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We consider revenue-optimal mechanism design for the case with one buyer and two items. The buyer’s
valuations towards the two items are independent and additive. In this setting, optimal mechanism is un-
known for general valuation distributions. We obtain two categories of structural results that shed light on
the optimal mechanisms. These results can be summarized into one conclusion: under certain conditions,
the optimal mechanisms have simple menus.

The first category of results state that, under a centain condition, the optimal mechanism has a mono-
tone menu. In other words, in the menu that represents the optimal mechanism, as payment increases, the
allocation probabilities for both items increase simultaneously. This theorem complements Hart and Reny’s
recent result regarding the nonmonotonicity of menu and revenue in multi-item settings. Applying this the-
orem, we derive a version of revenue monotonicity theorem that states stochastically superior distributions
yield more revenue. Moreover, our theorem subsumes a previous result regarding sufficient conditions under
which bundling is optimal [Hart and Nisan 2012].

The second category of results state that, under certain conditions, the optimal mechanisms have few
menu items. Our first result in this category says that, for certain distributions, the optimal menu contains
at most 4 items. The condition admits power (including uniform) density functions. Our second result in this
category works for a weaker (hence more general) condition, under which the optimal menu contains at most
6 items. This condition is general enough to include a wide variety of density functions, such as exponential
functions and any function whose Taylor series coefficients are nonnegative. Our last result in this category
works for unit-demand setting. It states that, for uniform distributions, the optimal menu contains at most 5
items. All these results are in sharp contrast to Hart and Nisan’s recent result that finite-sized menu cannot
guarantee any positive fraction of optimal revenue for correlated valuation distributions.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent systems; J.4
[Social and Behavioral Sciences]: Economics

Additional Key Words and Phrases: Optimal mechanism design; menu representation; revenue maximiza-
tion

1. INTRODUCTION
Optimal mechanism design has been a topic of intensive research over the past thirty
years. The general problem is, for a seller, to design a revenue-maximizing mechanism
for selling k items to n buyers, given the buyers’ valuations distributions but not the
actual values. A special case of the problem, where there is only one item (k = 1) and
buyers have independent valuation distributions towards the item, has been resolved
by Myerson’s seminal work Myerson [1981]. Myerson’s approach has turned out to be
quite general and has been successfully applied to a number of similar settings, such
as [Maskin and Riley 1989; Jehiel et al. 1996; Levin 1997; Ledyard 2007; Deng and
Pekeč 2011].
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While this line of work has flourished, it does not deepen our understanding of the
cases with more than one items (k > 1). In fact, even for the simplest multi-item case,
where there are two independent items (k = 2) and one buyer (n = 1) with additive
valuations, a direct characterization of the optimal mechanism is still open for general,
especially continuous, valuation distributions.

When the distributions are discrete, Daskalakis and Weinberg [2011]; Cai et al.
[2012a,b] show that the general optimal mechanism (k > 1) is the solution of a lin-
ear program. They provide different methods to solve the linear program efficient-
ly. For continuous distributions, Chawla et al. [2010]; Cai and Huang [2013] study
the possibility of using simple auctions to approximate optimal auctions. In addition,
Daskalakis and Weinberg [2012]; Cai and Huang [2013] provide PTAS of the optimal
auction under various assumptions on distributions.

Zoom in and look at the case with two independent items and a single buyer, sig-
nificant progresses have been made in this particular setting lately. Hart and Nisan
[2012] investigate two simplest forms of auctions: selling the two items separately and
selling them as a bundle. They prove that selling separately obtains at least one half
of the optimal revenue while bundling always returns at least one half of separate
sale revenue. They further extend these results to the general case with k indepen-
dent items: separate sale guarantees at least a c

log2k fraction of the optimal revenue;
for identically distributed items, bundling guarantees at least a c

log k fraction of the
optimal revenue. Li and Yao [2013] tighten these lower bounds to c

log k and c respec-
tively. Under some technical assumptions, [Daskalakis et al. 2013] show close relation
between mechanism design and transport problem and use techniques there to solve
for optimal mechanisms in a few special distributions. Hart and Nisan [2013] investi-
gate how the “menu size” of an auction can affect the revenue and show that revenue
of any finite menu-sized auction can be arbitrarily far from optimal (thus confirm an
earlier consensus that restricting attention to deterministic auctions, which has an
exponentially-sized (at most) menu, indeed loses generality). In the economic litera-
ture, Manelli and Vincent [2006, 2007]; Pavlov [2011a,b] obtain the optimal mecha-
nisms in several specific distributions (such as both items are distributed according
to uniform [0,1]). We will discuss these results in much more detail as we proceed to
relevant sections.

In this paper, we study the case with one buyer and two independent items, in hopes
of a direct characterization of exact optimal mechanisms. We obtain several exciting
structural results. Our conclusion is that, under fairly reasonable conditions, opti-
mal mechanisms has “simple” menus. We summarize our results below into two parts,
based on the conditions under which the results hold, as well as different interpreta-
tions of simplicity.

