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Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-
theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted
measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key
distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan
area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel
attack. In so doing, we are able to successfully sign a binary message with a security level of about 10−7.
Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.
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Digital signatures are cryptographic schemes that are
widely used to guarantee both the authenticity and the
transferability of digital messages and documents. They play
an essential role in many applications such as software
distribution, financial transactions, and emails. However, the
security of currently used public-key digital signature schemes
relies on computational assumptions, such as the difficulty of
factorizing large numbers [1] or finding discrete logarithms [2].
Thus, advances in the development of efficient algorithms or
a quantum computer can threaten their security.

Quantum digital signatures (QDSs) [3], on the other hand,
can offer information-theoretic security based on quantum
mechanics, given that the participants preshare some secret
keys for authentication purposes. That is, they guarantee no
forging (i.e., the message is signed by a legitimate sender
and it has not been modified) and nonrepudiation (i.e., the
sender cannot successfully deny the signature of the message)
despite any future computational advance. This justifies the
great attention that this topic has received recently. Indeed,
QDS schemes based on coherent states [4,5] and schemes
that do not need the use of quantum memories [6,7] have
been proposed and experimentally demonstrated. Also, QDS
protocols implementable with only quantum key distribution
(QKD) components have been designed [8] and experimen-
tally tested [9]. Remarkably, the need for trust on the quantum
channels has also been removed [10,11]. All these efforts have
paved the way for the development of more practical QDS
schemes [12–14].

Despite this tremendous progress, however, in practice
it is still very challenging to guarantee the security of the
implementations. This is so because, just as for QKD, also
here there is a big gap between practical realizations and the
theoretical models that are assumed in the security proofs.

As a result, we face security loopholes, or so-called side
channels, that could seriously threaten the security of QDS
schemes. Indeed, detector side-channel attacks [15–17] are
arguably the most important threat. Very recently, motivated
by the concept of measurement-device-independent (MDI)
QKD [18], Puthoor et al. [19] introduced a MDI QDS scheme
that is secure against all detector side-channel attacks.

Here we report an experimental demonstration of a three-
party MDI QDS protocol that is immune to detector side-
channel attacks and allows the signature of binary messages
with a security level of 10−7. This implementation makes
use of a MDI quantum network with a star topology that is
deployed over a metropolitan field. Our work demonstrates the
feasibility of MDI QDS schemes for practical applications.

In the MDI QDS protocol of [19] there are at least three
parties. One party (say, for instance, Alice) acts as a signer,
while the other two parties (say Bob and Charlie) act as
recipients. All parties are pairwise connected via authenticated
classical channels. Also, they are connected to a relay (Eve)
via quantum channels. The quantum channels between Bob
and Eve, and Charlie and Eve, can be used to generate a secret
key between Bob and Charlie by means of MDI QKD. This
secret key allows them to interchange messages in full secrecy
by means of one-time pad encryption.

The MDI QDS protocol consists of two stages: the distribu-
tion stage and the messaging stage. Quantum communication
is needed only in the former, where Alice uses a so-called MDI
key generation protocol (KGP) to generate correlated L-bit
strings AB

0 ,AB
1 and AC

0 ,AC
1 with Bob and Charlie, respectively.

The corresponding strings held by Bob (Charlie) are denoted
by KB

m (KB
m ), with m = 0,1. Note that the strings AB

m (AC
m) and

KB
m (KC

m ) do not need to be identical, but they just need to be
sufficiently correlated. The quantum stage of the MDI KGP is
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equal to that of MDI QKD, but its classical data postprocessing
stage is different because in the MDI KGP there is no need
to apply error correction and privacy amplification. After the
MDI KGP, Bob and Charlie symmetrize their strings. For this,
say Bob randomly chooses half of the bits of each of KB

m

and sends them (as well as the information of the positions of
the bits chosen) to Charlie using a secure channel. Similarly,
Charlie does the same with KC

m . We denote Bob’s (Charlie’s)
bit strings after the symmetrization step by SB

m (SC
m).

