
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2014; 25:553–559

Published online 11 October 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1558
RESEARCH ARTICLE

A faster triangle-to-triangle intersection test algorithm
Ling-yu Wei*

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
ABSTRACT

The triangle-to-triangle intersection test is the most basic component of collision detection. And our algorithm, which firstly
computes the line segment between triangle A and the plane of triangle B and uses a new method to detect the intersection
between this line and triangle B, can reduce about 10% of time on average, compared with the previous fastest algorithm.
Our new method divides the plane of triangle B into four quarter planes by two edges of B, and detects intersection
depending on the location of the two endpoints of the segment. After using some techniques like avoiding division and
projecting the segment and triangle B on XY, YZ, or ZX plane, the total number of arithmetic operations is reduced to
at most 87, which is less than any existing algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

triangle-to-triangle intersection; case-depending; partial cross product

*Correspondence

Ling-yu Wei, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
E-mail: cosimo.dw@gmail.com
1. INTRODUCTION

Collision detection is a fundamental problem in many
disciplines, including computer animation, virtual reality,
robotics, computer simulations, solid modeling, computa-
tional geometry and molecular modeling, etc. Given two
objects, in particular-two meshes, the goal is to determine
whether they intersect or not.

The naïve approach to solve this kind of problem is to
test all primitives (i.e., triangles) of one object against all
primitives of the other object, in order to determine their
intersection. This approach leads to a huge number of
triangle-to-triangle intersection tests.

To reduce the number of tests, many hierarchical data
structure have been devised [1,2], and lots of algorithms
are derived to enhance the performance in collision
detection [3,4]. However, at the bottom of these hierarchies
and algorithms, triangle-to-triangle intersection tests must
still be performed. Therefore, lots of algorithms have been
devised to make the collision test perform more quickly.
References [5–9] contains a comparison on triangle
intersection tests. This paper presents a new algorithm on
the basis of the algorithm by Oren Tropp, et al. [8] for
faster determination of triangle-to-triangle intersection.

The brute force method simply solves six sets of linear
equations to test whether there is an intersection of one
triangle’s edge with the surface of the other triangle.
Copyright © 2013 John Wiley & Sons, Ltd.
In [6], Möller’s algorithm detects intersection by
testing if two segments between one triangle and the
planar of the other triangle overlap. And Guigue and
Devillers [5] presented an improved algorithm of [6],
which evaluates the sign of orientation predicates
(4� 4 determinants) instead of constructing exact inter-
section. Different from the aforementioned algorithms,
which look at the problem geometrically, Oren Tropp [8]
uses an algebraic method by constructing the exact segment
between one triangle and the plane of the other triangle and
computing the intersection between this segment and the
three edges on the plane to test intersection.

This paper presents an algorithm, which absorbs the idea
fromOren Tropp reducing the intersection test to the segment
and triangle in the same planar and uses the idea of classified
discussions by comparing directions of coplanar vectors’
cross products. Because this algorithm uses only four
comparisons to divide the general detection into 16 different
situations, we can optimize each case using different compar-
isons and reduce the total number of operations.

Firstly, this algorithm constructs the exact segment as
the algorithm by Tropp, et al. does; then, by evaluating
the direction of the cross product between two vectors
pointing to the endpoints of the segment and two edges
of the triangle on the plane, it can quickly reject some
disjoint cases and use specific comparisons for each
remaining cases to continue the rest detection.
553



A faster triangle-to-triangle intersection test algorithm L.Y. Wei
Depending on different cases, the number of its arith-
metic operations varies from 81 to 87, whereas the last step
of case-depending detection costs 10–16 operations. This
is the least number comparing with 95–97 in Tropp [8],
114–144 in Guigue [5], and 126–144 in Möller [6].† More-
over, this algorithm runs 25.1% faster than the algorithm
by Tropp, et al., and 13.0% faster than the algorithm by
Guigue, et al. in our experiment, when detecting 100 000
pairs of randomly created triangles in the unit cube.

The rest of the paper is organized as follows: Firstly, we
present the overview of algorithm and then the strategies
we used to reduce the total operations and to avoid
divisions in the algorithm is introduced. After that, we
analyze the operations this algorithm used. Finally, we
present the experimental results, and conclusion is made
in the end.
2. ALGORITHM OVERVIEW

This algorithm consists of three main stages, and we
will elaborate how each stage is performed in the
succeeding text:

(1) Same as the algorithm by Oren Tropp, et al. [8], we
construct the (line) segment between triangle A and
the plane of triangle B, and reject the case that no
segment exists.