For ease of presentation, we need the following definition: for a density function h,
the power rate of h is PR(h(x)) = xh′(x)

h(x) .

— Part I (Section 4). If density functions f1 and f2 satisfy PR(f1(x)) + PR(f2(y)) ≤
−3, ∀x, y. The optimal mechanism has a monotone menu – sort the menu items in
ascending order of payments, the allocation probabilities of both items increase si-
multaneously – a desirable property that fails to hold in general (cf [Hart and Reny
2012]). Our result complements Hart and Reny’s observation and has two important
implications.
(1) [Hart and Nisan 2012, Theorem 28]. Hart and Nisan show that, if two item

distribution are further identical (i.e., f1 = f2), bundling sale is optimal. Our
result subsumes this theorem as a corollary.



(2) A revenue monotonicity theorem. Based on menu monotonicity theorem, we are
able to prove that, stochastically superior distributions yield higher revenue, an-
other desirable property that fails to hold in general.

Our proof is semi-constructive in the sense that we fix part of the buyer u-
tility function (for this part, relation between revenue and buyer utility is un-
known/undesirable) and construct the remainder of the utility function (for this part,
relation between revenue and buyer utility is known/desirable). This technique might
be of potential interest.

— Part II. (Section 5). If the density functions f1 and f2 satisfy PR(f1(x))+PR(f2(y)) ≥
−3, ∀x, y. The optimal mechanisms often contain few menu items. In particular,
(1) If both PR(f1(x)) and PR(f2(y)) are constants, the optimal mechanism contains

at most 4 menu items. The result is tight. Constant power rate is satisfied by
a few interesting classes of density functions, including power functions h(x) =
axb and uniform density as a special case. This is consistent with earlier results
for uniform distributions [Manelli and Vincent 2006; Pavlov 2011a]: the optimal
mechanisms indeed contain four menu items.

(2) — If PR(f1(x)) + PR(f2(y)) = −3 ∀x, y, the optimal mechanism contains at most
3 menu items.

— If −2 ≤ PR(f1(x)) ≤ yAf2(yA) − 2 and − 2 ≤ PR(f2(y)) ≤ xAf1(xA) − 2, the
optimal mechanism contains 3 menu items. Here xA and yA are the lowest
possible valuations for item one and two respectively, Consequently, under
either condition, bundling sale gives a 2-approximation.

(3) If we relax the condition to be that both PR(f1(x)) and PR(f2(y)) are monotone,
then the optimal mechanism contains at most 6 menu items. This condition is
sufficiently mild to include density functions such as exponential density and
any function whose Taylor series coefficients are nonnegative.

(4) Our last result requires the buyer demands at most one item. Under this con-
dition, for uniform densities, the optimal mechanism contains at most 5 menu
items. The result is tight.

These results are in sharp contrast to Hart and Nisan’s recent result that there is
some distribution where finite number of menu items cannot guarantee any fraction
of revenue [Hart and Nisan 2013]. Here we show that, for several wide classes of dis-
tributions, the optimal mechanisms have a finite and even extremely simple menus.
Our proofs for this part are based on Pavlov’s characterization and careful analyses
of how the revenue changes as a function of the buyer’s utility. A rough line of rea-
soning is as follows, the “extreme points” in the set of convex utility functions on the
boundary values are piecewise linear functions. Since the utility on the boundaries
contains only few linear pieces and the utility on inner values are linearly related to
that on the boundary, it must be the case that the utility function on the inner points
contains only few linear pieces as well. In other words, the mechanism only contains
few menu items. We expect similar insight can be applied to cases with more items.

Our results not only offer original insights of “what do optimal mechanisms look
like”, but are also in line with the “simple versus optimal” literature (cf [Hartline and
Roughgarden 2009; Hart and Nisan 2012]): in our case, simple mechanisms are exactly
optimal.

All of the missing proofs are deferred to the full version of the paper.

2. THE SETTING
We consider a setting with one seller who has two distinct items for sale, and one buyer
who has private valuation x for item 1, y for the item 2, and x + y for both items. The
seller has zero valuation for any subset of items.



As usual, x and y are unknown to the seller and are treated as independent random
variables according to density functions f1 on [xA, xB ] ⊂ R and f2 on [yA, yC ] ⊂ R
respectively. The valuation (aka. type) space of the buyer is then V = [xA, xB ]×[yA, yC ].
To visualize, we sometimes refer to V as rectangle ABDC, where A represents the
lowest possible type (xA, yA) and D represents the highest possible type (xB , yC). Let
f(x, y) = f1(x)f2(y) be the joint density on V . We assume the f1 and f2 are positive,
bounded, and differentiable densities.

