshed after each period ∆ for
sensors to update the online interference. For a host node to
calculate its interference vector at time t, its workflow is as
following:

1) The host node firstly checks its measurement log to
find the most number of linear independent observation
vectors. If these vectors can form a rank N TLM matrix,
least square estimation (LSQ) is used to calculate the
interference vector (will be introduced soon). But con-
structing TLM by this method is not efficient, because it
needs the host node hears or overhears every neighbor’s
transmission by at least once.

2) To improve the time efficiency, EIM exploits the signal
detection events caused by the collided messages to
construct TLM. To reduce the communication cost, we
explore the Capture Effect [3] (will be introduced soon)
of the linear independent observation vectors, which
can determine partly entries of the TLM. This step is
designed to avoid requiring unnecessary or redundant
transmission logs entries, which reduces the communi-
cation cost.

3) The host node construct TLM by associating collected
transmission logs with measurement logs. It calculates
interference vector by LSQ if rank(TLM) == N ,
and calculates by compressive sensing based recovery
algorithm if rank(TLM) is less than N .

B. TLM Association by Independent Observation Vector

We firstly introduce how the host node associates the TLM
by independent observation vectors in the measurement logs.

1) Capture Effect: In our network model, we can consider
the ”Capture Effect” as followings: if the received power of the
transmission is greater than the sum of the interference power
of other simultaneous transmissions, then this transmission

will be successful. This property can be explained by the
SINR model [4, 5].

SINR =
P

Isum +N
> β (4)

where P and Isum represent the received power and the sum
of the interference powers of other simultaneous transmissions
respectively, N (usually ≤ −91dBm) is the noise power, and
β (usually ≥ 1) is a threshold. We suppose β = 1, and neglect
N since it is too small to be detected by the sensor node.
Obviously, satisfying the SINR model, i.e., the requirement
of ”Capture Effect” can make the transmission successful.

2) Not-collided Observation Event (NOE): Based on the
Capture Effect, an measurement event is called NOE, if in
this event, the host node successfully receives or overhears
the packet from a guest node, so that the host node can suc-
cessfully decode a dominating sender of this signal detection
event. Correspondingly, collided observation events (COE) are
defined as measurement events that the host node cannot
decode a sender from the collided packets.

For a NOE, suppose it is the lth event in the measurement
vector, i.e., el. If the dominating sender of this event is decoded
as neighbor i, we denote the dominating sender as D(el) = i,
where D(·) is the function to calculate the dominating sender.
Two properties can be inferred by the Capture Effect:

• al,i = 1, al,i ∈ Vl
• si > sj ,∀1 ≤ j ≤ N if al,j = 1

The first fact is obviously which means guest node i must
be transmitting at the event el, and Vl is called Independent
Observation Vector (IOV). The second fact is because the
signal from the dominating sender is the strongest in the
concurrent signals.

3) Partially TLM filling: Based on these properties, we can
fill the TLM matrix partially after getting a set of NOEs. Let
the NOE set among the measurement events be E = {el|l ∈
[1, ..., L]}. Suppose the dominating sender of the lth event is
il = D(el). We can get the following information of TLM:

• al,il = 1.
• if ex ∈ E and yx ≥ yl, then al,ix = 0, where ix = D(ex).

The second point is because the sender ix has larger interfer-
ence power than il. It must not transmit in event el, otherwise
signal from il will be interfered and cannot be decoded in
event el. Further more, for an arbitrary COE event ec, ∀el ∈ E,
if yl > yc, we can partially infer the observation vector by:

• ac,il = 0, where il = D(el).
It because the senders {il = D(el)} must have larger interfer-
ence power than yc

2 . If ac,il = 0, then ec will become NOE,
so node il must not transmit in event ec.

4) Independent Observation Vectors(IOV): Grounded on
these properties, we give a useful result about the NOEs.

Result 1. For a set of NOEs E = {el|l ∈ [1, ..., L]}, if the
dominating sender of each event {il = D(el)} is different
from each other, then the observation vectors of these NOEs
are linear independent.
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Proof: Without loss of generality, we assume that |E| =
L ≤ N and make ai,i = 1. Other items of each observation
vector are unknown, which are represented by squares, then
the observation vectors of set E will be

a1,1 = 1 � · · · � · · · �

� a2,2 = 1 · · · � · · · �
...

...
...

... · · · �

� � · · · aL,L = 1 · · · �


Any two column vectors vi, vj will be linear independent,

because ai,j and aj,i cannot be equal to 1 simultaneously,
because in such case, one event in ei and ej will not be NOE,
contradicting the assumptions. Since any two column vectors
are linear independent, the observation vectors of these NOEs
are linear independent.