(2) Compute the cross product of two vectors that point to
two endpoints from a same vertex of B and the two
edges linked to that vertex. And use these cross
product’s direction to determine the location of the
segment. Reject more cases that no intersect can occur.

(3) Computing more cross products from previous
calculations to detect whether the segment intersects
the triangle.

The second and the third stages are what we improve;
whereas the first stage is basically the same as the
algorithm by Tropp, et al.

2.1. Stage1: segment construction

Similar to the algorithm by Tropp, et al., we firstly try to find
the segment between the triangle A0,A1,A2 and the plane of
the other triangle B0,B1,B2, and reduce the detection
between two triangles into intersection detection between a
line segment and a triangle on the same planar.

Firstly, after we receive the two triangles described as
two sets of points, three of each, we add the same vector

–OB
→

2 in order to make the point B2 move to the origin
point. And we name the five vectors starting from B2 and
pointing to the other five origin points (which are equivalent
to the new points except the new B2) as:
†The numbers are taken from the study of Barequet [1].

554 Comp
ri ¼ Ai � B2 i ¼ 0; 1; 2ð Þ

ej ¼ Bj � B2 j ¼ 0; 1ð Þ

We abuse the notation e0 and e1 on purpose, because we
are going to detect the intersection on the planar (O,e0,e1),
and e0 and e1 are actually the base vectors of this planar.

The segment’s endpoints must satisfy the following
equation:

α0 e0 þ α1e1 ¼ βijri þ βjirj i < j; βij þ βji ¼ 1
� �

where (i, j) can be (0, 1), (1, 2), or (0, 2), thus it is actually
three equations in the preceeding text.

The left side of this general equation means that the
endpoints lay on the plane of triangle B, and the right side
means that the endpoint is on the line connecting ri and rj.

If we have 0≤ βij≤ 1, 0≤ βji≤ 1 for some(i, j ), then the
endpoint is laid between ri and rj, thus the vector βijri+ βjirj
is actually a vector pointing to an endpoint. But if not, then
the endpoint is laid outside the edge of the triangle between
ri and rj. Therefore, we can find out the two endpoints by
checking βij and βji (if segment existed).

Figure 1 shows one of the two endpoints, which is on
the edge between A0 and A2, and it is on the planar
spanned by e0 and e1.

Geometrically, the endpoints laid on the plane of
triangle B is equivalent to the dot-product of βijri + βji rj,
and the normal vector of the plane is zero. That is,

βijri þ βjirj
� �

� e0 � e1ð Þ ¼ 0

Using this and the equation βij+βji=1, we can solve out βij
and βji for all (i, j). For simplicity, we compute three constants-
Di= ri � (e0� e1), i=0, 1, 2, and the solutions of the equation are

βij ¼
Dj

Dj � Di
; i≠j; Di ≠Dj

It is trivial to see that 0≤βij≤1, 0≤βji≤1 if and only ifDi,
Dj have different signs (or one of them is 0). And we will dis-
cuss how to avoid divisions later in Section 3.3.
Figure 1. Two examples of separated triangles rejected during
Stage 2.

. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



A faster triangle-to-triangle intersection test algorithmL.Y. Wei
If D0,D1,D2 all have the same sign, then the whole
triangle A is on one side of the plane of B, that is, they
are disjoint. Also note that if they all have the same sign,
D0,D1,D2 may all be equal, meaning that A and B are in
parallel planar, thus βi and βj may not be solvable if the
intersection does not exist.

IfD0,D1,D2 are all 0 (or all close to 0), then these two tri-
angles are coplanar. Thus, another coplanar intersection test
[6] has to be run to determine whether they intersect. We
continue with the not coplanar case in the succeeding text.

If only one or two ofD0,D1,D2 are equal to 0 (or close to 0),
this is the degenerated case, and as Tropp already pointed
out, our algorithm, which is based on construction method,
will become less robust. In order to maintain the robustness
of our algorithm, we still need to use another intersection test
to determine the intersection under such cases.

Despite of the aforementioned special cases, D0,D1,D2

must have different signs, thus we can always construct two
endpoints by computing the pair of Ds that have different signs.

In the following discussion, let t0, t1 represent the two end-
points, t0, t1 represent the relevant vectors, and t represent the

segment vector (which is equivalent to t0t1 ⃑ or t1� t0).