The seller sells the items through a mechanism that consists of an allocation rule
q and a payment rule t. In our two-item setting, an allocation rule is conveniently
represented by q = (q1, q2), where qi is the probability that buyer gets item i ∈ {1, 2}.
Given valuation (x, y), buyer’s utility is

u(x, y) = xq1(x, y) + yq2(x, y)− t(x, y)

In other words, buyer has a quasi-linear, additive utility function. It is some-
times convenient to view a mechanism as a (possibly infinite) set of menu items
{(q1(x, y), q2(x, y), t(x, y))|(x, y) ∈ [xA, xB ]× [yA, yC ]}. Given a mechanism, the expected
revenue of the seller is R = E(x,y)[t(x, y)].

A mechanism must be Individually Rational (IR):

∀(x, y), u(x, y) ≥ 0.

In other words, a buyer cannot get negative utility by participation.
By revelation principle, it is without loss of generality to focus on the set of mecha-

nisms that are Incentive Compatible (IC):

∀(x, y), (x′, y′), u(x, y) ≥ xq1(x′, y′) + yq2(x′, y′)− t(x′, y′).

This means, it is the buyer’s (weak) dominant strategy to report truthfully. Equivalent-
ly, an IC mechanism presents a set of menu items and let the buyer do the selection
(aka. the taxation principle). As a result,

u(x, y) = sup(x′,y′){xq1(x′, y′) + yq2(x′, y′)− t(x′, y′)},

which is the supremum of a set of linear functions of (x, y). Thus, u must be convex.
Fixing y, by IC, we have

u(x′, y)− u(x, y)− q1(x, y)(x′ − x)

= x′q1(x′, y) + yq2(x′, y)− t(x′, y)− xq1(x, y)− yq2(x, y) + t(x, y)− x′q1(x, y) + xq1(x, y)

= x′q1(x′, y) + yq2(x′, y)− t(x′, y)− (x′q1(x, y) + yq2(x, y)− t(x, y)) ≥ 0

Substitute x′ twice by x− = x− ε and x+ = x+ ε respectively, for any arbitrarily small
positive ε, we have

pux(x−, y) ≤ q1(x, y) ≤ ux(x+, y),

where ux denotes the partial derivative of u on the x dimension. The inequality above
implies u is differentiable almost everywhere on x and ux = q1(x, y). Similarly, u is
differentiable almost everywhere on y and uy = q2(x, y). As a result ux and uy must be
within interval [0, 1]. This means, the seller can never allocate more than one pieces of
either item. Now, payment function t can be represented by utility function u, t(x, y) =
xux(x, y) + yuy(x, y)− u(x, y).

The seller’s problem is to design a non-negative, convex utility function, whose par-
tial derivatives on both x and y are within [0, 1], that maximizes expected revenue R
(cf. [Hart and Nisan 2012, Lemma 5]).



3. REPRESENTING REVENUE AS A FUNCTION OF UTILITY
Let Ω denote any area in V and RΩ be the revenue obtained within Ω. Let z = (x, y)T

and T(z) = zu(z)f(z). By Green’s Theorem, we have
∫

Ω
∇ ·Tdz =

∮
∂Ω

T · n̂ds.

∇ ·T = 2u(z)f(z) + (∇u(z))T zf(z) + u(z)zT∇f(z)

= [(∇u(z))T z − u(z)]f(z) + [3f(z) + zT∇f(z)]u(z)

= t(z)f(z) +4(z)u(z)

where4(x, y) = 3f1(x)f2(y)+xf ′1(x)f2(y)+yf ′2(y)f1(x). Seller’s revenue formula within
Ω is as follows:

RΩ =

∫
Ω

t(z)f(z)dz =

∫
Ω

(∇ ·T−4(z)u(z))dz

=

∮
∂Ω

T · n̂ds−
∫

Ω

4(z)u(z)dz

Set Ω to be the rectangle ABDC, the seller’s total revenue RABDC is∫ yC

yA

xBu(xB , y)f1(xB)f2(y)dy +

∫ xB

xA

yCu(x, yC)f1(x)f2(yC)dx

−
∫ yC

yA

xAu(xA, y)f1(xA)f2(y)dy −
∫ xB

xA

yAu(x, yA)f1(x)f2(yA)dx

−
∫ xB

xA

∫ yC

yA

u(x, y)4(x, y)dydx (1)

Formula (1) consists of 5 terms. The first term represents the part of seller’s revenue
that depends on utilities on edge BD only. Moreover, this part is increasing as utilities
on edge BD increase. Similarly, the second term represents the part of seller’s revenue
that depends positively on utilities on edge CD. The third and fourth terms represent
respectively the parts of seller’s revenue that depend negatively on utilities on edges
AC and AB. The fifth term represents the part of revenue that depends on the utilities
on the inner points of the rectangle. Under different conditions, 4(x, y) can be either
positive or negative, which suggests this part can either increase or decrease as the
utilities on inner points increases. We now define these conditions.