Finally, in the messaging stage, which typically occurs
much later and where only classical communication takes
place, Alice can sign a binary message m by simply sending
(m,Sm) to the desired recipient (say Bob), where the signature
Sm = (AB

m,AC
m). To verify that m indeed comes from Alice,

Bob checks whether Sm matches his bit string SB
m . For this, he

checks separately the part of SB
m received directly from Alice

and that received from Charlie and he records the number of
mismatches in each part. If the number of mismatches in both
parts is below sa(L/2), where sa is a pre-fixed threshold value
satisfying 0 < sa < 1/2, then Bob accepts the message as
authentic. Otherwise, he rejects it. If Bob wants to demonstrate
to Charlie that Alice signed m, he sends him (m,Sm). Then
Charlie performs a similar check to that done by Bob and only
accepts m if the number of mismatches in both halves of SC

m is
below sv(L/2), with 0 < sa < sv < 1/2. In so doing, the MDI
QDS protocol is secure against general forging and repudiation
attacks [19].

In order to experimentally demonstrate this MDI QDS
scheme we use the MDI quantum network that has been
deployed in the city of Hefei, China. This metropolitan
network has been recently used to successfully demonstrate
MDI QKD [20]. As shown in Fig. 1(a), Alice, Bob, and
Charlie are connected to Eve, with a 25.3-, 17.2-, and 30.3-km
deployed single-mode optical fiber, which has a propagation
loss of 9.2, 5.1, and 8.1 dB, respectively. In collaboration with
Eve, Alice and Bob (Charlie) exploit the A-E-B (A-E-C)
insecure quantum link to implement the MDI KGP. Also,
Bob and Charlie use the B-E-C insecure quantum link to
implement the MDI QKD protocol. For this, Eve’s Bell state
measurement (BSM) device is shared between Alice, Bob,
and Charlie. This is done by using an 8×4 mechanical optical
switch (MOS) as a router, allowing us to perform three
quantum protocols successively.

Since the quantum stage of the MDI KGP is identical
to that of MDI QKD, identical state preparation setups are
installed for the three participants, Alice, Bob, and Charlie,
who communicate with each other through classical channels
and exchange quantum signals with Eve by means of quantum
channels. This is illustrated in Figs. 1(b) and 1(c). At each
site, phase-randomized signal pulses at a repetition rate of
75 MHz are generated with an internally modulated distributed
feedback laser. The wavelength of each signal pulse is
1550.12 nm and its pulse width is 2.5 ns. The intensities of
the signal state, the decoy state, and the vacuum state are
μ = 0.33, ν = 0.1, and w = 0, respectively. The correspond-
ing probability distributions are set as 25.6%, 58.4%, and
16%, respectively. A time-bin phase-encoding scheme [24]
is used to prepare Bennett-Brassard states [25], where the
delay between two time bins is 6.37 ns. The signal (decoy)
states are all prepared using the Z basis (the Z or the X basis

with probability distribution 36.9% and 63.1%, respectively).
In the case of the vacuum states w, it is not necessary to
distinguish between the two bases. After applying a filter
and a single-photon level modulation, each optical pulse is
sent to Eve through the deployed fiber. A successful BSM
result corresponds to coincidence counts in opposite time bins,
which indicates a projection onto the singlet Bell state |�−〉.
This means that the data shared between the participants are
anticorrelated and one of them has to flip the bits to match
those of the other participant. In the BSM, the efficiency of
the time window for a single time bin is about 90%. The two
superconducting nanowire single-photon detectors (SNSPDs)
of the BSM work at 2.05 K and have detection efficiencies
of 66% and 64%, respectively, as well as a dark count rate of
30 Hz. Also, the spurious noise of the deployed fiber brings
dozens of extra dark counts per second. The inner insertion
loss of Eve’s system is 6.2 dB for the A-E-B link, 6.2 dB for
the A-E-C link, and 7 dB for the B-E-C link, respectively.
This insertion loss includes the loss contribution from the
MOS, the dense wavelength division multiplexor, the electric
polarization controller (EPC), the polarization beam splitter
(PBS), the beam splitter (BS), and the optical fiber connection.

