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All-microwave nonadiabatic multiqubit geometric phase gate for superconducting qubits
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Geometric phase gates are promising tools toward robust quantum computing owing to their robustness against
certain control errors and decoherence. Here, we propose a multiqubit architecture with a nonadiabatic geometric
phase gate scheme that is feasible in widely used superconducting qubit designs such as transmon and fluxonium.
Through segmented microwave drive on multiple qubits coupled off-resonantly to a common resonator, the
geometric phase gate is obtained from the qubit-state-dependent displacement of the resonator without fine-
tuning the qubit frequencies. Fidelity above 99.99% is achieved in simulation under the available experimental
parameters. Our scheme uses all-microwave control and only exploits the lowest qubit levels with long coherence
time; thus it is desirable for experiments. Together with the single-qubit holonomic gates demonstrated in earlier
experiments, our scheme can realize universal all-geometric quantum computing, and it also finds applications
in quantum simulation with many-body interactions.
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I. INTRODUCTION

When a quantum system undergoes a cyclic evolution, it
acquires a geometric phase, or more generally is subjected to a
unitary operator known as a holonomy, which solely depends
on the path geometry but not on how fast it is traversed
[1–4]. Since its discovery, geometric phases have found wide
applications [5] such as the topological effects in condensed
matter systems [6] and quantum simulation of gauge field
theories [7]. Furthermore, owing to the intrinsic robustness
against certain types of control errors [8–11] and decoherence
[10,12,13], geometric gates make a preferable approach to-
ward fault-tolerant quantum computing, namely, the idea of
geometric or holonomic quantum computing [14–17].

Geometric single-qubit and two-qubit gates have been
demonstrated in experiments in various systems such as nu-
clear magnetic resonance (NMR) [18–20], nitrogen vacancy
(NV) centers [21–25], trapped ions [26,27], and supercon-
ducting circuits [28–34]. In a superconducting qubit system,
which is one of the leading platforms for quantum computing,
experimental demonstrations of geometric gates are gener-
ally in the nonadiabatic regime, where careful cancellation
of the dynamical effects is needed [35–38]. In comparison,
the adiabatic ones require longer gate time and are hence
more vulnerable to decoherence in the system, despite being
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more robust against noise in control parameters [39]. Another
possible direction is the unconventional geometric two-qubit
gate [40], where the dynamical phase is shown to be always
proportional to the geometric ones. Thus the delicate cancel-
lation of the dynamical phase is no longer needed even in
the nonadiabatic case, which allows strong noise resilience
[13,40]. Actually, the same mechanism was proposed earlier
in ion traps without being recognized as a geometric gate
[41–43] and has shown high gate fidelity [26,44,45].

In the aforementioned experimental realization of geo-
metric gates in superconducting circuits, usually the higher
excited levels of the circuit are exploited to encode the qubit
states or to assist the gate implementation [28–32,34]. These
schemes are thus subjected to more severe decoherence than
that for the lowest two qubit levels. Proposals using only the
low qubit levels exist based on the unconventional geometric
phase through the coupling to a resonator [46,47]; however,
they require specially designed superconducting qubits as well
as time-dependent flux control for the gate operation and
hence have not been realized yet. Similar ideas have also been
used in resonator-induced phase gates [46,48–51], where the
microwave control is applied on the shared resonator mode for
a global entangling gate. If gates among selected qubits are
desired, one will need to tune the frequency of each qubit to
and away from resonance on demand [33] or use complicated
spin echo pulses [47].

Here, we propose a multiqubit architecture with an all-
microwave scheme for multiqubit geometric phase gates
which is compatible with popular superconducting qubit de-
signs such as transmon and fluxonium. An all-microwave
control scheme can provide frequency selectivity and al-
lows us to use fixed-frequency computational qubits, thereby
minimizing the sensitivity of the qubits with respect to the
sources of possible noise. Moreover, by applying microwave
drive among multiple qubits off-resonantly coupled to a com-
mon resonator, we generate qubit-state-dependent rotation
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and displacement on the cavity mode, thus obtaining the
unconventional geometric phase between the desired qubits
[40]. The residual entanglement between the qubit states and
the resonator is suppressed by segmented microwave control,
and fidelity above 99.99% is achieved in the numerical sim-
ulation using realistic parameters. A similar control scheme
based on segmented laser pulses has likewise been used for
design of high-fidelity trapped-ion quantum gates [52]. A
well-known example of the all-microwave gate scheme is
the cross-resonance (CR) gate, which has been experimen-
tally realized with gate fidelity reaching 99% [53]. However,
compared with the CR gate, our scheme by using the single
microwave drive tone on the fixed-frequency computational
qubits is beneficial to improving the on-off ratio of the cou-
pling between the qubits and further decreasing frequency
crowding in a large superconducting network. Furthermore,
compared with earlier schemes of geometric gates for super-
conducting qubits [29,32–34,51,54,55], our scheme uses only
the lowest qubit levels and the cavity mode without touch-
ing higher-energy states, and thus provides relatively long
coherence time; also, the single-tone microwave strategy on
fixed-frequency qubits further reduces the circuit complexity
to prevent extra decoherence. Moreover, the proposed scheme
allows for one-step implementation of a multiqubit entangling
state with the global geometric phase gate by optimizing
the segmented driving pulses. Together with the single-qubit
geometric gates demonstrated in previous experiments [32],
universal all-geometric quantum computing can thus be real-
ized. The multiqubit entangling gate implemented here can
also be applied in quantum simulation with many-body inter-
action Hamiltonian.

This paper is organized as follows. In Sec. II, we intro-
duce a system Hamiltonian for a two-qubit geometric phase
gate under an ideal two-level qubit model. In Sec. III, we
analyze the two-qubit gate scheme in a multilevel transmon
model, treating the transmon as a Duffing oscillator. We show
that the presence of the high energy level can be effectively
optimized with the multisegment driving scheme. Section IV
extends to a global geometric phase gate scheme for one-step
implementation of multiqubit entangling state by optimizing
the segmented driving pulses.

II. TWO-QUBIT GEOMETRIC PHASE GATE
IN A QUBIT MODEL

A. Model and single-segment scheme

We consider a generic system of n superconducting qubits
(Q1, Q2, . . . , Qn) and a microwave resonator (bus), as outlined
in Fig. 1(a). Suppose we want to implement a two-qubit gate
between Q1 and Q2 as shown in Fig. 1(b). Here, we first
describe the gate scheme under the two-level approximation
of the qubits, and later we generalize it to include the effects of
higher levels. The two qubits are coupled to the bus, modeled
as a single-mode harmonic oscillator, at the coupling strength
gi (i = 1, 2), and are each driven via an XY control line
by a microwave tone with an amplitude �i (i = 1, 2) and a
frequency ωd . For clarity, we consider a system which satisfies
the rotating-wave approximation, and the situation without the
rotating-wave approximation will be discussed later. The full
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FIG. 1. (a) The system consists of n superconducting qubits
(Q1, Q2, . . . , Qn) coupled to a common microwave resonator (bus).
(b) A schematic of the two-qubit geometric phase gate. The two tar-
get qubits are selectively driven by a microwave pulse �i(t ) cos ωdt
(i = 1, 2) via the XY control line.