Definition 3.1. For any density h(x), let PR(h(x)) = xh′(x)
h(x) be the power rate of h.

Consider the following two conditions regarding power rate.

Condition 1: PR(f1(x)) + PR(f2(y)) ≤ −3,∀(x, y) ∈ V.

Condition 2: PR(f1(x)) + PR(f2(y)) ≥ −3,∀(x, y) ∈ V.
Clearly, under Condition 1, we have4(x, y) ≤ 0. This means seller’s revenue depends

positively on utilities of the inner points. Similarly, under Condition 2, seller’s revenue
depends negatively on utilities of the inner points.

Remark 1. To understand the intuition behind power rate, consider an example of
selling one item, where the valuation distribution is uniform on [0, 1] (in this example,
we have a relatively high power rate PR=0). Consider a mechanism with 2 menu items:
(0, 0) and (1, 0.5) (take-it-or-leave-it on price 0.5). Now let us consider the effect of adding
a new menu item (0.5, 0.2).



— Case 1. When the buyer’s valuation is within [0.4, 0.5), buyer’s utility weakly increases
(compared to the old mechanism) by switching to this new menu item. Seller’s revenue
also increases because of positive sale probability.

— Case 2. When the buyer’s valuation is within [0.5, 0.6), buyer’s utility will also weak-
ly increase by switching to this new menu item. However, seller’s revenue decreases
because the buyer now chooses a lower payment menu item.

Intuitively, high power rate (PR ≥ −3) places sufficiently high density on large val-
uations, which ensures that the revenue increment in Case 1 is less than the revenue
decrement in Case 2. In other words, adding more menu items hurts revenue. This ex-
plains, under Condition 2 (the high power rate case), we only need few menu items.

Based on the two conditions above, we obtain two parts of results: under Condition 1,
the optimal mechanisms have simple menus in the sense that their menus are mono-
tone – allocation probabilities and payment are increasing in the same order; under
Condition 2, the optimal mechanisms also have simple menus, but in a different sense,
that their menus only contain a few items.

[Daskalakis et al. 2013] consider the same problem but restrict to the case where

yAf2(yA) = 0, xAf1(xA) = 0;

lim
x→xB

x2f1(x) = 0, lim
y→yC

y2f2(y) = 0.

These assumptions ignore the effect of utilities on the edges of the rectangle. We do not
have any of these constraints. As a result, their techniques (such as reduction to the
transportation problem) do not apply to our more general case. In fact, one of our main
techniques is to conduct sensitivity analysis on how revenue changes as a function of
the utilities on the edges.

4. PART I: MENU MONOTONICITY AND REVENUE MONOTONICITY
In this section, we consider the case where power rates of both density functions satisfy
Condition 1. When this condition is not met, Hart and Reny [2012] give several inter-
esting counter-examples of revenue monotonicity: the optimal revenue for stochastical-
ly inferior valuation distributions may be greater than that of stochastically superior
distributions. When this condition is met, for identical item distributions, Hart and
Nisan [2012] prove that, bundling sale is the optimal mechanism. In this section, we
show that, under Condition 1, the optimal menu can be sorted so that both allocation-
s as well as payment monotonically increase. We coin this result menu monotonicity
theorem. The theorem has two immediate consequences. First, it yields a version of rev-
enue monotonicity theorem, thus complements the Hart-Reny result above. Second, it
subsumes the above Hart-Nisan result as a corollary.

Our analysis starts from a simple observation: any optimal mechanism must extract
all of the buyer’s valuation when he is in the lowest type.

LEMMA 4.1. In the optimal mechanism, u(xA, yA) = 0.

PROOF. Suppose otherwise that u(xA, yA) > 0, one can revise every menu item from
(q1(x, y), q2(x, y), t(x, y)) to (q1(x, y), q2(x, y), t(x, y)+u(xA, yA)) and obtain a mechanism
with strictly higher revenue, contradiction.

THEOREM 4.2. Menu Monotonicity
Under Condition 1, menu items of the optimal mechanism can be represented in the
form of (q1(t), q2(t), t), such that allocation probabilities q1(t) and q2(t) are weakly in-
creasing in payment t.



Roughly speaking, Theorem 4.2 suggests that, among the menu items of the optimal
mechanism, higher payment t corresponds to higher allocation probabilities q1 and q2.
Note that allocation and payment monotonicity are well understood in single-item opti-
mal auction (i.e., Myerson auction) but in general fail to hold in two item settings [Hart
and Reny 2012].

In the following, we give a semi-constructive proof. By Formula (1), under Condition
1, we know that seller’s revenue is increasing as the utilities of the buyer increases
on V , except on edges AB and AC. Our idea is then, to fix the utility function on AB
and AC and construct the (largest possible) remainder of the utility function subject
to convexity. In the appendix, we give another proof.