To achieve high-visibility two-photon interference in the
BSM, the incoming photons have to be indistinguishable. For
this, Eve uses three independent lasers at a wavelength of
1570 nm that generate 500-KHz signals to synchronize the
entire system. Also, a programmable delay chip with 10-ps
timing resolution is used to guarantee a precise overlap of the
two interfering pulses [26]. The optical signal of the shared
phase feedback laser with a wavelength of 1550.12 nm is
divided into three beams by a BS. Each beam is sent to Alice,
Bob, and Charlie, respectively. The phase reference frame is
stabilized by using a phase shifter and two power meters [20].
The synchronization signal and the phase feedback signal are
multiplexed in an additional deployed fiber. The polarization
reference frame is stabilized by using an EPC, a PBS, a
SNSPD, and a fast axis blocked polarization maintaining the
BS. Also, we use the Hong-Ou-Mandel dip to calibrate the
wavelength difference between the two interfering pulses [20].

We have run the MDI KGP between the participants for
73 423 (149 987) s to accumulate data for the pair of Alice
and Bob (Alice and Charlie). Also, we accumulated data for
81 630 s during the MDI QKD session between Bob and
Charlie. The experimental results are in Appendix D. In the
case of the MDI QKD link between Bob and Charlie, we
distill the key from the Z basis data, while the X basis data
are all used for parameter estimation. The length � of the
resulting secret key that guarantees that the MDI QKD protocol
is εQKD secure, i.e., it is both εcor correct and εsec secret with
εsec + εcor � εQKD, is given by [27]

� =
∑

b,c∈{0,ν,μ}
n

b,c
0 + n

b,c
1

[
1 − h

(
e
b,c
1

)] − Lb,c
EC

− log2
8

ε
b,c
cor

− 2 log2
2

ε′b,cε̂b,c
− 2 log2

1

2ε
b,c
PA

, (1)

where εcor = ∑
b,c εb,c

cor and εsec = ∑
b,c εb,c

sec , with εb,c
sec =

2(ε′b,c + 2εb,c
e + ε̂b,c) + ε

b,c
β + ε

b,c
0 + ε

b,c
1 + ε

b,c
PA . The param-

eters ε
b,c
0 , εb,c

1 , and εb,c
e denote the failure probability associated
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FIG. 1. Measurement-device-independent QDS experiment in a Hefei optical fiber network. (a) Birds-eye view of the MDI QDS
experiment. Alice A is located in the Animation Industry Park (N31◦50′6.24′′, E117◦7′52.08′′), Bob B at the administrative committee of
Hefei (N31◦47′4.56′′, E117◦12′58.04′′), Charlie C in an office building (N31◦50′56.84′′, E117◦16′50.14′′), and Eve E at the University of
Science and Technology of China (N31◦50′7.56′′, E117◦12′58.04′′). The A-E-B (A-E-C) quantum link is used to perform the MDI KGP,
which generates correlated L-bit strings AB

m and KB
m (AC

m and KC
m ) between Alice and Bob (Charlie). The B-E-C quantum link is used to carry

out the MDI QKD scheme, which generates a secure key between Bob and Charlie. This key is used to one-time pad encrypt the information
exchanged by these two users during the symmetrization step of the MDI QDS scheme. (b) Alice’s setup. The setups of Bob and Charlie
are identical to the one of Alice. The internally modulated laser generates phase-randomized coherent-state signal pulses. The first intensity
modulator (IM) removes the overshoot rising edge of the signal pulses. The following two IMs implement the decoy state method [21–23]. An
asymmetrical Mach-Zehnder interferometer (AMZI) with a phase shifter (PS), in combination with two IMs and one phase modulator (PM),
form a qubit encoder, which realizes a time-bin phase encoding. The attenuator (Att) is electrically controlled; it can quickly and automatically
change the intensity of the outgoing signals to realize either the Hong-Ou-Mandel interference or single-photon level preparation. Spurious
emission is removed by means of a dense wavelength division multiplexor (DWDM). (c) Eve’s setup. An 8×4 mechanical optical switch (MOS)
implements the routing function. An electric polarization controller (EPC), a polarization beam splitter (PBS), and a superconducting nanowire
single-photon detector (SNSPD) form the polarization feedback system. The beam splitter (BS) and two SNSPDs are used to implement the
Bell state measurement.