system Hamiltonian under the rotating-wave approximation
can be expressed as

H = −
∑
i=1,2

ωi

2
σ i

z + ωba†a +
∑
i=1,2

gi(σ
i
+a + σ i

−a†)

+
∑
i=1,2

�i

2
(σ i

+e−iωd t + σ i
−eiωd t ), (1)

where ωi (i = 1, 2) are the frequencies of the qubit Qi and
σ i

z(+,−) are the corresponding Pauli Z, raising and lowering
operators. ωb is the frequency of the resonator with creation
and annihilation operators a† and a. The drive frequency ωd is
detuned from the qubits and the bus as ωd = ω1(2) + �1(2) =
ωb + δ. Under the conditions gi � �i � �i and δ � |�1 −
�2|, Eq. (1) can be transformed into (see Appendix A)

H =
∑
i=1,2

�̃′
i

2
σ i

z − δa†a +
∑
i=1,2

gi�i

2�i
σ i

z (a† + a)

+
∑
i=1,2

g2
i

�̃i − δ
σ i

z a†a, (2)

where �̃i = �i+�2
i /(2�i ), �̃′

i = �̃i+g2
i /(�̃i − δ) (i = 1, 2).

Ideally, since gi � �i, the last term in Eq. (2) can be ignored.
The effective Hamiltonian resembles that for the Mølmer-
Sørensen gate in an ion trap [41–43]. In the interaction picture
of H0 = ∑

i=1,2
1
2 �̃′

iσ
i
z − δa†a, the unitary evolution of the

gate can then be derived by Magnus expansion as

Hgate =
∑
i=1,2

gi�i

2�i
σ i

z (a†e−iδt + aeiδt ),

Ugate = e−iHgatet = e[α(t )a†+α∗(t )a]eiβ(t )( g1�1
2�1

σ 1
z + g2�2

2�2
σ 2

z )
2

, (3)

where α(t ) = ∑
i=1,2

1
δ

gi�i

2�i
(e−iδt − 1)σ i

z , β(t ) = 1
δ2 (−δt +

sin δt ). By setting a gate time tgate = 2nπ/δ for an
integer n with constant microwave amplitude satisfying
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FIG. 2. (a) Schematic pulse sequence for the ideal two-qubit
geometric phase gate. (b) The qubit-state-dependent phase-space
trajectories of the resonator mode. (c) The ideal time evolution of
the system based on the Hamiltonian in Eq. (2) without the last term
starting from the initial state (|g〉 + |e〉)(|g〉 + |e〉)|0〉/2. Here, |g〉
(|e〉) and |n〉 (n = 0, 1, 2, . . .) represent the single-qubit ground (ex-
cited) state and cavity photon state in the bare basis. The population
undergoes cyclic evolution, and each basis state acquires a differ-
ent geometric phase. (d) Gate fidelity under the full Hamiltonian
equation (1) vs the quality of the approximation conditions �i/gi

(i = 1, 2). High gate fidelity is achieved when �i � gi is satisfied.

(nπg1g1�1�2)/(δ2�1�2) = π/4, we get a two-qubit ge-
ometric phase gate GP2 ≡ exp[−i(π/4)σ 1

z σ 2
z ], which is

equivalent to the controlled-NOT (CNOT) gate up to single-
qubit rotations.

This ideal single-segment gate scheme is sketched in
Fig. 2(a). In order to show the whole gate process more
clearly, we further study the evolution of the photon in the
bus. According to Eq. (3), the bus is driven classically and
evolves from the ground state to the coherent state:

|ψ (t )〉 = eiβ(t )( g1�1
2�1

σ 1
z + g2�2

2�2
σ 2

z )
2

|α(t )〉. (4)

Under the constant microwave drive, the cavity mode experi-
ences a qubit-state-dependent force in the phase space such
that its trajectory has a radius 1

δ
( g1�1

2�1
σ 1

z + g2�2

2�2
σ 2

z ) and an
angular velocity δ; meanwhile, it accumulates an Aharonov-
Anandan geometric phase during this cyclic evolution, which
is proportional to the enclosed area [40]. The corresponding
phase-space trajectories are shown in Fig. 2(b) (here, for sim-
plicity, we further choose g1�1/�1 = g2�2/�2 such that the
forces for the |gg〉 and the |ee〉 states are opposite while those
for the |ge〉 and |eg〉 states vanish). Since σ i

z is conserved for
the Hamiltonian equation (2), the population in each qubit
basis state remains unchanged while the bus state undergoes
cyclic evolution as shown in Fig. 2(c), which creates the
desired geometric phases.

B. Single-segment scheme with counter-rotating term

When the qubit frequency is much lower than the bus fre-
quency such as in fluxonium qubits [56,57], the rotating-wave
approximation cannot be applied. Under this circumstance,

the full Hamiltonian is then described as

H =
∑
i=1,2

−ωi

2
σ i

z + ωba†a +
∑
i=1,2

giσ
i
x (a + a†)

+
∑
i=1,2

�i cos(ωdt )σ i
x. (5)

Entering the interaction picture of ωd a†a gives the Hamil-
tonian H = ∑

i=1,2 −ωi
2 σ i

z − δa†a + ∑
i=1,2 giσ

i
x (ae−iωd t +

a†eiωd t ) + ∑
i=1,2

�i
2 (e−iωd t + eiωd t )σ i

x. Since ωd is the highest
energy scale, we can use the formalism of Ref. [58] to obtain
an effective Hamiltonian for this fast-oscillating system.
Specifically, we get H0 = −∑

i=1,2
ωi
2 σz − δa†a and

V (+1) =
∑
i=1,2

giσ
i
xa† +

∑
i=1,2

�i

2
σ i

x,

V (−1) =
∑
i=1,2

giσ
i
xa +

∑
i=1,2

�i

2
σ i

x. (6)

The effective Hamiltonian is then expressed as

H = H0 + 1

ωd
[V (+1),V (−1)] = H0 − 1

ωd

(∑
i=1,2

giσ
i
x

)2

. (7)

It is obvious that the qubit-state-dependent displacement
terms no longer exist due to the commutation of the σx terms,
in other words, the cancellation between the rotating-wave and
the counter-rotating-wave terms. However, there is a simple
scheme to regenerate the qubit-state-dependent displacement
terms. Let us consider the situation where the qubit is capaci-
tively driven while the qubit-bus coupling is inductive, which
can be realized in experiment, for example, for fluxonium
qubits. Then we obtain

V (+1) =
∑
i=1,2

giσ
i
xa† +

∑
i=1,2

�i

2
σ i

y,

V (−1) =
∑
i=1,2

giσ
i
xa +

∑
i=1,2

�i

2
σ i

y. (8)

Following the derivation of Eq. (7), this time we get an effec-
tive Hamiltonian

H = H0 +
∑
i=1,2

gi�i

ωd
iσ i

z (a† − a), (9)

where the high-order term − 1
ωd

(
∑

i=1,2 giσ
i
x )2 has been

neglected considering the approximation condition gi �
�i (i = 1, 2). It is clear that this effective Hamiltonian is
intrinsically the same as Eq. (2), with the small difference that
the coefficient of the qubit-state-dependent displacement is
twice as large with a π

2 phase. Therefore our gate scheme still
applies for this case. Note that here we still consider the ideal
two-level model, only with the counter-rotating term included.
For realistic qubits such as fluxonium, the higher energy levels
may not be neglected, and in this situation, the multisegment
scheme described in Sec. III can be applied.

