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We study the problem of irreversibility when the dynamical evolution of a many-body system is
described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one,
and since energy levels are not well defined, the well-established connection between the statistical
fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entan-
glement spectrum provides a more general connection. Irreversibility is marked by a failure of a
disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations
in the entanglement spectrum. This analysis can be done at the wave-function level and offers an
alternative route to study quantum chaos and quantum integrability.

In closed quantum systems, evolution is unitary and
both irreversibility and nonintegrability are elusive no-
tions. Because of unitarity, evolution is always stable
under errors in initial conditions. Thus, in quantum me-
chanics irreversibility is defined by the vanishing of the
probability (known as fidelity) of returning to an initial
state under arbitrarily small imperfections in the Hamil-
tonian during the reversed time evolution [2]. Noninte-
grability is associated to a Wigner-Dyson distribution of
the energy-level spacings that shows level repulsion [3]
and nonintegrable Hamiltonians in this context are irre-
versible. Integrable Hamiltonians, instead, tend to show
clustering of energy levels but can be either reversible or
irreversible [4, 5]. When the time evolution is not gov-
erned by a Hamiltonian, or when the Hamiltonian is time
dependent, energy levels are not well defined and these
associations cease to be meaningful. How can one relate
nonintegrability and irreversibility in these more general
cases of quantum evolution?

In this Letter we show that one can answer this ques-
tion by looking at the wave function alone. This route al-
lows one to study generic quantum evolutions even when
energy is not well defined. We show that by studying
the level statistics of the entanglement spectrum one can
determine whether the evolution is irreversible or not
through a protocol that we call entanglement cooling. It
turns out that the onset of irreversibility is marked by the
presence of Wigner-Dyson statistics in the entanglement
spectrum.

The quantum system we consider contains n qubits
and evolves unitarily from an initial factorized state of
the form |Ψ0〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 where each
single-qubit state is defined as |ψj〉 = cos(θj/2)|0〉 +
sin(θj/2)eiφj |1〉, with θj and φj arbitrary. Formally, the
evolution is obtained by applying a unitary matrix U to
the state vector, |Ψt〉 = U |Ψ0〉 =

∑
x Ψt(x) |x〉, where

the states |x〉 ≡ |x1 x2 . . . xn〉 form the computational
basis, with xj = 0, 1 for j = 1, . . . , n. Using the lan-
guage of quantum computing, we assume that this uni-
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Figure 1. Reversible gates used in the quantum stochastic
evolutions. The output values of the gates are defined when
a, b, and c take values 0 and 1. Top row: Two-qubit gates
SWAP and CNOT. Bottom row: The different variations of
the three-qubit Toffoli gates. We note that different variations
of the CNOT and Toffoli gates can be obtained from one fixed
variation plus NOT gates.

tary matrix is represented by gates. We recall that the
two-qubit CNOT gate and arbitrary one-qubit rotations
are sufficient for universal quantum computing [6]. In
what follows, we shall restrict the gates to the permu-
tation group, which is a subgroup of the unitary group.
The restriction to the permutation subgroup of unitary
transformations allows for a much more efficient compu-
tation of the state of the system as it evolves with gates.
In particular, we consider the unitary gates in the set
I3 = {SWAP,CNOT,Toffoli} depicted in Fig. 1. We

build a stochastic quantum circuit U =
∏M
k Uk by draw-

ing randomly with uniform probability pairs or triplets
of qubits and a random gate Uk ∈ I3 with probability
1/3. We remark that the Toffoli gate alone is sufficient
for universal classical computation [7]. We also consider
more restricted (and nonuniversal) circuits obtained by
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employing only gates in the set I2 = {SWAP,CNOT}.
At each step k of the circuit, the n qubits are parti-

tioned into subsystems (A,B) with nA and nB qubits,
and the entanglement properties of the system are ob-
tained through the singular values λk > 0, k = 1 . . . , r,
which result from the Schmidt decomposition [8, 9] of the
state |Ψt〉 =