Based on this result and above properties, we can pick up
the most number (denoted by n) of linear independent obser-
vation vectors. With these n linear independent observation
vectors, more than n(n+1)

2 entries of the TLM matrix can be
determined via the Capture Effects.

C. TLM Association

The unknown entries of the observation vectors need to be
filled by the host node requiring transmission logs from its
neighbors in the past period ∆.

1) Collect transmission logs based on network protocols:
The transmission logs of neighbors can be collected in dif-
ferent ways according to the running protocols of the sensor
networks. We restrict sensors to record its transmission logs
during run-time working process. How the transmission logs
are collected by the host node depends on the running proto-
cols of the network. If the neighbors have routing paths to the
host node, the log messages can be piggyback on the normal
messages to be transmitted to the host node. Otherwise, the
host node can request the logs from the first hop neighbors and
the other nodes’ logs can be forwarded to the host by the first
hop neighbors. We will not specify a log collection process for
a specified protocol. Despite of the different implementations
of transmission logs collection, a critical problem for the host
node is how does it efficiently construct the TLM matrix based
on the collected transmission logs.

2) TLM Construction using both NOE and COE: We
propose to construct the TLM efficiently using both the NOE
and COE events at the host nodes. Since both the transmission
logs and measurement events use time as the unified index,
when a host node gets the transmission logs from neighbors,
it queries the logs to associate each signal detection events
with the corresponding transmission events at that time.

Entry ai,j = 1 if the jth neighbor was transmitting at the
time of the ith signal detection event. Therefore, even for the
COE events in which the host node cannot decode a sender,
the events can still be efficiently utilized to construct the TLM.

Fig.4 shows a simple example which explains how the host
node constructs TLM via associating the transmission logs
with the signal detection events. In this example, the host
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1 1 1 

TLM 

Fig. 4. Construct Transmission Log Matrix via Work Logs

node (node 0) detects three interference events. Two of them
are NOE and one is COE. By associating these events with
the collected transmission logs from neighbors, The host node
construct its TLM. We can see the logs of collided messages
are efficiently utilized to construct the TLM.

V. INTERFERENCE VECTOR RECOVERING SCHEMES

After TLM association, the remaining problem is how to
resolve the linear model to calculate the interference vector.
Depending on the rank property of the TLM matrix, we
provide two schemes to recover the interference vector.

1) If TLM has rank N , we adopt the method of least square
estimation (LSQ) to solve the linear model to estimate
the real-time interference vector.

2) If TLM is underdetermined, we employ compressive
sensing to recover only the major interferences from
close by neighbors.

A. LSQ for Solving Linear Equations

A generic method is to directly apply LSQ to calculate the
interference vector if TLM has rank N :

St = (ATt At)
−1ATt Yt, if rank(At) == N (5)

By LSQ, we can get an interference vector with the minimum
square errors, even the measured RSS values have some noises.

However if rank(At) is less than N , LSQ can give infinite
number of interference vectors St that can satisfy AtSt = Yt,
which cannot determine a unique solution.

B. Recover the Interference Vector via Compressive Sensing

In the practical WSN system, we are generally hard to get
a full rank TLM to solve the system of linear equations, it
prompts us to find a new scheme to recover the interference
vector.

We consider St as a discrete signal vector. If St is sparse,
i.e.‖ St ‖0= K � N , then it is possible to reconstruct
St by solving an underdetermined linear observation model
using l1 norm minimization [27] by the recent advantage of
compressive sensing[23]. In other words, if St is sparse, we
can use a compressive sensing model, i.e., AM×NSt = YM×1,
where M < N . The matrix AM×N and YM×1 are the subsets
of the TLM At and measurement vector Yt respectively. Only
if AM×N satisfies Restricted Isometry Property (RIP) and



6

M > Klog(N), then St can be recovered accurately with
high probability[23].

A remained crucial problem is that St is usually non-sparse,
whose general pattern can be seen from Fig.5(b). So we find
a basis to sparsely represent St. We use Discrete Cosine
Transform Basis (DCT) [25] and Difference Basis Matrix
(DBM)[26] as the representation basis, and find that the inter-
ference vector generally become sparse after the DCT or DBM
transformation. The former is generic representation basis in
compressive sensing; The latter is usually apply to the case
which many entries of the signal vector are same or almost
same, the interference vector satisfies this requirement. By a
sparse representation, St is further written as St = ΨN×NZ,
where ΨN×N is the DCT or DBM transformation matrix. Z is
the N×1 coefficient vector in the Ψ-domain with ‖ Z ‖0= K,
where K � N . After such transformation, the measurement
model can be rewritten as:

AM×NΨN×NZ = YM×1 (6)

AM×N and YM×1 are known since both are the subsets of
At and Yt respectively. The remaining problem is how to
efficiently solve this underdetermined model.