With this modification, now we study the quality of the ap-
proximations for this single-segment scheme numerically [59]
in Fig. 2(d), where we fix ω1 = 2π × 0.1 GHz, ω2 = 2π ×
0.3 GHz, g1 = g2 = 2π × 20 MHz, and δ = 2π × 4 MHz as
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FIG. 3. (a) Schematic pulse sequence for a two-qubit geometric
phase gate using k = 5 pulse segments. (b) The time evolution of the
system based on the Hamiltonian in Eq. (2) using the single-segment
gate scheme in the transmon parameter regime. The system quantum
state is represented in the bare basis indicated in the figure. A large
deviation from the ideal case is observed due to the breakdown of
the approximations. (c) Simulated gate fidelity based on the Hamil-
tonian in Eq. (1) for the single-segment (red dots) and multisegment
(k = 4, blue stars) schemes at various bus frequencies and ratios of
�i/gi (where �i represents the Rabi frequency in the single-segment
scheme). (d) The gate fidelity of the multisegment (k = 4) scheme
at various bus frequencies and qubit frequencies [The first group of
bars (left side): Both the qubit frequencies are lower than the bus
frequencies. The fifth group of bars (right side): Both qubit frequen-
cies are higher than the bus frequencies. The second to fourth groups
of bars: The frequency of Q1 (Q2) is lower (higher) than the bus
frequency]. (e) The qubit-state-dependent phase-space trajectories
for the bus state using the multisegment (k = 5) scheme with the
higher qubit levels considered. Nodes on each path separate different
segments. (f) Gate fidelity vs qubit anharmonicity using the multi-
segment (k = 5) scheme with the higher qubit levels considered. The
simulation is executed based on the Hamiltonian in Eq. (13). With the
further “parameter-search” method to compensate the approximation
errors, gate fidelity can always be optimized to above 99.99%. Opt.,
optimization.

typical parameters for fluxonium qubits. For ωb/2π ranging
from 6 to 12 GHz, we design �1 and �2 accordingly using
the above equations with n = 1 and compute the gate fidelity.
As the ratio �i/gi increases, we see that the gate fidelity is
systematically improved.

C. Multisegment scheme

For typical transmon qubit [60] parameters, the above
approximation conditions are not well satisfied. Hence we
develop a multisegment scheme as sketched in Fig. 3(a),
where we divide the total gate time tgate into k equal segments,

with piecewise constant microwave amplitudes on each seg-
ment. For example, suppose we have ω1 = 2π × 4.1 GHz,
ω2 = 2π × 4.4 GHz, ωb = 2π × 5.5 GHz, g1 = g2 = 2π ×
20 MHz, and δ = 2π × 4 MHz. The designed �1 and �2 in
the single-segment scheme above will give a ratio �i/gi of
less than 7 and thus causes considerable gate infidelity. As
we can see in Fig. 3(b), the resonator does not return to the
initial state under Eq. (2) using the designed gate parameters.
Note that, if we still have gi,�i � �i, Eq. (2) will be valid
and the dominant error in the single-segment scheme comes
from the last term in Eq. (2), which can be recognized as a
qubit-state-dependent frequency shift of the resonator. This
can be understood as we arrange the effective Hamiltonian in
Eq. (2) as

H =
∑
i=1,2

1

2
�̃′

iσ
i
z − δ′

qd a†a +
∑
i=1,2

gi�i

2�i
σ i

z (a† + a), (10)

where δ′
qd = δ − ∑

i=1,2
g2

i

�̃i−δ
σ i

z is the qubit-state-dependent
frequency detuning of the bus. Since the qubit |g〉 and |e〉
states are conserved by this Hamiltonian and the reduced
Hamiltonian in the photon subspace is quadratic in a and
a†, the unitary evolution as well as the obtained geometric
phases can still be solved analytically. According to Eq. (10),
the evolution of the photon state |α(t )〉 in the Schrödinger’s
picture has the form

α(t ) = α(0)e−iδ′
qd t + (e−iδ′

qd t − 1)Dqd , (11)

where Dqd = 1
δ′

qd

∑
i=1,2

gi

2�i
σ i

z�i describes the qubit-state-

dependent displacement. Note that in addition to the displaced
state |α(t )〉, there is a geometric phase that is proportional
to the area enclosed by the phase-space trajectory. To realize
an effective two-qubit gate operation, the photon system at
the gate time should be decoupled from the qubit system.
Hence, by dividing the gate sequence into k segments, we
obtain enough degrees of freedom to move all the qubit-state-
dependent phase-space trajectories back to the origin again,
namely, to suppress the residual qubit-bus entanglement and
to improve the gate fidelity.

By replacing α(0) in Eq. (11) with the state at the end
of the previous segment, the final state at the gate time can
be acquired as α(tgate ) = eiθi j (tgate )α(0) + Ci j ; here i, j ∈ {0, 1}
denote the state of each qubit, and θi j is the aforementioned
qubit-state-dependent detuning. Ci j is the final displacement
of the bus state, which is determined by the segment number,
the duration time, and the amplitude of the segments. To
suppress the residual qubit-bus entanglement, it is necessary
to make the qubit-state-dependent photon states return to the
same point in the phase space, which implies

C00 = C01 = C10 = C11. (12)

This requirement gives three complex linear equations, and
thus it gives six real ones. If we use four segments (k = 4) for
the pulses on each qubit, we get eight degrees of freedom,
which are enough for these six linear constraints together
with one more requirement on the two-qubit geometric phase.
In Fig. 3(c) we present the optimization results using k = 4
segments and compare the gate fidelity with that from the
single-segment scheme. Note that, while the fidelity of the
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single-segment scheme is improving with the increasing of the
ratio �i/gi due to the requirement �i � gi, for the multiseg-
ment scheme here the fidelity is decreasing because now the
dominant error comes from the condition �i, gi � �i. Never-
theless, we see that the gate fidelity is significantly enhanced
under the the multisegment scheme and can be above 99% for
the available transmon parameters. In addition, in Fig. 3(d) we
explore different settings for the qubit frequencies compared
with the bus and find that high gate fidelity can be achieved
using the multisegment scheme for various frequency setups.