with the estimation of n
b,c
0 , n

b,c
1 , and e

b,c
1 , respectively. Here

εb,c
cor and ε

b,c
PA represent the failure probability of the error

verification and the privacy amplification steps, respectively.
See Appendix B for further details. Here we use Bob’s data
as the reference raw key. Therefore, in Eq. (1), n

b,c
0 (nb,c

1 ) is
a lower bound for the number of events where Bob (Bob and
Charlie) emitted a vacuum (single-photon) state that produced
a successful BSM result, given that Bob and Charlie selected
the intensity settings b and c, with b,c ∈ {0,ν,μ}, respectively.
Further, e

b,c
1 is an upper bound for the single-photon phase-

error rate and Lb,c
EC is the information revealed during the error

correction step with h(x) = −x log2(x) − (1 − x)log2(1 − x)
being the Shannon entropy function.

According to Eq. (1), in principle one can distill the
secret key from all the possible combinations of the intensity
settings. In our experiment, however, we find that only the data

corresponding to the intensity settings b,c ∈ {ν,μ} provide a
positive key rate. The values of the parameters n

b,c
0 , n

b,c
1 , e

b,c
1 ,

and Lb,c
EC, with b,c ∈ {ν,μ}, are shown in Table I. Also, we use

the cascade algorithm to implement error correction [28] and a
Toeplitz matrix to perform privacy amplification. The random

TABLE I. Parameters n
b,c
0 , n

b,c
1 , e

b,c
1 , and Lb,c

EC, with b,c ∈ {ν,μ},
for the MDI QKD link between Bob and Charlie.

Parameter μμ μν νμ νν

n
b,c
0 0 0 0 0

n
b,c
1 13144467 4208999 4208978 1346138

e
b,c
1 20.57% 20.61% 20.61% 20.72%

Lab
EC 764378 446414 290251 133085
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TABLE II. Value of the different parameters in the MDI QDS experiment.

Ē sa saL/2 sv svL/2 pE εrob εrep εfor

0.25% 0.27% 1073 1.21% 4748 1.23% 2×10−8 1.51×10−7 9.76×10−8

bit string that is needed to generate the Toeplitz matrix was
obtained in a previous QKD experiment. The security level
of the MDI QKD protocol is set as εQKD = 8×10−8 and we
obtain an εQKD-secure key of length � = 4 724 819 bits.

In the symmetrization step of the MDI QDS scheme, the
position information about the exchanged bits is encoded as
follows. For each L-bit string KB

m (KC
m ) we prepare an L-bit

string whose elements are set to 0 or 1 depending on whether
or not the equivalent element of KB

m is sent to Charlie (Bob).
That is, for each KB

m (or KC
m ) we need 3L/2 secret bits for

one-time pad encryption (L/2 bits are used to encrypt the
actual bits exchanged between the participants and L bits are
used to encrypt the string with the position information). In
total we need 4×3L/2 = 6L secret bits and thus we select
6L � �. For our experiment, we choose L = 787 468.

In the MDI KGP between Alice and Bob (Charlie), the
signature bit strings AB

m (AC
m) are generated only from the

data associated with those events where both Alice and
Bob (Charlie) use the Z basis and the signal intensity μ.
Moreover, Alice and Bob (Charlie) split the correlated bit
strings generated in one run of the MDI KGP into two equally
long bit strings. Then each of Alice and Bob (Charlie) selects L

bits at random to form the bit strings AB
0 and AB

1 (AC
0 and AC

1 ),
respectively. The remaining bits are all announced to estimate
the bit error rate of that string. The results associated with the
randomly selected signatures are in Appendix D. With this bit
error rate information, we use the Serfling inequality [29] to
estimate an upper bound for the error rate between the part of
the string KB

m (KC
m ) that Bob (Charlie) keeps for himself and

AB
m (AC

m), which is true except for a minuscule probability εPE.
We denote these upper bounds by EB

m and EC
m , respectively,

and we set Ē = max{EB
m,EC

m}.
Finally, to evaluate the security of the MDI QDS ex-

periment, we follow the procedure introduced in [19]. This
involves the calculation of the minimum rate pE at which Eve
is likely to make errors when guessing the part of KB

m that Bob
keeps for himself. Also, one has to select certain parameters
sa and sv such that Ē < sa < sv < pE to guarantee security
against repudiation and forging. As a result, we have that the
probability εrep of successful repudiation, i.e., that Alice can
make Bob accept a message m and Charlie rejects it when it is
transferred to him, is [19]