∑r
k=1 λk |ψAt (k)〉⊗|ψBt (k)〉. The reduced den-

sity matrices ρA = trB(|Ψt〉〈Ψt|) and ρB = trA(|Ψt〉〈Ψt|)
have eigenvalues {pk = λ2k}. These pk define a probabil-
ity distribution whose Rényi entropies are defined as [10]

Sq(nA, nB) =
1

1− q log2

r∑
k=1

pqk , (1)

with
∑r
k=1 pk = 1. The zeroth Rényi entropy is related

to the rank, namely, the number r of nonzero singular
values, S0 = log2 r. The q = 1 Rényi entropy is the
Shannon entropy measuring the amount of information
in the distribution {pk}: S1 = −∑k pk log2 pk.

What happens to entanglement during the evolution
with gates? One can show that, under a generic stochas-
tic random circuit, entanglement grows linearly with
time, and then saturates to its maximum possible value
[11, 12]. This occurs typically, meaning that the proba-
bility of having a different outcome is zero in the thermo-
dynamic limit. A similar behavior is obtained also for the
restricted quantum evolutions considered here, whether
one uses two- or three-qubit gates. The saturation value
is typically reached after about M ∼ n2 transformations.
In Fig. 2, we see a numerical simulation of the protocol
used, with both two-qubit and three-qubit gates, which

confirms this scenario. We call this part of the protocol
“entanglement heating.”

Because entanglement increases with the number of
gates, in order to revert the evolution to return back to
the initial state, it is natural to attempt an algorithm
that completely disentangles the system. The entan-
glement entropies provide a natural metric to use in a
minimization process. If one is able to remove all the
entanglement while recording the moves that led to the
decreases, one builds one possible reverse algorithm that
takes the system from the final state back to the ini-
tial (product) state. In practice, we implement such
disentangling or “entropy cooling” algorithm as follows.
We attempt a gate, chosen at random, and compute the
change in entanglement entropy. Then we decide whether
or not to accept this gate into the sequence according to
a Metropolis algorithm: if the entanglement goes down,
we always take this move; if not, we take it with a cer-
tain probability, which we decrease as function of the
number of attempts (similarly to simulated annealing,
but applied to entanglement entropy and not energy).
More precisely, we use as the optimization function the
sum of the entanglement entropies over all bipartitions
of the system into nA and nB consecutive qubits with
nA + nB = n, namely, Sq =

∑n−1
nA=1 Sq(nA, nB). The

reason for this choice is that a single bipartition is sensi-
tive only to gates that act on qubits in both subsystems
A and B. However, if one considers the sums over the
entanglement for all bipartitions, one is sensitive to all
reductions in entanglement, no matter where the gates
act.
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Figure 2. (Color online) Evolution of the entanglement entropy S1 obtained from the bipartition of the qubit string at the
middle (nA = nB = 8) as function of the number of applied gates. First, Mh reversible gates are randomly applied (heating
period); second, a Metropolis algorithm is used to reverse the evolution and restore zero entropy (cooldown period). The solid
black (Mh = 512) and red (Mh = 4096) lines result from averaging S1 over 128 initial-state realizations. The brown lines show
the evolution of S1 for two typical realizations. (a) Only two-qubit gates are used. Upper inset: The heating period. Lower
inset: Shifted curves, showing that the cooling, on average, is independent of the duration of the heating period. (b) A mixture
of two-qubit and Toffoli gates is used. Inset: Detail of the transition between heating and cooling periods. The dashed line
indicates the transition point.
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Figure 3. (Color online) (a) The distribution of the spacing
between consecutive unfolded singular values obtained from a
bipartition at the middle of a n = 16 qubit string at the end
of the heating period (Mh = 512). Solid black circles are for
two-qubit gate heating and open red squares are for heating
with a mixture of two-qubit and Toffoli gates. Solid green
line: GOE prediction. Dashed blue line: Poisson distribution.
Dotted-dashed maroon line: Semi-Poisson distribution. Inset:
The tail of the distributions. (b) The average spectral rigidity
∆3(L) obtained from the same spectra (a linear fit is used for
the semi-Poisson line). A total of 5000 realizations were used
to compute the averages.