III. TWO-QUBIT GEOMETRIC PHASE GATE
IN A MULTILEVEL MODEL

Moreover, transmon qubits typically have small anhar-
monicity compared with the microwave detuning used above,
so the existence of higher energy levels should also be consid-
ered. The system Hamiltonian now can be described as

H =
∑
i=1,2

(
ωia

†
i ai + αi

2
a†

i a†
i aiai

)
+ ωba†a

+
∑
i=1,2

gi(a
†
i a + aia

†) +
∑
i=1,2

�i

2
(a†

i eiωd t + aie
−iωd t ),

(13)

where a†
i , ai (i = 1, 2) are the corresponding creation and an-

nihilation operators for the two qubits and αi (i = 1, 2) are
the anharmonicities of the qubit. Note that in Eq. (1) we have
σ+ = |e〉〈g| and σ− = |g〉〈e|, and through the off-resonant
coupling to the resonator, these terms become the qubit-state-
dependent force and frequency shift (|g〉〈g| − |e〉〈e|)(a† + a),
(|g〉〈g| − |e〉〈e|)a†a. Now following a similar derivation and
truncated to the third energy level (detailed derivations can be
found in Appendix B), we get the Hamiltonian

H = − δa†a +
∑
i=1,2

[(
−�̃i

1 − g2
i

�̃i
1 − δ

)
�i

1

+
(

−�̃i
1 − �̃i

2 − 2g2
i

�̃i
2 − δ

)
�i

2

+ gi�i

2�i
σ i

1z(a + a†) +
√

2λigi�i

2(�i − αi )
σ i

2z(a + a†)

+ g2
i

�̃i
1 − δ

σ i
1za

†a + 2g2
i

�̃i
2 − δ

σ i
2za

†a

]
, (14)

where �i
1 = |e〉i〈e|, �i

2 = | f 〉i〈 f |, σ i
1z = �i

0 − �i
1, σ i

2z =
�i

1 − �i
2. �̃i

1 = �i + �2
i

2�i
− λ2

i �
2
i

4(�i−αi )
, �̃i

2 = �i − αi − �2
i

4�i
+

λ2
i �

2
i

2(�i−αi )
(i = 1, 2) are the modified energy gaps, correspond-

ingly. Note that the exact value of λi (i = 1, 2) depends on the
circuit properties and the driving format of the qubits [61]. For
example, if both qubits are directly driven by the microwave
pulse, λi = √

2. Compared with the effective Hamiltonian in
Eq. (10), the corresponding rotation and displacement are now

modified as δ′
qd = δ − ∑

i=1,2( g2
i

�̃i−δ
σ i

1z + 2g2
i

�̃i−αi−δ
σ i

2z ), Dqd =
1

δ′
qd

∑
i=1,2( gi

2�i
σ i

1z +
√

2λigi

2(�i+αi )
σ i

2z )�i. It turns out that the

coupling between |e〉 and | f 〉 gives us an additional
qubit-state-dependent force and frequency shift |e〉〈e|(a† + a)

FIG. 4. (a) Schematic pulse sequence for an m-qubit geomet-
ric phase gate GPm and the generation of an m-qubit GHZ state
in a single step. The single-qubit rotation Rx (π/2) is added for
odd m. (b) The time evolution of GP3 under the ideal two-level
approximation Hamiltonian in Eq. (17) for fluxonium qubits from
the initial state (|g〉 + |e〉)(|g〉 + |e〉)(|g〉 + |e〉)|0〉/2

√
2. (c) Accu-

mulated three-qubit geometric phases for the multilevel transmon
model. Apart from the two-qubit phases, we also obtain a three-body
ZZZ term from the qubit-state-dependent force and the frequency
shift, which can be useful in quantum simulation of a many-body
interaction Hamiltonian. The global phase and the single-qubit terms
are not presented here. (d) Gate fidelity vs decoherence time of the
system based on the Lindblad master equation [red squares, T1 of the
bus where the Lindblad operator is chosen as a; orange diamonds, T1

of the qubit where the Lindblad operator is chosen as ai (i = 1 or 2);
blue stars, T2 of the qubit where the Lindblad operator is chosen as
a†

i ai (i = 1 or 2)]. Here, we assume a total gate time tgate = 500 ns.
The inset shows an enlarged region of the figure.

and |e〉〈e|a†a (the | f 〉〈 f | terms are irrelevant because the
| f 〉 level is never populated in our scheme). Apparently, the
multisegment scheme could still work in this situation, and
technically this additional displacement has not introduced
any new challenge to finding a solution of the linear equations
of Eq. (12). Then, in analogy to Eq. (3), Ugate can be calculated
in the interaction picture as

Ugate = Uk (τk ) · · ·Uj (τ j ) · · ·U2(τ2)U1(τ1),

Uj (t ) = eF (� j ,t )+iβ(t )
(
η1

1σ
1
1z+η1

2σ
1
2z+η2

1σ
2
1z+η2

2σ
2
2z

)2
t
, (15)

where β(t ) = 1
δ′2

qd
(−δ′

qdt+ sin δ′
qdt ), ηi

1 = gi�i

2�i
, ηi

2 =
√

2gi�iλi

2(�i+αi )

(i = 1, 2). F (� j, t ) represents the displacement operation of
a photon in the bus. Here, the microwave pulse is supposed to
be split into k segments, and the duration time of each pulse is
τ j ( j = 1, 2, . . . , k). In fact, the σ 1

1zσ
2
1z term is the target cou-

pling term of the geometric phase gate, while other coupling
terms in Eq. (15) may generate single-qubit rotations that
can be easily compensated. Applying Ugate on the two-qubit
computational space, it is clear that all terms are in the linear
space generated by σ 1

1z ⊗ σ 2
1z, I1 ⊗ I2, σ 1

1z ⊗ I2, and I2 ⊗ σ 2
1z.

Hence one can always extract a pure σ 1
1zσ

2
1z coupling term

after correcting the single-qubit phases and global phase. Also
note that when there is no anharmonicity, these added terms
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will make the force and the frequency shift independent of
the qubit state, which prevents us from obtaining a nontrivial
two-qubit gate. Therefore here it is desirable to have large
qubit anharmonicity and to set the microwave detuning to be
comparable.

We verify the corresponding results via simulation and
again get high-fidelity two-qubit gates by moving all the
qubit-state-dependent trajectories back to the origin by using
multiple segments as sketched in Fig. 3(e). In Fig. 3(f) we
choose ω1 = 2π × 5.104 GHz, ω2 = 2π × 5.204 GHz, ωb =
2π × 5.5 GHz, g1 = g2 = 2π × 20 MHz, δ = 2π × 4 MHz,
and vary the qubit anharmonicity α1 = α2 from −2π ×
300 MHz to −2π × 400 MHz. As we can see, the gate fidelity
(blue stars) for the multisegment scheme (k = 5) improves
with larger |αi|. Again the dominant error comes from the
violation of the requirement �i, gi � �i. Hence we im-
plement a “parameter-search” method to further optimize
the parameters. With fixed qubit and cavity frequencies, we
regard the gate fidelity F = f (�i j, ωd , t j ) computed from
Eq. (13) as a function of the microwave amplitude �i j (i ∈
{1, 2}, j ∈ {1, 2, . . . , k}), drive frequency ωd , and time t j

( j ∈ {1, 2, . . . , k}). Starting from the multisegment solution
we find above, the gate fidelity can be iteratively improved
using the standard numerical optimization algorithms [62].
As shown by the orange diamonds, the gate fidelity can be
above 99.99% for each anharmonicity (actually, in the exam-
ples considered here they reach 100% within the numerical
precision). Detailed parameters can be found in Appendix C.