Fig. 1. Optimal mechanism in 3D

PROOF. Let’s look at Fig. 1. Fixing u(AB) and u(AC) (not necessarily optimal), con-
sider any point (xA, yA, z) lower than A on the vertical line (x = xA, y = yA), draw
a plane going through point and touching u(AC) and u(AB)(subject to gradient no
greater than 1). Because the gradients in two directions are unique. This plane is
unique, we call it uz. We directly claim that u∗(x, y) = supz∈(−∞,0]{uz(x, y)} is the opti-
mal utility function subject to fixed u(AB) and u(AC).

First, we prove (x, y) ∈ AB ∪ AC, u∗(x, y) = u(x, y). Pick any point (x0, y0) ∈ AB.
We have uz(x0, y0) ≤ u(x0, y0) for z ∈ (−∞, 0], so u∗(x0, y0) = supz∈(−∞,0]{uz(x0, y0)} ≤
u(x0, y0). Since u(AB) is convex, there always exists a plane uz0 , where z0 = u(x0, y0)−
q1(x0, y0)(x0 − xA), that passes through (x0, y0, u(x0, y0)). So u∗(x0, y0) ≥ uz0(x0, y0) =
u(x0, y0), i.e. u∗(x0, y0) = u(x0, y0). Similar for points on AC.

Second, we prove (x, y) ∈ V \{AB∪AC}, u∗(x, y) is its largest possible value subject to
fixed u(AB) and u(AC). Pick any point (x1, y1) ∈ V \{AB∪AC}. Let the largest possible
utility on point (x1, y1) be ũ(x1, y1), achieved by utility function ũ. Let (x1, y1, ũ(x1, y1))
be in some plane ũ(x1,y1),0(x, y) = xq̃1(x1, y1) + yq̃2(x1, y1)− t̃(x1, y1).

In other words, ũ(x1,y1),0(x, y) is the buyer’s utility at type (x, y) but chooses
menu item (q̃1(x1, y1), q̃2(x1, y1), t̃(x1, y1)). By IC, ũ(x1,y1),0(x, y) ≤ ũ(x, y). Think of
ũ(x1,y1),0(x, y) as a plane that is always weakly below ũ(x, y) but touches ũ at the point
of (x1, y1).

Plane ũ(x1,y1),0 passes through point (xA, yA, z1), where z1 = pxAq̃1(x1, y1) +
yAq̃2(x1, y1) − t̃(x1, y1). By definition, uz1 goes through point (xA, yA, z1) too! By our
construction, uz1 has the largest possible gradients in both directions subject to the



fixed u(AB) and u(AC). Since we fix u(AB) and u(AC), ũ(AB) = u(AB), ũ(AC) =
u(AC), so uz1 has weakly larger gradients than ũ(x1,y1),0. Hence, we have u∗(x1, y1) ≥
uz1(x1, y1) ≥ ũ(x1,y1),0(x1, y1). Since (x1, y1) is arbitrarily chosen and ũ(x1,y1),0 is the
largest at (x1, y1), we conclude that u∗(x, y) is the largest possible value on any point
(x, y) subject to fixed u(AB) and u(AC).

Finally, according to Formula (1), u∗ gives the optimal revenue subject to fixed u(AB)
and u(AC). By our construction u∗ consists of a set of monotone planes uz. As |z| in-
creases, allocation probabilities weakly increase and payment strictly increases. This
completes the proof.

Theorem 4.2 implies the aforementioned Hart-Nisan result as a corollary.

COROLLARY 4.3. [Hart and Nisan 2012, Theorem 28] For two i.i.d. items, PR(f1) =
PR(f2) ≤ − 3

2 , bundling sale is optimal.

PROOF. It is without loss to restrict attention to symmetric mechanisms [Maskin
and Riley 1984]. Thus, u(AB) is identical to u(AC). u1(AB) and u2(AC) have the same
slope (in fact, plane u′ touches both u(AB) and u(AC) simultaneously). So, q1(v) = q2(v)
∀v ∈ V . In other words, the two items are always sold with the same probability. The
seller’s revenue of this optimal mechanism is equivalent to a mechanism that sells two
items as a bundle with the same probability. So bundling is optimal as well.

As another application of Theorem 4.2, we obtain a revenue monotonicity theorem in
this setting.

THEOREM 4.4. (Revenue Monotonicity)
Under Condition 1, optimal revenue is monotone: let Fi, Gi be the cumulative distribu-
tion function of density functions fi, gi, i = 1, 2, respectively. If G1 and G2 first-order
stochastically dominate F1 and F2

1 respectively, optimal revenue obtained for (G1, G2)
is no less than that of (F1, F2).