The resulting q = 1 Rényi entropy as a function of
the gate number for a given sequence of the algorithm
using only the gates in I2 is shown in Fig. 2(a). The
data show two examples of the entanglement evolution
for two particular “heating” and “cooling” runs, as well
as the average of 128 different realizations with random
initial product states for 16 qubits, with each θj ran-
domly picked from the interval [0, π], and φj = 0, π (thus
focusing on real wave functions). We show data for the
case when the system is entangled with 512 and with
4096 gates. The system is “cooled” by minimizing S0
(similar results are obtained when minimizing S2). No-
tice that the “cooling” time for the average curve does
not depend on how long the system was “heated,” pro-
vided that the same maximum entanglement entropy is
reached. The disentangling algorithm works for all in-
dividual realizations of the protocol. We were always
able to reverse to a completely factorized tensor product
state with zero entanglement. This is quite remarkable,
because the success of the algorithm does not depend
at all on the amount of the entanglement produced. So
one may wonder whether every quantum circuit can be
reversed with such a cooling protocol.

To answer this question, consider now the case when
entanglement entropy “heating” involves the gates in I3.
Then, apply the disentangling algorithm using the same
set of gates. For all realizations studied, we find that
it is never possible to completely disentangle the state
using the Metropolis protocol described above [13]. In
Fig. 2(b) we show two typical realizations of the heating
and cooling protocol, with a random initial product state
and 512 random gate sequences for the heating phase. We
also show the average over 128 realizations.

And yet, by only looking at the amount of entangle-
ment generated upon “heating,” we cannot tell whether
the evolution is reversible by the cooling algorithm. As
we have shown, by heating with either two-qubit gates
or a mixture of two-qubit and Toffoli gates, one rapidly
reaches an almost maximally entangled state. Neverthe-
less, only for the former are we able to reverse the system
back into a product-state form. Indeed, it is known that
most states in the Hilbert space are maximally entangled,
and that generic quantum evolutions will eventually lead
to an almost maximally entangled state [11, 14–16]. This
happens even under quantum quench with an integrable
Hamiltonian [17].

What is in the entanglement, which is not the entangle-
ment entropy, that tells us whether a quantum evolution
is reversible or not? The answer lies in the statistics of the
levels {pk} in the entanglement spectrum. We have com-
puted the entanglement spectrum of the qubit string at
the end of the heating period. The spectrum is obtained
from the singular values resulting from the Schmidt de-
composition of the quantum state upon bipartitioning of
the qubit string in the middle (i.e., nA = nB = n/2).
The spectrum is first unfolded to yield a constant den-
sity before the statistical analysis is performed (see the
Appendix for a detailed description of the unfolding pro-
cedure). In Fig. 3(a) we show the distribution of the
spacings between adjacent singular values for reversible
cases (heating period performed with I2 gates) and irre-
versible ones (heating period performed with I3 gates).
The difference is striking: while the data points for the
irreversible case match quite closely the distribution of
spacings of the Gaussian orthogonal ensemble (GOE) of
random matrices [19], the data points for the reversible
case show a weaker repulsion and follow the so-called
semi-Poisson statistics, which has been proposed for the
energy spectra of systems at metal-insulator transitions
[18]. The difference in behavior is also manifest in the
spectral rigidity function ∆3(L), which measures, for a
given interval L, the least-square deviation of the spec-
tral staircase from the best-fitting straight line [20]. In
Fig. 3b, long-range correlations are much stronger in the
irreversible case, with the data points also falling close to
the GOE prediction. For the reversible case, the singular
values are much less correlated and the spectrum much
less rigid. This indicates that the statistical fluctuations
of the entanglement spectra of irreversible systems are
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Figure 4. (Color online) The statistical fluctuations of the en-

tanglement spectrum for initial product states |χ(1)〉 (orange

empty squares) and |χ(2)〉 (blue full circles) entangled with a
mixture of two-qubit and Toffoli gates (n = 16, Mh = 512).
The solid green line is the GOE prediction. (a) Distribution
of unfolded singular value spacings. Inset: distribution tails.
(b) Average spectral rigidity ∆3(L). Statistical averages per-
formed over 5000 realizations.

similar to those observed in the energy spectrum of the
so-called quantum chaotic systems [3].