IV. MULTIQUBIT GEOMETRIC PHASE GATE
AND APPLICATIONS

A. Single-segment scheme

Our geometric phase gate scheme can be easily general-
ized to multiple qubits coupled to a single microwave bus, as
shown in Fig. 1(a). The system Hamiltonian based on a qubit
model can be described as

H = ωba†a +
∑

i=1,2,...,m

−1

2
ωiσ

i
z + gi(σ

i
+a + σ i

−a†)

+
∑

i=1,2,...,m

�i

2
(σ i

+eiωd t + σ i
−e−iωd t ). (16)

We address the m qubits individually with microwave pulses
at the same drive frequency ωd . After a similar unitary trans-
formation, shown in Appendix A, and similar approximations,
the effective Hamiltonian can be expressed as

H = −δa†a +
∑

i=1,2,...,m

1

2
�̃′

iσ
i
z + gi�i

2�i
σ i

z (a† + a). (17)

At the gate time, the m-qubit geometric phase gate is then
acquired as

GPm ≡ e
−i

∑
i, j∈{1,2,...,m},i< j

gi�ig j � j
2�i� j

σ i
z σ

j
z
. (18)

We can further adjust the magnitude of �i to design the
specific two-qubit phases as we want. For example, in the
case of a three-qubit gate, simultaneous independent control
of all three phases σ 1

z ⊗ σ 2
z , σ 2

z ⊗ σ 3
z , σ 3

z ⊗ σ 1
z is achievable.

As for the case of more qubits, the number of two-body inter-
action terms exceeds the number of pulses, so we will need to
split more pulse segments to get enough degrees of freedom.
Figure 4(a) presents a scheme to create m-qubit GHZ state
using the GPm gate with all the θi j = π/4 together with
single-qubit rotations. The ideal time evolution for three two-
level qubits under GP3 based on the Hamiltonian in Eq. (17)
is shown in Fig. 4(b) with an initial state (|g〉 + |e〉)(|g〉 +
|e〉)(|g〉 + |e〉)|0〉/2

√
2.

B. Multisegment scheme

Furthermore, for a typical transmon qubit, the qubit-
state-dependent bus frequency shift terms cannot be ignored.
Similar to the derivation for the two-qubit geometric phase
gate in a multilevel model, the effective Hamiltonian in the
interaction picture of the qubits is described as

H = −δ′
qd a†a + Dqd (a + a†), (19)

where this time δ′
qd and Dqd are

δ′
qd = δ −

∑
i=1,2,...,m

(
g2

i

�̃i − δ
σ i

1z + 2g2
i

�̃i − αi − δ
σ i

2z

)
,

Dqd = 1

δ′
qd

∑
i=1,2,...,m

(
gi

2�i
σ i

1z +
√

2λigi

2(�i + αi )
σ i

2z

)
�i. (20)

Similarly, the evolution operator in the interaction picture
reveals

Uj (t ) = eF
′(� j ,t )+i(−δ′

qd t+sin δ′
qd t )D2

qd t , (21)

where F ′(� j, t ) represents the displacement of the photon
in the bus. Then, in analogy to Eq. (15), the Ugate could be
described as Ugate = Uk (τk ) · · ·Uj (τ j ) · · ·U2(τ2)U1(τ1). Note
that in Ugate, the D2

qd term contains two-body interaction, and
thus three-body interaction could be generated from δ′

qdt jD2
qd .

In addition, note that the matrix form of sin(δ′
qdt j ) ( j =

1, 2, . . . , k) could be projected onto any basis (I1, σ
1
z ) ⊗

(I2, σ
2
z ) ⊗ · · · ⊗ (Im, σ m

z ), which implies interactions beyond
three-body ones could also be generated. Hence the qubit-
state-dependent frequency shift can also be exploited to
engineer many-body interaction for quantum simulation be-
yond the two-body terms in the GPm gate. In general,
each qubit state in the {|g〉, |e〉}⊗m basis can acquire a
different geometric phase under the multisegment scheme,
so the whole geometric phase gate can be decomposed
into a global phase, m single-qubit phases, m(m − 1)/2
two-qubit phases, ..., and an m-body phase. As an exam-
ple, Fig. 4(c) shows the values of the two-qubit and the
three-qubit phases using parameters ω1 = 2π × 5.074 GHz,
ω2 = 2π × 5.144 GHz, ω3 = 2π × 5.214 GHz, ωb = 2π ×
5.5 GHz, g1 = g2 = g3 = 2π × 20 MHz, δ = 2π × 4 MHz,
and α1 = α2 = α3 = −2π × 380 MHz with the segmented
microwave amplitudes deliberately designed to enlarge the
three-qubit term.

V. DISCUSSION AND CONCLUSIONS

To sum up, we propose a geometric phase gate scheme
in a multiqubit architecture with simple implementation and
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TABLE I. Simulation parameters for the GP2. All data except for those of tgate are divided by 2π .

Index ω1 (GHz) ω2 (GHz) ωb (GHz) g1 (MHz) g2 (MHz) �1 (MHz) �2 (MHz) δ (MHz) �1 (MHz) �2 (MHz) tgate (ns) Parameter scopea

1 0.1 0.3 6.0 20 20 295.2 285.2 4 5904 5704 250 Fluxonium
2 0.1 0.3 7.0 20 20 345.2 335.2 4 6904 6704 250 Fluxonium
3 0.1 0.3 8.0 20 20 395.2 385.2 4 7904 7704 250 Fluxonium
4 0.1 0.3 9.0 20 20 445.2 435.2 4 8904 8704 250 Fluxonium
5 0.1 0.3 10.0 20 20 495.2 485.2 4 9904 9704 250 Fluxonium
6 0.1 0.3 11.0 20 20 545.2 535.2 4 10904 10704 250 Fluxonium
7 0.1 0.3 12.0 20 20 595.2 585.2 4 11904 11704 250 Fluxonium
8 4.1 4.4 5.5 20 20 140.4b 110.4b 4 1404 1104 250 Transmon
9 4.1 4.4 6.0 20 20 190.4b 160.4b 4 1904 1604 250 Transmon
10 4.1 4.4 6.5 20 20 240.4b 210.4b 4 2404 2104 250 Transmon
11 4.1 4.4 7.0 20 20 290.4b 260.4b 4 2904 2604 250 Transmon
12 4.1 4.4 7.5 20 20 340.4b 310.4b 4 3404 3104 250 Transmon
13 4.1 4.4 8.0 20 20 390.4b 360.4b 4 3904 3604 250 Transmon
14 5.004 6.004 5.5 20 20 b b 4 500 −500 320 Transmon
15 4.804 6.204 5.5 20 20 b b 4 700 −700 320 Transmon
16 4.604 6.404 5.5 20 20 b b 4 900 −900 320 Transmon
17 6.9 6.6 5.5 20 20 b b 4 −1396 −1096 320 Transmon
18–22 5.104 5.204 5.5 20 20 b b 4 400 300 500 Transmon
23 5.104 5.204 5.5 20 20 b b 4.077 400 300 501.40 Transmon
24 5.104 5.204 5.5 20 20 b b 4.711 400 300 500.39 Transmon
25 5.104 5.204 5.5 20 20 b b 5.138 400 300 500.17 Transmon
26 5.104 5.204 5.5 20 20 b b 4.995 400 300 500.31 Transmon
27 5.104 5.204 5.5 20 20 b b 5.066 400 300 500.17 Transmon

aThe parameter scope represents the qubit type to which the listed parameters belong.
bThese parameters are further optimized using multiple segments in Tables II and III.

high fidelity using the available parameters for transmon and
fluxonium qubits. Our scheme uses microwave-only control
on fixed-frequency qubits and only the lowest qubit levels, and
thus it is convenient for experiments and is not subjected to the
main decoherence sources in previous schemes. If selective
gates among arbitrary subgroups of qubits are desired, one can

either use the multisegment scheme to set all the multiqubit
geometric phases to the target value or take advantage of
the recently developed tunable couplers [63,64] to turn off
the coupling between the other irrelevant qubits and the bus.
Meanwhile, the geometric nature of this phase gate makes it
robust against certain control errors and noise [13,26,40]. As

TABLE II. Drive amplitude for the GP2 in the multisegment scheme. All data are divided by 2π . Values are given in megahertz.