PROOF. Consider any two points (x2, y2) and (x3, y2), where x3 > x2. If q1(x2, y2) <
q1(x3, y2), by Theorem 4.2, we must have t(x2, y2) < t(x3, y2). If q1(x2, y2) = q1(x3, y2),
then q1(x, y2) = q1(x2, y2),∀x ∈ [x2, x3]. u(x3, y2) = u(x2, y2) + q1(x2, y2)(x3 − x2), which
can be achieved by choosing the same menu as (x2, y2) chooses. While buyer at type
(x3, y2) has several menu items that all achieve the highest utility, we can assume,
WLOG, that the buyer chooses the menu with the highest payment ([Hart and Reny
2012]). Thus there is an optimal choice guarantees t(x2, y2) ≤ t(x3, y2).

To sum up, t(x2, y2) ≤ t(x3, y2) when x2 ≤ x3. For the same reason, t(x3, y2) ≤ t(x3, y3)
when y2 ≤ y3. Hence t(x, y) is a weakly monotone function in both directions. Suppose
G1 and G2 first-order stochastically dominates F1 and F2 respectively. Let R(F1 × F2)
denote the optimal revenue when item 1 and 2 distributes independently according to
F1 and F2. When distribution G1 × G2 chooses the same mechanism as F1 × F2 does,
let the revenue be R∗(G1 × G2). We have R∗(G1 × G2) ≥ R(F1 × F2), since t is weakly
monotone. By transitivity, R(G1 ×G2) ≥ R∗(G1 ×G2) ≥ R(F1 × F2).

5. PART II: OPTIMAL MECHANISM WITH SMALL MENUS
In this section, we investigate optimal mechanisms under Condition 2. We obtain sev-
eral results saying that the optimal mechanism contains only few menu items. All
these results are built upon Pavlov’s characterization [Pavlov 2011a] and an impor-
tant lemma introduced in the next subsection.

1Gi first-order stochastically dominates Fi if Gi(x) ≤ Fi(x) for all x and Gi(x) > Fi(x) for some x.



5.1. Pavlov’s characterization and graph representation lemma
If both f1 and f2 satisfy Condition 2, Pavlov [2011a, Proposition 2] states that, in the
optimal mechanism, the seller either keeps both items (i.e., q = (0, 0)), or sells one of
the items at probability 1 (i.e., q1 = 1 or q2 = 1).

For graphic representation, let the buyer’s valuation be within rectangle ABDC, we
have the following lemma.

LEMMA 5.1. Graph Representation Lemma

Under Condition 2, the optimal mechanism can be represented by one of the rect-
angles shown in Fig. 2 or Fig. 3. More precisely, the optimal mechanism divides the
valuation rectangle into four regions, where

(1) in the bottom left region (region ASME in both figures), it assigns q = (0, 0) and
u(x, y) = 0 to any point (x, y) in the region. Furthermore, region ASME is convex.

(2) in the top right region, it assigns q = (1, 1) to any point in the region.
(3) in the top left region, it assigns q = (∗, 1) to any point in the region, where ∗ is a

variable. Thus this region represents a set of menu items, each of which is a vertical
slice.

(4) Symmetrically, in the bottom right region, it assigns q = (1, ∗) to any point in the
region. This region represents a set menu items, each of which is a horizontal slice.

(5) The boundary between the top left and right regions is vertical (QL in both figures);
the boundary of the top right and bottom right regions is horizontal (MN in Fig. 2
or LI in Fig. 3). The boundary between (1, ∗) region and (∗, 1) region is in the upper
right direction.

Fig. 2. The optimal allocation that there is a point
on curve SME chooses allocation menu (1,1).

Fig. 3. The optimal allocation that there is no
point on curve SME chooses allocation menu (1,1).

PROOF. We first determine the relative positions of the four possible regions.
If the seller keeps both items, the buyer’s utility is zero. Since u(x, y) is an increasing

function, it assigns q = (0, 0) in the bottom left region, i.e. ASME. Since u(x, y) is con-
vex, the convex combination of any two zero-utility points must also be zero. Therefore,
ASME is a convex region.

If for a type (x0, y0) with q1(x0, y0) = q2(x0, y0) = 1, for any point (x1, y1), IC requires
that

x0 + y0 − t(x0, y0) ≥ x0q1(x1, y1) + y0q2(x1, y1)− t(x1, y1),

x1q1(x1, y1) + y1q2(x1, y1)− t(x1, y1) ≥ x1 + y1 − t(x0, y0).



Summing the two inequalities, we get (q1(x1, y1)−1)(x1−x0)+(q2(x1, y1)−1)(y1−y0) ≥ 0.
If x1 > x0, y1 > y0, we must have q1(x1, y1) = q2(x1, y1) = 1.

Let (x2, y2) be a point where some positive proportions of the items are sold, then ac-
cording to Pavlov’s characterization [Pavlov 2011a], one of the items must be sold deter-
ministically. Consider two types (x2, y2) and (x3, y3) where q1(x2, y2) = 1, q2(x2, y2) < 1
and q1(x3, y3) < 1, q2(x3, y3) = 1. By IC, we must have

x2 + y2q2(x2, y2)− t(x2, y2) ≥ x2q1(x3, y3) + y2 − t(x3, y3),

x3q1(x3, y3) + y3 − t(x3, y3) ≥ x3 + y3q2(x2, y2)− t(x2, y2).