εrep � 2 exp
[− 1

4 (sv − sa)2L
] + εQKD. (2)

The first term on the right-hand side of this equation corre-
sponds to the probability of successful repudiation given that
Bob and Charlie share a perfectly secure secret key before
they perform the MDI KGP [19], while the second term takes
into account the probability that the secret key delivered by the
MDI QKD protocol is not secure. Similarly, the probability εfor

of successful forging, i.e., that Bob can generate a fraudulent

declaration (m,Sm) that Charlie accepts, satisfies [19]

εfor � 1

f
(2−(L/2)[h(pE )−h(sv )] + ε) + f + εPE + εest, (3)

where the parameters ε, εest, and f are related to the failure
probability when estimating pE and εPE is related to the
robustness εrob of the protocol. See Appendix C for more
details. The value of each of these parameters in the MDI
QDS experiment is shown in Table II.

After performing the two MDI KGPs and the MDI QKD
scheme to generate the correlated bit strings AB

m, KB
m , AC

m, and
KC

m as well as a secret key of length �, we also implemented
experimentally the classical network that is needed to actually
sign a binary message. This includes the implementation of
the symmetrization step to generate the bit strings SB

m and SC
m

and the realization of the messaging stage. All the random
bit strings needed for random sampling as well as the secret
key that is used to authenticate the classical communications
in the MDI QDS experiment are taken from previous QKD
experiments. The secret key generated in the MDI QKD link is
employed to one-time pad encrypt the information exchanged
in the symmetrization step. In this work, Alice decides to
sign the message m = 1 and sends (1,S1) to Bob in the
messaging stage. Bob calculates the number of mismatches,
897, between AB

1 and the part of KB
1 that he keeps for himself,

and the number, 508, between AC
1 and the part of KC

1 received
from Charlie. He accepts the message and forwards (1,S1) to
Charlie since both mismatches are below their corresponding
threshold. Charlie performs a similar check like Bob and
accepts m because the number of mismatches, 502, between
AC

1 and the part of KC
1 that he keeps for himself and the

number, 914, between AB
1 and the part of KB

1 received from
Bob are below their corresponding thresholds.

In conclusion, we have experimentally demonstrated a
complete MDI QDS protocol in a field test with a failure prob-
ability about 10−7. This scheme is information-theoretically
secure and is free of any detector side channel. In so doing,
we have successfully signed a binary message between three
parties. We remark that the signature efficiency of this work is
relatively low because we did not perform the full parameter
optimization. As in the case of MDI QKD, we believe that
the use of the four-intensity decoy-state method [26] and
increasing the system clock rate [30] would permit us to
significantly decrease the time of data collection.
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APPENDIX A: PROTOCOL

Here we describe the complete MDI QDS protocol in detail.
The basic setup is illustrated in Fig. 2. The MDI QDS scheme
consists of two stages: the distribution stage and the messaging
stage. Also, it requires that Bob and Charlie previously share
a secret key. In our experiment this is achieved by means of
MDI QKD.

1. The MDI QKD protocol

Below we present the different steps of the MDI QKD
protocol, which is implemented between Bob and Charlie to
distribute a secret key [27].

State preparation. The first two steps of the protocol are
repeated N times. In every round, each of Bob and Charlie
generates a phase-randomized weak coherent pulse with a
randomly selected intensity γ ∈ {μ,ν,0}, which encodes a ran-
dom bit r ∈ {0,1} in a basis α ∈ {Z,X} also selected at random.
Then they send these pulses to Eve via the quantum channels.