Index �11 �12 �13 �14 �15 �21 �22 �23 �24 �25

8 72.21 133.48 137.40 72.25 −70.80 −130.74 −126.86 −70.23
9 100.45 186.01 188.03 100.56 −99.78 −184.62 −182.60 −99.57
10 129.07 239.02 240.25 129.15 −128.67 −238.18 −236.95 −128.56
11 157.59 291.81 292.64 157.65 −157.32 −291.25 −290.42 −157.25
12 186.30 344.97 345.57 186.35 −186.11 −344.57 −343.98 −186.07
13 214.98 398.08 398.52 215.02 −214.84 −397.77 −397.33 −214.81
14 −28.84 −53.40 −53.40 −28.84 28.84 53.40 53.40 28.84
15 −40.41 −74.81 −74.81 −40.41 40.41 74.81 74.81 40.41
16 51.81 95.92 95.92 51.81 −51.81 −95.92 −95.92 −51.81
17 −71.66 −132.46 −136.42 −71.70 70.24 129.69 125.76 69.65
18 23.33 49.55 68.37 49.55 23.33 −24.67 −42.84 −52.78 −42.84 −24.67
19 −19.75 −48.24 −64.17 −48.24 −19.75 24.50 40.15 53.85 40.15 24.50
20 17.12 47.95 61.47 47.95 17.12 −23.49 −40.00 −52.71 −40.00 −23.49
21 14.79 46.87 59.48 46.87 14.79 −21.57 −40.22 −50.01 −40.22 −21.57
22 13.88 45.93 58.80 45.93 13.88 −20.52 −40.13 −48.52 −40.13 −20.52
23 28.23 48.21 75.37 46.83 28.44 −25.91 −38.48 −58.16 −38.46 −23.62
24 −16.17 −48.54 −83.69 −71.82 −33.72 8.65 34.46 59.88 50.43 25.04
25 18.55 57.55 85.72 64.70 23.06 −13.46 −43.81 −66.05 −49.36 −17.57
26 14.03 47.82 80.51 71.74 29.98 −11.27 −33.70 −60.41 −49.63 −21.77
27 19.28 53.76 75.24 60.99 25.30 −17.04 −41.47 −61.60 −46.73 −19.87
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we can see in Fig. 4(d), the gate fidelity is quite insensitive to
decoherence of both the qubit and the resonator. Furthermore,
since the evolution of the qubit is restricted to the subspace of
the lowest two levels, there is no limit from the relatively short
coherence time of the higher qubit levels. Our multiqubit geo-
metric phase gate scheme thus provides an attractive approach
to fault-tolerant quantum computing, as well as a natural way
to create many-body interactions for quantum simulation of
complicated spin models.
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APPENDIX A: FULL DERIVATION FOR THE TWO-QUBIT
GEOMETRIC PHASE GATE IN A QUBIT MODEL

In this Appendix, we develop the theory of the two-qubit
geometric phase gate based on a two-level qubit model. Our
system consists of two superconducting qubits Q1 and Q2

weakly coupling to a single-mode harmonic oscillator with
coupling strength gi (i = 1, 2). We consider a system which
satisfies the rotating-wave approximation (RWA). The sys-
tem with the counter-rotating term has been fully derived in
Sec. II. The static Hamiltonian can be represented as (h̄ = 1)

Hs =
∑
i=1,2

−1

2
ωiσ

i
z + ωba†a +

∑
i=1,2

gi(σ
i
+a + σ i

−a†), (A1)

where ωi (i = 1, 2) are the frequencies of the qubit Qi and
σ i

z(+,−) are the corresponding Pauli Z, raising and lowering
operators. ωb is the frequency of the resonator with creation
and annihilation operators a† and a. When both qubits are
individually driven via their own independent XY control line
by a microwave tone at the same drive frequency ωd but with
different drive amplitudes �i (i = 1, 2), the drive Hamilto-
nian under the rotating-wave approximation can be expressed
as

Hd =
∑
i=1,2

�i

2
(σ i

+e−iωd t + σ i
−eiωd t ). (A2)

Here, the drive frequency ωd satisfies the condition ωd =
ω1(2) + �1(2) = ωb + δ. Thus the full system Hamiltonian
is the combination of the static Hamiltonian and the drive
Hamiltonian

H = Hs + Hd . (A3)

Transforming the system Hamiltonian into the rotating frame
at the drive frequency ωd via the unitary transformation

U1 = eiωd t
(

σ1
z
2 + σ2

z
2 −a†a

)
, (A4)

we get

H ′ = U †HU − iU †U̇

T =
∑
i=1,2

1

2
�iσ

i
z − δa†a +

∑
i=1,2

gi(σ
i
+a + σ i

−a†)

+
∑
i=1,2

�i

2
(σ i

+ + σ i
−). (A5)

During the gate operation, the driving terms hybridize the bare
qubits’ energy levels. To clearly view the physical process in
the basis of dressed states in the weak driving condition, �i �
�i (i = 1, 2), the Hamiltonian can be rotated with the unitary
transformation

U2 = e
�1

2�1
(σ 1

+−σ 1
− )+ �2

2�2
(σ 2

+−σ 2
− )

. (A6)

Retaining this to the second order gives the Hamiltonian

H ′′ =
∑
i=1,2

1

2
�̃iσ

i
z − δa†a +

∑
i=1,2

gi(σ
i
+a + σ i

−a†)

+
∑
i=1,2

gi�i

2�i
σ i

z (a† + a), (A7)

where �̃i = �i+ �2
i

2�i
(i = 1, 2). Obviously, after this trans-

formation, the off-resonance driving for qubits is man-
ifested as a qubit-state-dependent displacement for the
bus. In our geometric phase gate regime, both of the
qubits are dispersively coupled to the common bus with
gi��i, δ��i, |�1−�2| (i = 1, 2). Therefore the Hamilto-
nian in the dispersive regime can be further transformed by
the Schrieffer-Wolff transformation (SWT) [65]

U3 = e
g1

�̃1−δ
(σ 1

+a−σ 1
−a† )+ g2

�̃2−δ
(σ 2

+a−σ 2
−a† )

. (A8)

The effective Hamiltonian for the two-qubit geometric phase
gate is finally acquired as

H ′′′ =
∑
i=1,2

1

2
�̃iσ

i
z − δa†a +

∑
i=1,2

gi�i

2�i
σ i

z (a† + a)

+
∑
i=1,2

g2
i

2(�̃i − δ)
(2σ i

z a†a + σ i
z )