Summing up the two inequalities, we get (1− q1(x3, y3))(x2 − x3) + (1− q2(x2, y2))(y3 −
y2) ≥ 0. So, one of x2 < x3 and y2 > y3 does not hold. This implies the second part of
(5).

To sum up, (1, 1) must be assigned to the upper right corner, (1, q2(x, y)) is assigned
to the bottom right corner, (q1(x, y), 1) is assigned to the upper left corner, and (0, 0) is
assigned to the bottom left corner, (some regions may be empty).

Let the allocation vector at (x4, y4) be (1, q2(x4, y4)). For any x ∈ [x4, xB ], by IC, we
must have q1(x, y4) = 1, so u(x, y4) = u(x4, y4) + x − x4. It is still in the buyer’s best
interest to choose menu item (1, q2(x4, y4)) at (x, y4). This implies the first part of (5):
the boundary between for different q2 in (1, q2(x, y)) is horizontal. In particular, in
Fig. 2, MN is horizontal. Similarly, LQ is vertical.

If there is a point on curve SE that chooses menu item (1, 1), the mechanism is of
the form shown in Fig. 2, otherwise it is of the form shown in Fig. 3.

5.2. Optimal mechanisms for constant power rate
To describe our first theorem under Condition 2, we need the following condition on
density functions.

Condition 3: PR(fi(x)), i = 1, 2, is constant.

THEOREM 5.2. Under Conditions 2 and 3, there is an optimal mechanism such that
it has at most 4 menu items.

The result is tight: one can find instances where optimal mechanism contains exactly
4 menu items [Pavlov 2011a, Example 3].

Fig. 4. The optimal allocation that there is no point on curve SME chooses (1,1) allocation menu.

We prove the theorem for the case shown in Fig. 4.(All figures except Fig. 2 and 3 are
used as intermediate graphs to illustrate the proofs, not the final shapes of the optimal
mechanisms. For example, in this proof, we starts from an arbitrary diagram that only



has the properties listed in Lemma 5.1. For every theorem, the final optimal mecha-
nism is listed as a table in the appendix.) The other case related to Fig. 2 follows from
an almost identical proof. First, draw a horizontal line through M and it intersects BD
at N . Then draw a vertical line through M crossing CD at G. We have the following
two lemmas.

LEMMA 5.3. There is an optimal utility function such that u(BN) is piecewise linear
with at most 2 pieces.

LEMMA 5.4. There is an optimal utility function such that u(ND) is piecewise linear
with at most 2 pieces.

With these two lemmas, we are able to prove Theorem 5.2 (in the Appendix). Hart
and Nisan [2012, Theorem 1 and Lemma 14] state that bundling 4-approximates opti-
mal revenue for general two-item setting. As an application of Theorem 5.2, we obtain
a better lower bound for bundling sale.

COROLLARY 5.5. Under Conditions 2 and 3, bundling 3-approximates optimal rev-
enue.

PROOF. Revenue of an optimal mechanism with 3 non-zero menu items is less than
or equal to the sum of revenues of 3 mechanisms, each of which has only 1 non-zero
menu items. Since bundling is optimal among all mechanisms that contains only 1
non-zero menu item, thus no worse than any of these three mechanisms. Consequently
bundling gives a 3-approximation of the optimal revenue.

Two cases where the optimal mechanism contains ≤ 3 items
In fact, Conditions 2 and 3 have intersections. When both conditions are satisfied,
revenue does not depend on utilities on inner points any more. In this case, we obtain
a condition under which there is an optimal mechanism that contains at most 3 menu
items.

COROLLARY 5.6. For f1(x) = s1x
i1 , f2(y) = s2y

i2 , s1, s2 > 0, i1 + i2 = −3, there is an
optimal mechanism such that it contains at most 3 menu items, thus bundling gives a
2-approximation of the optimal revenue.

PROOF. By Formula (1), we can see that revenue only depends on the utility of the
boundaries. According to Theorem 5.2, there are at most 4 menu items and both u(BD)
and u(CD) are piecewise linear with two pieces. Suppose otherwise that there are 4
different menu items, then one could rise up the plane of the (1, 1)-item uniformly, i.e.
expand the top right region, until one of u(BD), u(CD) becomes a straight line, i.e. the
top right region covers part of AB or AC. Note that this procedure will not change
u(AB) or u(AC) since it will terminate as long as the (1, 1)-item reaches AB and AC.
More over, this procedure increases u(BD) and u(CD) while maintains convexity. So
the new utility function corresponds to a strictly higher revenue, which contradicts to
the fact that u is optimal.