2.2. Stage2: case dividing

Now we compute the four cross product between a vector
of each group t0, t1 and e0, e1. Because these four vectors
are coplanar, their cross products are parallel. By compar-
ing their directions with the vector e0� e1, which we have
computed in Stage 1, we can have 16 different outcomes,
which are shown in Table I. Hereinafter, we use (+,+) to
mean the quarter plane between e0 and � e1, and (�,+)
Table I. Different detection cases depending on location of the
segment.

(e0� t1, e1� t1)

(e0� t0, e1� t0)
(+,+) (+,�) (�,+) (�,�)

(+,+) N Case 1 N Case 2
(+,�) Case 1 Case 3 Case 4 Case 1
(�,+) N Case 4 N N
(�,�) Case 2 Case 1 N N

In this table, ‘+’ means the vector is on the same direction and ‘�’ the

opposite. ‘N’ means ‘no intersection’.

Figure 2. Different cases

Comp. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd
DOI: 10.1002/cav
meaning the quarter plane between� e0 and � e1. The sign
+ and � means whether t0� e0 (and t0� e1) is
equidirectional to e0� e1. The four quarter planes are
shown in Figure 1, and two examples of ‘no intersection’
case are shown in Figure 2.

If the location cannot reject the intersection, we have to
go to Stage 3 to do more tests.
2.3. Stage3: case-depending detection

Different cases of the location of the segment are shown in
Figure 3.

Intersection occurs if and only if the segment intersects
the triangle B. More precisely, intersection occurs only
when one of the following four situations occurs:

(a) t crosses e0.
(b) t crosses e1.
(c) t crosses e1� e0.
(d) t is in triangle B.

However, by dividing the location of the segment into
different cases, we only need to test one or two situations
for each case.
in Stage 3 detection.

Figure 3. An illustration of the presented variables.

555.



A faster triangle-to-triangle intersection test algorithm L.Y. Wei
Case 1: Without loss of generality, assume that t0 is between
e0 and e1, and t1 is between � e0 and e1. The segment t
intersects B if and only if (c) t crosses e1� e0 or (b) t crosses e1.
Note that if t does not cross e1 but crosses e1� e0, t0 must be in
the triangle. Therefore, we can use (c′) t0 is in the triangle to
replace (c) in order to simplify computation.

From Figure 2, we can transform the occurrence of
these two situations to two conditions:

(b) If t crosses e1, then e0� e1 and (t1� e1)� (t0� e1)
must be equidirectional.

(c′) If t0 is in the triangle, then (e1� e0)� (t0� e0) is
equidirectional to e0� e1.

If any of these two inequalities is true, then triangles
intersect.

Note that because we have already computed cross prod-
ucts such as e0� t0, e0� t1, e1� t0, e1� t1, e0� e1, we just
have to combine them linearly in order to get the cross
product we want. This needs very little additional operations.

Case 2: Intersection happens if and only if (a) t crosses e0
or (b) t crosses e1.

We can change them into three tests:

(1) t0� t1 is equidirectional to e0� e1;
(2) (t1� e0)� (t0� e0) is equidirectional to e0� e1;
(3) (t1� e1)� (t0� e1) is equidirectional to e0� e1.

We need only test 2 or 3 to be true, with test 1 being
true to ensure intersection. Although 1 and 2 are true, the
segment crosses e0, and although 1 and 3 are true, the
segment crosses e1. Similar to Case 1, we have to compute
t0� t1 and combine computed cross products linearly.

Case 3: Intersection happens if (c) t crosses e1� e0 or (d) t is
in triangle B. However, it can also be optimized because we
only need to test if t0 or t1 is in the triangle B. When both of
them are not in the triangle B, no intersection occurs.

That is, testing whether e0� e1 is equidirectional to
(e1� e0)� (t0� e0) or (e1� e0)� (t1� e0).

Case 4: The conditions are also (a) t crosses e0 or (b) t
crosses e1.

But in this case, we can compare the direction of t0� t1 first.
If t0� t1is equidirectional to e0� e1, then t can only cross e1.
Otherwise, the vector t can only cross e0. By precomputing t0
t1 , we can save one test, compared with Case 2.

After this final stage, we can judge whether those
triangles intersect.
3. DETAILS IN REDUCING
OPERATIONS

This section shows some strategies to reduce the
algorithm’s operations and its running time. The algorithm
556 Comp
can finally be performed in at most 87 operations with no
divisions at all.