− g1g2

�̃
(σ 1

+σ 2
− + σ 1

−σ 2
+), (A9)

where �̃ = 2/(1/�̃1 + 1/�̃2). In this part, we consider the
situation where gi � �i (i = 1, 2), which generates the re-

sults g2
i

(�̃i−δ)
,

g1g2

�̃
� gi�i

2�i
. Thus the last two terms in Eq. (A9)

can be omitted, and the effective Hamiltonian is obtained as

Hideal =
∑
i=1,2

1

2
�̃′

iσ
i
z − δa†a +

∑
i=1,2

gi�i

2�i
σ i

z (a† + a), (A10)

where �̃′
i = �̃i + g2

i /(�̃i − δ) (i = 1, 2). In the interaction
picture of H0 = ∑

i=1,2
1
2 �̃′

iσ
i
z − δa†a, the gate Hamiltonian

is then represented as

Hgate =
∑
i=1,2

gi�i

2�i
σ i

z (a†e−iδt + aeiδt ). (A11)
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The unitary evolution of the gate can then be derived by
Magnus expansion as

Ugate = e[α(t )a†+α∗(t )a]eiβ(t )( g1�1
2�1

σ 1
z + g2�2

2�2
σ 2

z )
2

, (A12)

where α(t )= ∑
i=1,2

1
δ

gi�i

2�i
(e−iδt−1)σ i

z , β(t )= 1
δ2 (−δt+ sin δt ).

For the purpose of realizing a two-qubit gate, the gate
should not induce entanglement between the qubits
and the bus. Therefore the evolution time could be
chosen to satisfy α(t ) = 0, and this gives the condition
t = nT (n ∈ Z ), T = 2π

δ
. Under this circumstance,

β(t ) = − 2πn
δ2 (n ∈ Z ), and the unitary evolution becomes

Ugate = e−i 2πn
δ2

(
g1�1
2�1

σ 1
z + g2�2

2�2
σ 2

z

)2

= e
−i 2πn

δ2

[
( g1�1

2�1
)

2
(σ 1

z )2+( g2�2
2�2

)
2
(σ 2

z )2+ g1�1g2�2
2�1�2

σ 1
z σ 2

z

]
. (A13)

It is easy to find that (σ 1
z )2 = I1, (σ 2

z )2 = I2 (I1, I2 denote the
identity operator for each of the qubits), and thus (σ 1

z )2, (σ 2
z )2

terms only create a global phase for the whole gate. The
remaining σ 1

z σ 2
z term generates an effective ZZ interaction

between the two qubits which can be used to realize the
geometric phase gate as we set

δ = 2
√

n

√
g1�1g2�2

�1�2
. (A14)

The two-qubit geometric phase gate is then acquired as

GP2 ≡ Ugate, t=nT = e−i π
4 σ 1

z σ 2
z =

⎛⎜⎝1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

⎞⎟⎠. (A15)

In fact, with single-qubit phase rotation, we can easily find
that the two-qubit geometric phase (GP2) gate turns into a
controlled-Z (CZ) gate through CZ = [Rz(−π

2 ) ⊗ Rz(−π
2 )] ·

GP2, and thus is equivalent to the controlled-NOT (CNOT) gate
which is essential in universal quantum computation.

APPENDIX B: FULL DERIVATION FOR THE TWO-QUBIT
GEOMETRIC PHASE GATE IN A MULTILEVEL MODEL

Through the multisegment scheme, when the last term in
Eq. (2) cannot be ignored, gate operations can still be well
optimized under a qubit model. However, for superconducting
qubits such as the transmon, we have to consider the signifi-
cant impact arising from the existence of the higher energy
levels. Careful investigation finds that in our geometric phase
gate framework, three-level approximation is sufficient since
the initial state of the qubit is always in |g〉 and |e〉 and will
not evolve to a higher excited state. Based on the transmon
system, with anharmonicities of both qubits in mind, we can
describe the system Hamiltonian as [60]

H =
∑
i=1,2

(
ωia

†
i ai + αi

2
a†

i a†
i aiai

)
+ ωba†a

+
∑
i=1,2

gi(a
†
i a + aia

†) +
∑
i=1,2

�i

2
(a†

i eiωd t + aie
−iωd t ),

(B1)

where a†
i , ai (i = 1, 2) are the corresponding creation and an-

nihilation operators for the two qubits. αi (i = 1, 2) are the
anharmonicities of the qubit. The system Hamiltonian in the
frame rotating at the drive frequency ωd becomes

H ′ = − δa†a +
∑
i=1,2

[−�i�
i
1 − (2�i − αi )�

i
2

]
+

∑
i=1,2

gi
(
σ i

1+a + σ i
1−a†

) +
√

2gi
(
σ i

2+a + σ i
2−a†

)
+

∑
i=1,2

�i

2

(
σ i

1+ + σ i
1−

) + λi�i

2

(
σ i

2+ + σ i
2−

)
, (B2)

where �i
1 = |e〉i〈e|, �i

2 = | f 〉i〈 f |, σ i
1+ = |e〉i〈g|, σ i

1− =
|g〉i〈e|, σ i

2+ = | f 〉i〈e|, σ i
2− = |e〉i〈 f | (i = 1, 2). λi (i = 1, 2)

depends on the circuit properties and the driving format of
the qubits [61]. Similarly, given the approximate condition
�1(2) � �1(2), the Hamiltonian can be rotated via the unitary

transformation U2 = e
∑

i=1,2
�i

2�i
(σ i

1+−σ i
1− )+ λi�i

2(2�i−αi ) (σ i
2+−σ i

2− ) as

H ′′ = − δa†a +
∑
i=1,2

{
�2

i

4�i
�i

0 +
(

−�̃i
1 + �2

i

4�i

)
�1

i +
(

−�̃i
1 + �2

i

4�i
− �̃i

2

)
�i

2

+ gi�i

2�i
σ i

1z(a + a†) +
√

2λigi�i

2(�i − αi )
σ i

2z(a + a†) + gi
(
σ i

1+a + σ i
1−a†

) +
√

2gi
(
σ i

2+a + σ i
2−a†

)
+

[
λigi�i

2(−�i + αi )
+

√
2gi�i

2�i

]
(|2〉i〈0|a + |0〉i〈2|a†) + λiαi�

2
i

8�i(αi − �i )
|0〉i〈2| + |2〉i〈0|)

}
, (B3)

where �i
0 = |g〉i〈g|, σ i

1z = �i
0 − �i

1, σ i
2z = �i

1 − �i
2, �̃i

1 = �i + �2
i

2�i
− λ2

i �
2
i

4(�i−αi )
, �̃i

2 = �i − αi − �2
i

4�i
+ λ2

i �
2
i

2(�i−αi )
(i = 1, 2).

In the dispersive regime gi � �̃i
1, �̃i

2 (i = 1, 2), the Hamiltonian can be further moved into the frame with unitary transfor-

mation U3 = e
∑

i=1,2
gi

�̃i
1−δ

(σ i
1+a−σ i

1−a† )+
√

2g1
�̃i

2−δ
(σ i

2+a−σ i
2−a† )

, which gives the effective Hamiltonian H ′′′ = Heff + Herr,

Heff = − δa†a +
∑
i=1,2

[
�2

i

4�i
�i

0 +
(

−�̃i
1 + �2

i

4�i
− g2

i

�̃i
1 − δ

)
�i

1 +
(

−�̃i
1 + �2

i

4�i
− �̃i

2 − 2g2
i

�̃i
2 − δ

)
�i

2
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TABLE III. Anharmonicity and time duration of segments for the GP2 in the multisegment scheme. The data of α1 and α2 are divided by 2π .