Following a similar proof of Theorem 5.2, we obtain another condition under which
3 menu items are enough. Note that, this condition does not impose constant power
rate, thus is not a special case of Condition 3.

Condition 4: −2 ≤ PR(f1(x)) ≤ yAf2(yA)−2,∀x and −2 ≤ PR(f2(y)) ≤ xAf1(xA)−2,∀y.

THEOREM 5.7. Under Conditions 2 and 4, there is an optimal mechanism such that
it contains at most 3 menu items, thus bundling gives a 2-approximation of the optimal
revenue.



5.3. Optimal mechanisms for i.i.d. monotone power rate
The requirement of power rate to be constant might be restrictive. If one relaxes this
requirement to be monotone power rate, one only needs to add two more menu items.

Condition 5: PR(fi(x)), i = 1, 2, is weakly monotone.

THEOREM 5.8. Under Conditions 2 and 5, if f1 = f2, there is an optimal mechanism
such that it consists of at most 6 menu items.

Fig. 5. Optimal allocation under symmetric value distribution that satisfies Condition 5.

The general form of optimal mechanism is shown in Fig. 5. It is without loss to re-
strict attention on symmetric mechanisms [Maskin and Riley 1984, section 1]. Let AD
intersects SE at point M . In region ASME, seller keeps both items. Item 2 is sold
deterministically in CSMD and item 1 is sold determinately in MEBD. Let the allo-
cation rule on point (x, y) in CSMD be (q1(x), 1). Similar to the proof of Theorem 5.2,
we start with the following lemma.

LEMMA 5.9. There is an optimal utility function such that u(ND) is piecewise linear
with at most 2 pieces.

Similarly, we show that u(CN) is piecewise linear as well.

LEMMA 5.10. There is an optimal utility function such that u(CN) is piecewise lin-
ear with at most 2 pieces.

With the two lemmas above, we are able to prove Theorem 5.8.
Condition 5 is general enough to admit a large variety of density functions. To have

a sense of what these functions are, we have the following two propositions.

COROLLARY 5.11. If h(x), x ∈ [xA, xB ] is a convex, weakly monotone density func-
tion, and xBh

′(xB) ≤ h(xB), then h(x) satisfies Condition 5.

It is easy to check h(x) = anx
n, an ≥ 0 also satisfies Condition 5. In fact, there are

many other functions satisfy Condition 5.

COROLLARY 5.12. If h1 and h2 both satisfy Condition 5, then h1 + h2 and h1 · h2

both satisfy Condition 5. Particularly, for all nonnegative-coefficient polynomial h(x) =
anx

n+an−1x
n−1+...+a1x+a0, ai ≥ 0, i = 0, ..., n, including those whose coefficients in its

Taylor series are nonnegative. Examples are, (1 − x)−1,ex,ee
x

,ln 1
1−x , x

1−x−x2 ,tanx(|x| <
π
2 ), hyperbolic sine sinhx = ex−e−x

2 , and Fnx
1−(Fn−1+Fn+1)x−(−1)nx2 where Fn denotes the

Fibonacci numbers.



5.4. Optimal mechanism for uniform distributions under unit-demand constraint
A buyer has unit-demand if q1(x, y) + q2(x, y) ≤ 1. Under unit-demand model, Pavlov
[2011b, Proposition 2] states that, if distribution functions satisfy Condition 2, it is
without loss to restrict attention on mechanisms such that

q1(x, y) + q2(x, y) ∈ {0, 1} ∀(x, y)

Pavlov solves the optimal mechanism for two items with identical uniform distribu-
tions. The resulting mechanism contains 5 menu items for uniform distribution on
[c, c + 1] ∗ [c, c + 1], c ∈ (1, c̄) (where c̄ ≈ 1.372). We show that in nonidentical settings,
the optimal mechanism also contains at most 5 menu items. It follows trivially that
our result is tight.

THEOREM 5.13. In unit-demand model, if both f1 and f2 are uniform distributions,
there is an optimal mechanism such that it consists of at most 5 menu items.

Fig. 6. Optimal unit demand allocation.

Let ASE denote the zero utility region and CSEBD the non-zero utility region. For
the same reason in Lemma 5.1, ASE is convex. For points in ASE, allocation (0, 0) is
the best. For (x, y) ∈ CSEBD, (q1(x, y), q2(x, y)) 6= (0, 0), so q1(x, y) + q2(x, y) = 1. The
mechanism is shown in Fig. 6. Draw a 45 degree line across E, intersecting BD or CD
at W . Draw a 45 degree line across S, intersecting BD or CD at G. We consider here
the case that W is on BD and G is on CD. Other cases follow from similar arguments.

The theorem can be similarly proved via the following two lemmas.

LEMMA 5.14. There is an optimal utility function such that u(BW ) is piecewise lin-
ear with at most 2 pieces.

LEMMA 5.15. There is an optimal utility function such that u(WD) is piecewise lin-
ear with at most 2 pieces.
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