3.1. Computing only one component of the
cross product

This algorithm computes lots of cross products. However,
most of the cross products are computed to test whether
two vectors are equidirectional or not.

Because all vectors that we need (e0, e1, t0, t1) are
coplanar, all the cross products are parallel to e0� e1,
hencewe can simplyfind a nonzero component of e0� e1 and
store its sign. Then, we can always compare the relevant
component with this sign. Totally, we need two compari-
sons to find a nonzero component and one comparison to
get its sign. Thus, all the remaining cross products needs
only three operations, whereas a complete cross product
needs nine (each component needs two multiplications
and one subtraction).

What is more, we do not have to compute the exact
t0 and t1, but just two components of them in order to get
the relevant component of the cross products, which also
decreases our operations a little.

3.2. Comparing values than sign in Stage 2

In Stage 3, though we need to compute the linear combina-
tions using the value of cross products in Stage 2, we do
not need to use all four cross product values in most cases.
Therefore, we do not need to compute the exact value in
Stage 2 and compare their value with 0(i.e., use their signs)
to go to different branches in Stage 3. For example, if
(e0� e1)’s z-component is not zero, then we can com-
pare e0x t0y with e0y t0x, rather than computing e0x t0y� e0y t0x
and compare this with 0, because we may not need the exact
value. If we do need this value, we can still compute it in
Stage 3, only if we have stored these two values before.
By avoiding unnecessary subtractions, we can have less
arithmetic operations. It is true that because we have to
store two values rather than one, we need more spaces
and more assignment operations. But nowadays, space
of memory is no longer a bottleneck of algorithms, and
assignment operations need less time to operate than
arithmetic operations.

Note that in case 2 of Stage 3, all four exact cross prod-
ucts are needed to make comparisons, which makes it cost
16 operations, and this is the slowest case in Stage 3.
Therefore, although this strategy does not change the
number of the number of operations in the worst case,
the second rejection process takes fewer operations so that
the average detecting time is still decreased.

3.3. Avoiding divisions

Divisions may take four to eight times of time compared
with other operations. Hence, we are going to describe
how to avoid divisions in this algorithm.
. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



A faster triangle-to-triangle intersection test algorithmL.Y. Wei
In fact, divisions are only used when we compute βij:

βij ¼
Dj

Dj � Di
; i≠j;Di≠Dj

Therefore, instead of constructing t0, we construct

T0 ¼ Di � Dj

� �
t0 ¼ Dirj � Djri

And T0 is equidirectional to t0 if Di�Dj> 0.
Because Di, Dj have different signs, we can swap i, j to

ensure that Di�Dj> 0 is true.
Let f0 =Di�Dj. Thus, now we get a vector T0 which is

equidirectional to t0, with a scalar f0.
In Stage 2, what we need to compute are the directions

of the cross products between t0, t1 and e0, e1. Because
Di�Dj> 0, replacing t0, t1 to T0,T1 and computing such
cross products will not change their directions, that is to
say, the first and second rejections will not be affected
by avoiding divisions.

In Stage 3, we are going to compute the linear combina-
tions of cross products, thus we have to let some clause mul-
tiplied by a factor to get right directions. Modifications are
easy to find, for example, if we were going to compare the
direction of (e1� e0)� (t0� e0) and e0� e1, or, the linear
combination e0� e1 + (e1� e0)� t0 and the vector e0� e1.

Because the combination has the same direction
with f0(e0� e1) + (e1� e0)�T0, we just need onemoremulti-
plication to determine the direction of e0� e1 + (e1� e0)� t0.
4. ARITHMETIC OPERATION
ANALYSIS

This algorithm needs 81–87 arithmetic operations to
ensure intersection, including additions, subtractions,
multiplications, and comparisons. No division is used in
this algorithm because it may take four to eight times of
time comparing with other operations. This is compared
with 95–97 in the method by Tropp, et al. [8],
114–144 in Guigue, et al. [5], and 126–148 in Möller’s
[6] no-division version of his algorithm (including
absolute value operations).
Table II. Arithmetic op

Operation

Stage 1 D0,D1,D2 and comparison
Constructing t0, t1 (avoid divisions)

Stage 2 Computing cross product and comparison
Stage 3 Case 1

Case 2
Case 3
Case 4

Total (regardless of degeneration)

Comp. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd
DOI: 10.1002/cav
In Table II, we show all the operations that this
algorithm takes in detail, and Table III is taken from the
paper by Tropp, et al. [8], representing the count of
operations of other algorithms.