In Fig. 4 we also show the entanglement level statistics
for the particular case when one starts with initial factor-

ized states of the form |χ(k)〉 = |ψ(k)
1 〉⊗|ψ

(k)
2 〉⊗· · ·⊗|ψ

(k)
n 〉,

k = 1, 2, where |ψ(1)
1 〉 = |0〉 and |ψ(1)

j 〉 = (|0〉+|1〉)/
√

2 for

j = 2, . . . , n, and |ψ(2)
j 〉 = (|0〉− |1〉)/

√
2 for j = 1, . . . , n.

We evolve these n = 16-bit states with M = 512 gates
chosen randomly from the set I3. The data in Fig. 4
clearly conform to the GOE statistics, and we observe
that the disentangling algorithm again fails, indicating
that reversing the computation is extremely difficult.

In quantum mechanics, irreversibility, chaos, noninte-
grability and thermalization are phenomena often associ-
ated with one another. Unfortunately, some of these no-
tions are ill defined, such as integrability and lack thereof,
and the associations are either weak or plagued by coun-
terexamples. For instance, irreversibility can be associ-
ated to both chaotic and nonchaotic Hamiltonians [4, 5]
and there are nonintegrable systems that do not ther-
malize [21]. Moreover, some of these concepts are only
defined in the context of time-independent Hamiltonian
evolutions. For instance, the energy levels of a chaotic
Hamiltonian show Wigner-Dyson statistics.

In this Letter we presented an alternative approach
to the question of irreversibility and complex behavior in

quantum systems that works purely at the wave-function
level. We did so by studying the eigenvalues of the re-
duced density matrix of a subsystem, the so-called en-
tanglement spectrum [22]. We showed that (i) a disen-
tangling Metropolis algorithm provides a firm notion of
reversibility, namely, the evolution can be inverted if the
state can be disentangled, and (ii) irreversibility arises
when the level statistics of the entanglement spectrum of
a subsystem is Wigner-Dyson.

On the other hand, in the example we studied where
the spectrum did not follow Wigner-Dyson statistics, we
were always capable of reverting the evolution, even with
zero knowledge about the quantum circuit. It is remark-
able that the length of the reverted circuit does not de-
pend on the length of the initial circuit, as long as the
maximum entanglement entropy is reached. In the disen-
tangling algorithm, we obtained similar results with the
Rényi entropy S2. This is remarkable because S2 is an
observable that can be measured [23, 24], for example, in
optical lattices with ultracold atomic gases [25].

The results of this work motivate several questions and
applications. The method presented here is applicable
to any kind of quantum evolution, regardless of whether
it comes from a quantum circuit, a time-dependent or
-independent Hamiltonian system, or an open quantum
system. First of all, we can examine the behavior of the
entanglement level spacing statistics in integrable Hamil-
tonian models both in the ground state or during the
time evolution after a quantum quench. Using techniques
such as the density matrix renormalization group, one
can study these models once integrability is broken. We
believe that our approach can shed new light on the no-
tion of integrability and lack thereof in quantum systems.
The possibility of studying quantum systems away from
equilibrium and their universal properties in dynamical
phase transitions [26] and many-body localization [27–29]
is another feature of the method that only involves wave
functions. Similarly, we can study the behavior of the
entanglement level spacing statistics at critical points of
integrable and nonintegrable systems [30, 31]. The adia-
baticity of time-dependent quantum processes [32] can be
examined under the lens of the entanglement spectrum
as well, with potential applications to adiabatic quantum
computing. Moreover, one can study how the complexity
of the entanglement spectrum is related to quantum al-
gorithms capable of giving an exponential speedup [33].
Under the same lens of the entanglement spectrum, one
should study the typicality of quantum chaos in random
states [34, 35]. Entanglement is very ubiquitous in the
Hilbert space [15, 34], and while this feature has been
crucial to show the typicality of thermalization in closed
quantum systems [36], this also means that entanglement
entropy is unable to characterize quantum irreversibility,
and the difference between integrable and nonintegrable
systems. Our results show that the understanding of
complex quantum behavior lies in the statistics of the