Index α1 (MHz) α2 (MHz) t1 (ns) t2 (ns) t3 (ns) t4 (ns) t5 (ns) t6 (ns) tgate (ns)

8 ∞ ∞ 0 80 160 240 320 320
9 ∞ ∞ 0 80 160 240 320 320
10 ∞ ∞ 0 80 160 240 320 320
11 ∞ ∞ 0 80 160 240 320 320
12 ∞ ∞ 0 80 160 240 320 320
13 ∞ ∞ 0 80 160 240 320 320
14 ∞ ∞ 0 80 160 240 320 320
15 ∞ ∞ 0 80 160 240 320 320
16 ∞ ∞ 0 80 160 240 320 320
17 ∞ ∞ 0 80 160 240 320 320
18 −300 −300 0 100 200 300 400 500 500
19 −330 −330 0 100 200 300 400 500 500
20 −350 −350 0 100 200 300 400 500 500
21 −380 −380 0 100 200 300 400 500 500
22 −400 −400 0 100 200 300 400 500 500
23 −300 −300 0 100.28 200.56 300.84 401.12 501.40 501.40
24 −330 −330 0 100.07 200.51 300.20 399.87 500.39 500.39
25 −350 −350 0 100.42 200.60 299.81 399.77 500.17 500.17
26 −380 −380 0 100.20 200.48 299.89 399.80 500.31 500.31
27 −400 −400 0 100.33 200.47 299.78 399.71 500.17 500.17

+gi�i

2�i
σ i

1z(a + a†) +
√

2λigi�i

2(�i − αi )
σ i

2z(a + a†) + g2
i

�̃i
1 − δ

σ i
1za

†a + 2g2
i

�̃i
2 − δ

σ i
2za

†a

]
,

Herr = − 1

2

(
g1β

2
1 + g2β

1
1

)(
σ 1

1+σ 2
1− + σ 1

1−σ 2
1+

) − 1

2

(
g2β

1
2 +

√
2g1β

2
1

)(
σ 1

2+σ 2
1− + σ 1

2−σ 2
1+

)
− 1

2

(
g1β

2
2 +

√
2g2β

1
1

)(
σ 2

2+σ 1
1− + σ 2

2−σ 1
1+

) −
√

2

2

(
g1β

2
2 + g2β

1
2

)(
σ 1

2+σ 2
2− + σ 1

2−σ 2
2+

)
+

∑
i=1,2

[
λi�

2
i αi

8�i(αi − �i )
(|2〉i〈0| + |0〉i〈2|) + 1

2

(
− λigi�i

�i − αi
+

√
2gi�i

�i

)
(|2〉i〈0|a + |0〉i〈2|a†)

−1

2
(giβ

i
2 −

√
2giβ

i
1)(|2〉i〈0|a2 + |0〉i〈2|a†2)

]
, (B4)

where σ i
1z = �i

0 − �i
1, σ i

2z = �i
1 − �i

2, β i
1 = gi

�̃i
1−δ

, β i
2 =

√
2gi

�̃i
2−δ

(i = 1, 2). Then, in analogy to Eq. (A12), Ugate can be calcu-

lated in the interaction picture as

Ugate = Uk (τk ) · · ·Uj (τ j ) · · ·U2(τ2)U1(τ1),

Uj (t ) = eF (� j ,t )+iβ(t )(η1
1σ

1
1z+η1

2σ
1
2z+η2

1σ
2
1z+η2

2σ
2
2z )

2
t , (B5)

where β(t ) = 1
δ′2

qd
(−δ′

qdt + sin δ′
qdt ), δ′

qd = δ − ∑
i=1,2( g2

i

�̃i−δ
σ i

1z + 2g2
i

�̃i−αi−δ
σ i

2z ), ηi
1 = gi�i

2�i
, ηi

2 =
√

2gi�iλi

2(�i+αi )
(i = 1, 2). F (� j, t )

represents the displacement operation of a photon in the bus. Here, the microwave pulse is supposed to be split into k segments,
and the duration time of each pulse is τ j ( j = 1, 2, . . . , k).

APPENDIX C: SIMULATION PARAMETERS

In this Appendix, we present our device parameters used
for the simulation shown in the main text. Table I shows the
fundamental parameters for realizing the two-qubit geometric
phase gate; meanwhile, Tables II and III give the supplemen-
tary data to Table I in the multisegment scheme. Table IV
displays the simulation parameters for realizing the three-
qubit geometric phase gate and the many-body interaction.

Indices 1–7 in Table I explore the influence of approximate
conditions on GP2 gate fidelity based on the single-segment

scheme for a qubit model, and the corresponding results
are depicted in Fig. 2(d) in the main text. Indices 8–13 in
Table I verify the gate infidelity caused by the relatively
poor approximate conditions in the single-segment scheme
for typical transmon parameters. Apparently, the results plot-
ted in Fig. 3(c) in the main text reveal that the GP2 may
fail once the frequency detuning between qubits and bus is
close. Further optimization with the multisegment scheme
(k = 4) is adopted to verify the effectiveness of the multi-
segment method for solving the evolution of the photon. The
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TABLE IV. Simulation parameters for the GP3. All data except for those of tgate are divided by 2π . We omit the units for all parameters
here. The corresponding units are displayed in Table I.

Index ω1 ω2 ω3 ωb g1 g2 g3 �1 �2 �3 δ �1 �2 �3 tgate

28 0.1 0.3 0.5 12.0 20 20 20 595.2 585.2 575.2 4 11904 11704 11504 250
29 5.074 5.144 5.214 5.5 20 20 20 4 430 360 290 900

α1 α2 α3 �11 �12 �13 �14 �15 �16 �21 �22 �23 �24 �25 �26

−380 −380 −380 −0.01 −0.43 −5.12 −7.93 −4.57 −0.09 −0.54 −8.85 −20.71 −24.55 −19.57 −7.47
�31 �32 �33 �34 �35 �36 t1 t2 t3 t4 t5 t6 t7

0.64 10.04 18.74 24.51 17.70 8.81 0 150 300 450 600 750 900

corresponding pulse parameters are shown in Tables II and
III with the improved gate fidelity plotted in Fig. 3(c) in
the main text. Indices 8 and 14–17 in Tables I–III explore
different settings for the qubit frequencies compared with
the bus. The outcomes exhibited in Fig. 3(d) demonstrate
that high gate fidelity can be achieved using the multiseg-
ment scheme for various frequency setups. Indices 18–22 in
Tables I–III demonstrate the effect of the qubit anharmonicity
on the gate fidelity based on the multisegment scheme (k = 5)
under the multilevel model, shown in Fig. 3(f) in the main

text. Indices 23–27 exhibit the optimized parameters via the
further “parameter-search” method, demonstrating the nearly
perfect gate fidelity shown in Fig. 3(f) in the main text. Index
28 in Table IV is an example of simulation parameters for
realizing GP3 in the single-segment scheme which is similar
to index 7. The parameters of index 29 in Table IV are used
to verify the generation of many-body interactions for a trans-
mon, revealing a potential application for controlling phase
accumulation during the multiqubit geometric phase gate via
the multisegment scheme.
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