Generally, three comparisons are enough in Stage 1, but
we add three more comparisons which are used only when
degenerate case occurs. Luckily, spending more operations
here leads to less after, because when this happens, we do
not need to construct t0, t1 because they must be equal to
one or two of r0, r1, r2. Totally, 45 or 56 operations are
needed to finish Stage 1.

In Stage 2, the second rejection costs 15 more operations,
which means that most rejections would take no more than
71 steps (when degenerate case occurs it becomes 60).
Specifically, three comparisons are needed to find out the
sign of the nonzero component of e0� e1 and four to
compare directions of those cross products.

Also note that this algorithm uses more assignment
operations than the algorithm by Tropp et al., which can
reduce the number of multiplications in Stage 3.
5. EXPERIMENTAL RESULTS

The experiment is run on a 2.2GHz Intel Core 2 Duo proces-
sor with Windows 7. MSVC complier and -O2 optimization
is chosen.We use five different algorithms, each to detect the
same 1 000000 random triangles, 1 000 000 randomly
created intersected triangles, and 1 000 000 randomly created
separated triangles. When repeat running the same program
for a large amount of time, the time spent onasking for
opening memory space cannot be ignored and may affect
the running time a lot. Thus, all variables in all algorithms
are set as static. Results are shown in Table IV and V.

As seen in the succeeding text, this algorithm takes
0.0785 μs for each set on average, whereas the algorithm
by Tropp, et al. takes 0.104 μs on average. Thus, this
algorithm runs 25.1% faster than its origin algorithm.

From the table, we can also see that the previous
fastest algorithm is the algorithm by Guigue, et al. [5].
Note that although the algorithm by Tropp, et al. runs
slower than the algorithm by Guigue, et al., this
algorithm still runs about 13% faster than the algorithm
by Guigue, et al.
erations in detail.

+/� MUL CMP ALL

24 15 3–6 42–45
6 8 — 14
— 8 7 15
6 5 2 13
7 6 3 16
6 2 2 10
4 4 2 10

34–37 33–37 12–13 81–87

557.



Table IV. Average testing time.

Algorithm
Random
case

Intersected
case

Separated
case

Tropp, et al. [8] 0.1168 μs 0.1314 μs 0.0997 μs
Shen, et al. [7] 0.1231 μs 0.1613 μs 0.0934 μs
Möller’s [6] 0.1160 μs 0.1557 μs 0.0939 μs
Guigue, et al. [5] 0.1005 μs 0.1225 μs 0.0869 μs
My method 0.0875 μs 0.1011 μs 0.0779 μs

Table V. Accelerating percentage (comparedwith this algorithm).

Algorithm
Random
case

Intersected
case

Separated
case

Tropp, et al. [8] 25.13% 23.08% 21.89%
Shen, et al. [7] 28.95% 37.34% 16.66%
Möller’s [6] 24.61% 35.08% 17.05%
Guigue, et al. [5] 13.00% 17.50% 10.43%

Table VI. Average testing time without code optimization.

Algorithm
Random
case

Intersected
case

Separated
case

Tropp, et al. [8] 0.1587 μs 0.1754 μs 0.1361 μs
Shen, et al. [7] 0.1780 μs 0.2441 μs 0.1333 μs
Möller’s [6] 0.1862 μs 0.2651 μs 0.1436 μs
Guigue, et al. [5] 0.1808 μs 0.2712 μs 0.1319 μs
My method 0.1273 μs 0.1453 μs 0.1078 μs

Table III. Comparison of arithmetic operations.

Algorithm +/� MUL CMP DIV ABS =

Möller [2] 54 57 12/28 — 3/9 69/75
Guigue, et al. [1] 62/76 43/52 9/16 — — 42/62
Tropp, et al. [3] 26/27 56/57 13 — — 31/35
Mine 34/37 33/37 12/13 — — 38/39

A faster triangle-to-triangle intersection test algorithm L.Y. Wei
However, as mentioned on the paper by Tropp, et al. [8],
the algorithm by Tropp, et al. runs faster than the algorithm
by Guigue, et al., and they claimed that their algorithm was
the fastest. Such results may be caused by code optimization
settings, and Table VI shows the running time of each
algorithm using another compiler without any code optimi-
zation option. The algorithm by Tropp, et al. gets better
performance in that table, whereas our method still gets a
much better result than all others.