5

fluctuations of the entanglement level spacing.
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APPENDIX: SPECTRAL ANALYSIS

Before computing the statistical properties of the singular values λk, k = 1, . . . , d, the spectrum must be unfolded
in such a way to produce a new sequence sk = f(λk), k = 1, . . . , d, with a uniform density. In Fig. 1 we show typical
spectra obtained for n = 16 qubit systems after a heating period of 512 gates and starting from a random initial state.
For the cases where the initial state has amplitudes W (x) taking continuous values (in the set of real numbers), both
small and large jumps appear in some spectra, particularly for the case of circuits involving only two-bit permutation
gates. We thus divided the spectrum of each realization into segments and fitted to each segment an independent
polynomial function (see Fig. 1). Segments shorter than 10 singular values were not considered and singular values
near the beginning or the end of the spectrum were discarded. For the cases of initial states with discrete amplitudes,
namely, W (x) = 0, 1 or W (x) = ±1, the spectra are quite smooth (see Fig. 2) and follow accurately a Marchenko-
Pastur distribution, which can be derived from the semi-circle eigenvalue distribution of Random Matrix Theory:

sk =
4

π

∫ 1

xk

dx
√

1− x2 (2)

= 1− 2

π

[
xk

√
1− x2k + arcsin(xk)

]
, (3)

where x2k = λ2k d/4Z(1 − p1) and Z =
∑d
k=1 λ

2
k. Here, p1 is the probability of choosing an initial amplitude W = 1.

In these cases, the unfolding was done with the same continuous curve for all realizations.
The distribution of spacings, P (s), where s = sk+1−sk, accounts for short-range correlation and repulsion. Results

were compared to the Poisson and GOE predictions (we did not need to consider other ensembles because only the
entanglement entropy of states with real amplitudes were analyzed): PPoisson(s) = (1/∆) exp(−s/∆) and PGOE(s) =
π
2 (s/∆2) exp(−πs2/4∆2), where ∆ = 〈s〉.

The spectral rigidity was quantified through the function

∆3(L) =
1

L

〈
mina,b

∫ L/2

−L/2
dS [N(S + S0)− (a+ bS)]

2

〉
S0

, (4)

where

N(S) =

d∑
k=1

θ(S − sk) (5)

is the spectral staircase. Notice that for a given value of the interval L, the averaging also involves sweeping over the
spectrum by varying the center point S0. The results were compared with the Poisson and GOE predictions, namely,
∆Poisson

3 (L) = L/(15∆) and ∆GOE
3 (L) = ln(L/∆)/π2 − 0.00696 for L� ∆.
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Figure 5. (a) Upper panels: examples of the entanglement spectra obtained by evolving a n = 16 qubit system with 512
random two-bit reversible gates starting from two different initial states with a continuous distribution of amplitudes (sample
numbers are indicated at the top of the graphs). Black circles represent the raw data and the solid red line is the result of a
multi-segment polynomial fit (third degree). Lower panels: the blue circles are the resulting unfolded spectrum. The magenta
dashed line is a guide to the eye, showing how close the distribution is to a straight line. (b) Similar to (a), but for states
evolved with a mixture of reversible two- and three-bit (Toffoli) gates.
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Figure 6. (a) Upper panels: example of the entanglement spectra obtained by evolving a n = 16 (d = 256) qubit system
with a mixture of 512 random reversible two- and three-bit (Toffoli) gates starting from an initial states with a discrete
distribution of amplitudes, namely, W (x) = 0, 1. Black circles represent the raw data and the solid red line indicates k/d =

1− (2/π)[xk
√

(1−x2k)−asin(xk)], with xk = λ2
k/Z and Z =

∑d
k=1 λ

2
k. Lower panels: the blue circles are the resulting unfolded

spectrum. The magenta dashed is a guide to the eye, showing how close the distribution is to a straight line. (b) Similar to
(a), but for initial states with a distribution of amplitudes W (x) = ±1.
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