We employ the idea of (Orthogonal Matching Pursuit)
OMP [27] algorithm to solve above underdetermined equa-
tions to recover the interference vector. The designed algo-
rithm is shown in Algorithm1.

To identify the sparse vector Z, the algorithm determines in
a greedy manner which columns of A (= AM×NΨ) contribute
most to the measurement vector YM×1. It picks columns of A
in a greedy fashion. At each iteration, it chooses the column
of A that is most strongly correlated with the remaining part
of YM×1. Then it subtracts off the contribution to YM×1 and
iterates on the residual. The algorithm terminates when a K-
sparse vector is determined, which needs only polynomial time
computation.

VI. SIMULATION RESULTS

With above design, in this section, we will give the simula-
tion results about the performances of the proposed schemes
of the interference vector recovery. For LSQ, our focus locates
on the number of consumed time slots in the process of con-
structing TLM. For the compressive sensing method, we pay
more attentions to the accuracy of the recovered interference
vector.

A. The Configuration of the Simulation

We assume there are 50 sensor nodes be uniformly deployed
in a 10m×10m plane, and some obstacles locate in this area,
which influence the interference values generated by some
nodes. We can see it is a strong interference environment.
We randomly select a node as the host node like Fig.5(a). The
signal propagation model used in the simulation is based on
the log-normal shadowing path loss model [28]

Pr = Pt − PL(d0)− 10α log10(
d

d0
)−Xσ − Pn (7)

Algorithm 1 Recover the Interference Vector via OMP
Input:

An M×N matrix A (= AM×NΨ) and An M-dimensional
measurement vector YM×1;
The sparsity level K

Output:
The estimate vector Ẑ for Z;
The set ΛK containing K elements from {1, ..., N};
An M-dimensional approximation YM of the measure-
ment vector YM×1

An M-dimensional residual RM = YM×1 − YM
1: Initialize the residual R0 = YM×1, the index set Λ0 = Ø,

and the iteration counter γ = 1.
2: Find the index λγ that solves the easy optimization

problem, ϕj is one column of A.

λγ = arg max
j=1,...,N

|〈Rγ−1, ϕj〉|

If the maximum occurs for multiple indices, break the tie
deterministically.

3: Augment the index set Λγ = Λγ−1 ∪ {λγ} and the
matrix of chosen atoms Aγ = [Aγ−1 ϕλγ ]. We use the
convention that A0 is an empty matrix.

4: Solve a least-squares problem to obtain a new vector
estimate:

xγ = arg min
x
‖ Aγx− YM×1 ‖2

.
5: Calculate the new approximation of the data and the new

residual:

Yγ = Aγxγ , Rγ = YM×1 − Yγ

6: Increment γ, and return to step 2 if γ < K
7: The estimate Ẑ for Z has nonzero indices at the com-

ponents listed in ΛK . The value of the estimate Ẑ in
component λj equals the jth component of xγ .

where Pr is RSS in dBm at a distance d (sender-receiver
distance); Pt the output power of the transmitter (= 0dBm);
d0 a reference distance; PL(d0) is a constant value (= 55dB);
α the pass loss exponent (= 3); Xσ a zero-mean Gaussian
random variable (in dBm) with standard deviation σ(= 4); and
Pn the noise power floor (= −105dBm). For convenience, we
transform the RSS from dBm to nW following the formula
(3). We assume the obstacles are plasterboard or cinder block
wall and office window. The signal power will drop down 3 ∼
4dBm [29] if it is blocked by an obstacle. The interference
values generated by guest nodes to the host node are shown
in Fig.5(b). We can observe that some values in red dotted
line deviate the blue solid line because of the influence of
obstacles.

B. Latency of TLM Construction
Two groups of simulation are conducted to estimate the

latency of full rank TLM construction. Each node in the
network is considered as the host node in turn in both groups
of simulation. In the first group of simulation, we exploit
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ALOHA(Additive Link On-Line Hawaii System) as the MAC
protocol, where a node simply transmits the packet with the
probability P = 1/N at the beginning of every time slot, and
set the ratio = ] of IOV

N in the process of constructing full
rank TLM. From Fig.6(a), we can see that only using IOV
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Fig. 6. The Latency for Different Ratio and MAC Protocols

(ratio = 1) to construct full rank TLM consumes more time
slots by 20% than mixed using IOV and non-IOV at least,
which means the new scheme utilizing the collide packets
improve the efficiency by 20% than the traditional method
only using non-collide packets.