Because our algorithm has the minimum operations, in
the intersected case, its advantage is shown obviously.
Because of the two fast rejection processes that this
algorithm has, its running time in separated case is also
10–20% faster than other algorithms.
558 Comp
6. CONCLUSION

This paper describes a faster algorithm to detect whether
two triangles embedded in three dimensions intersect. Its
basic idea is to test whether the line segment between
one triangle and the plane of the other triangle intersects
that triangle by discussing where the segment locates.
Then, different test conditions are used so that its detection
time can be reduced. Also, this algorithm outperforms all
previous ones because of more inter states stored for fol-
lowing steps, and less operations invoked for direction test-
ing, compared to the whole computation for cross
products. However, the biggest advantage is its idea to di-
vide the general detection into different cases.

Compared to the algorithm by Tropp, et al., which had the
smallest number of operations, this algorithm is 10% less
than it and, because it has two rejection tests before the final
detection is made, whereas the first rejection test is the same
as the algorithm by Tropp, et al., it can run much faster than
the algorithm by Tropp, et al. in separated case.

This algorithm runs 25.1% faster than the algorithm by
Tropp, et al. and 13.0% faster than the algorithm by
Guigue, et al. during random intersection tests (on Core 2
Duo 2.2GHz, Windows 7). It outperforms other algorithms
both in intersection case and separation case, but has a
larger advantage in intersection case.

This algorithm, however, has its drawback because it can-
not compute the exact intersection, which may be important
in certain situations. If exact intersection is needed, then
other algorithmsmay bemore convenient to be applied, such
as the algorithms by Tropp, et al. and Möller, whose running
time are very close to each other, as shown in Table III.

Another drawback of this algorithm is that it uses 55
variables, which is much bigger compared with 18 in the
algorithm by Guigue, et al., whereas its code’s length is
also longer than others. Though nowadays memory space
is no longer a bottleneck that affects programs very much,
it is still a considerable problem in some situations like
computation on portable devices. Because the algorithm
by Guigue, et al. uses only 1/3 space of this algorithm, it
is still very useful in many situations.
ACKNOWLEDGEMENTS

This work was supported in part by the National Basic
Research Program of China Grant 2007CB807900,
2007CB807901 and the National Natural Science Founda-
tion of China Grant 61073174, 61033001, 61061130540.
REFERENCES

1. Barequet G, Chazelle B, Guibas LJ, Mitchell JSB, Tal A.
BOXTREE: a hierarchical representation for surfaces in
3D. Computer Graphics Forum 1996; 15: 387–396.
DOI: 10.1111/1467-8659.1530387
. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



A faster triangle-to-triangle intersection test algorithmL.Y. Wei
2. Gottschalk S, Lin M, Manocha D. OBB-tree: a hierar-
chical structure for rapid interference detection. ACM
SIGGRAPH 1996; 171–180.

3. Eberly D. Intersection of convex objects: the method of
separating axes. 2007. [Online]. Available: http://www.
geometrictools.com.

4. Lin MC, Manocha D, Ponamgi MK, Cohen JD.
I-COLLIDE: an interactive and exact collision
detection. in Proc. ACM Int. 3D Graphics Conf.,
1995.

5. Guigue P, Devillers O. Fast and robust triangle-triangle
overlap test using orientation predicates. Journal of
Graphics Tools 2003; 8(1): 25–42.

6. Möller T. A fast triangle-triangle intersection test.
Journal of Graphic Tools 1997; 2(2): 25–30.

7. Shen H, Tang Z, Heng PA. A fast triangle-triangle
overlap test using signed distances. Journal of Graphic
Tools 2003; 8(1): 3–15.
Comp. Anim. Virtual Worlds 2014; 25:553–559 © 2013 John Wiley & Sons, Ltd
DOI: 10.1002/cav
8. Tropp O, Tal A, Shimshoni I. A fast triangle to triangle
intersection test for collision detection. Computer
Animation and Virtual Worlds 2006; 17: 527–535.

9. Raabe A, Describing and Simulating Dynamic
Reconfiguration in SystemC Exemplified by a Dedicated
3DCollision Detection Hardware, PhD dissertation: Bonn,
Germany, 2008.

Author biography:
.

Ling-yu Wei is an undergraduate stu-
dent in the Institute for Interdisciplin-
ary Information Sciences at Tsinghua
University since 2010. His research
interests include digital image pro-
cessing and computer graphics,
mainly about optimization, model re-
construction, and real-time rendering.
559

http://www.geometrictools.com
http://www.geometrictools.com