In the second group simulation, the sensor network is
assumed to performance some data collecting task, and each n-
ode can generate packet with some probability and transmit or
forward packets under some routing and MAC protocol. We fix
the routing protocol and adopt three MAC protocols (ALOHA,
CSMA/CA and TDMA) to schedule the transmissions respec-
tively. For CSMA/CA and TDMA, we pick up the concurrent
transmissions in a greedy fashion. Each node performs as the
host node to do the interference vector measurement under
every MAC protocol, and we do the statistic of the latency of
constructing full rank TLM. The simulation results are shown
in Fig.6(b), which can be observed that TDMA has the best
performance, where almost all the nodes can construct their
own full rank TLM in 200 time slots. The reason is that under
the TDMA the needed IOVs can appear in less time slots than
ALOHA, and the needed non-IOVs can appear in less time
slots than CSMA/CA.

C. The Recovery Accuracy via Compressive Sensing

We conduct two simulations by exploiting two represen-
tation basis (DCT and DBM) respectively. From Fig.7, we

can observe that the interference vector can be recovered by
compressive sensing after making this vector sparse via the
representation basis, especially the interference value generat-
ed by the guest nodes which are closer to the host node can
be almost exactly recovered. Further more, we compare the
recovery accuracy of both representation basis via calculating
the SNR value between the original vector (St) and recovered
vector (Ŝt) following formula (8)

SNRdB = 10 log

‖St‖22
‖St−Ŝt‖22
10 (8)

, and find that DBM performances better than DCT (the SNR
value of DBM is usually greater than DCT 6dB )
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Fig. 7. Recover Interference Vector via Compressive Sensing

VII. RELATED WORK

Previous studies related to the interference measurement can
be roughly divided into following three aspects:

1. The relationship between the interference and the link
quality estimation and improvement: From the sensor networks
perspective, the most important and basic aspect of the com-
munication is the packet delivery performance, i.e., the spatio-
temporal characteristics of the packet loss [8]. Some previous
studies [7, 12, 14, 15] focused on how to mitigate the inter-
ference influence to improve the performance of the packet
delivery in the sensor networks. In [14], the authors proposed
a measurement-based approach to model the interference and
link capacity in 802.11 networks. In [16], the authors proposed
an analytical model to estimate the transitional region in the
communication range of CC1000 radio, and they found that
the root causes of the variable link-level performance were the
external noise, random interference, and the transitional region
in the PRR-SINR relationship of radio transceivers.

2. The accuracy of interference model and the methodolo-
gies of interference measurement: In the work of [9], the
authors compared the accuracy of different interference models
which vary from oversimplified graphic-based models to fairly
realistic SINR physical models via extensive experiments
based on the CC2420 radio chip and gived the conclusion that
the physical interference model provides the best accuracy.
But it is still far from being perfect. Son et al.[5] studied
the PRR-SINR model of CC1000 radio and found that the
SINR threshold was not a constant value. It depends on the
transmitter hardware and the signal strength level. This result,
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however, is inconsistent with the findings on other radio chip
(e.g.,CC2420)[9, 13]. In [1, 11], the authors proposed two
approaches respectively to improve the accuracy of the PRR-
SINR modeling and evaluated the efficiency via extensive
experiments on testbeds. For the interference measurement,
there are basically two methods: Offline and Online mea-
surement. In [17–19], Offline measurements were introduced
which are to take the network temporarily offline and to inject
synthetic traffic for interference measurements. For the online
measurement, two methods were given respectively in [20, 21],
but both don’t utilize the collide packets.

3. The MAC protocol based on the interference models:
The design of the MAC protocol under the physical inter-
ference model has received significant attention. In [22], the
authors showed that the problem of finding a minimum-length
collision-free schedule was a NP-complete problem. In some
earlier works [13], the authors proposed a new MAC protocol
called C-MAC to maximize the aggregate throughput of a
wireless node based on the empirical PRR-SINR model.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed EIM, an efficient online inter-
ference vector measurement scheme based on the interference
additive property of the concurrent interferences. We validated
the proposed model by the hardware experiments based on
the 18 IRIS nodes testbed. EIM utilizes both non-collided
observation event (NOE) and collided observation event (CO-
E) to construct the observation matrix, which improves the
efficiency of linear observation model construction during
natural working process of the network. Two schemes for
recovering the interference vector have been developed. The
first one uses the method of LSQ to solve linear equations,
which can recover the interference vector more accurately but
needs relatively high latency. The second scheme employs the
compressive sensing, which is more scalable for the large scale
sensor networks.

The future works may include 1) to refine the physical in-
terference model under the on-line interference measurement;
2) to study on the enhancement of radio-map training in the
scene analysis based indoor localization methods, etc.
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