FIG. 2. Schematic diagram of the MDI QDS setup. The channels
between the Alice-Eve, Bob-Eve, and Charlie-Eve links are quantum
channels (QC); they are denoted by dashed lines. The Alice-Bob,
Alice-Charlie, and Bob-Charlie links are also connected through
authenticated classical channels (CC); these channels are represented
with solid lines. The MDI QDS protocol requires that Bob and Charlie
previously share a secret key. For this, they implement a MDI QKD
protocol in which Eve acts as a relay. Each of Alice, Bob, and Charlie
has one laser source that generates phase-randomized weak coherent
pulses that encode different Bennett-Brassard states by means of
a state encoding setup. Also, they generate decoy states with an
intensity modulator. This modulator is denoted by Decoy IM in the
figure. Eve is supposed to perform a Bell state measurement on the
incoming signals.

Measurement. If Eve is honest, she performs a BSM on
the signals received from Bob and Charlie. In any case,
she announces through a public channel whether or not
her measurement is successful, together with the Bell state
obtained in case of success.

Sifting. Once the N rounds of quantum transmission and
measurement have finished, Bob and Charlie communicate
with each other through an authenticated channel their inten-
sity and basis settings for the successful BSM results. Let Z

b,c
k

(Xb,c
k ) be the sets that identify those signals where Eve declares

the Bell state k and Bob and Charlie select the intensities b and
c and the basis Z (X), respectively. If the sifting conditions
|Zb,c

k | � N
b,c
k and |Xb,c

k | � M
b,c
k are satisfied for all b,c,k,

where N
b,c
k and M

b,c
k denote some preestablished threshold

values, then Bob and Charlie randomly postselect N
b,c
k (Mb,c

k )
events from Z

b,c
k (Xb,c

k ) to be used in the following steps of the
protocol. We will denote such postselected sets by Ẑ

b,c
k and

X̂
b,c
k , respectively. That is, |Ẑb,c

k | = N
b,c
k and |X̂b,c

k | = M
b,c
k for

all b,c,k. Also, depending on the Bell states announced by Eve,
Charlie flips part of his bits to match with those of Bob [18].
If the sifting conditions are not satisfied, the protocol aborts.

Parameter estimation. Bob and Charlie form the code bit
strings z

b,c
k and z

′b,c
k , respectively, by randomly choosing n

b,c
k

bits from Ẑ
b,c
k . The remaining bits of Ẑ

b,c
k , which we denote

by R
b,c
k , are used to compute the error rate E

b,c
k and then they

are discarded. Only if E
b,c
k � Etol, where Etol is a pre-fixed

threshold value, Bob and Charlie use the sets Ẑ
b,c
k and X̂

b,c
k to

estimate the following three parameters: n
b,c
k,0 (nb,c

k,1), which is a

lower bound for the number of bits in z
b,c
k where Bob (Bob and

Charlie) sent a vacuum (single-photon) state, and e
b,c
k,1, which

is an upper bound for the single-photon phase error rate in z
b,c
k .

If E
b,c
k > Etol for all k, the protocol aborts.

Error correction and privacy amplification. For each
intensity setting combination {b,c}, if the data corresponding
to the Bell state k pass the parameter estimation step, then
Charlie obtains an estimate of z

b,c
k , which we will denote

by ẑ
b,c
k , by using an error correction scheme. This scheme

requires that Bob sends Charlie Lb,c
EC,k bits of error correction

information. Afterward, Bob and Charlie implement an error
verification protocol to confirm that z

b,c
k and ẑ

b,c
k are indeed

equal except for a minuscule probability εb,c
cor . For this, Bob

randomly selects a universal2 hash function H and sends it
to Charlie together with the hash value H(zb,c

k ). The protocol
aborts if H(ẑb,c

k ) �= H(zb,c
k ) ∀k. Otherwise, Bob and Charlie

perform privacy amplification to extract two shorter bit strings
S

b,c
k and Ŝ

b,c
k of length �

b,c
k from z

b,c
k and ẑ

b,c
k , respectively.

They form the final secret key SB and SC by concatenating the
bit strings S

b,c
k and Ŝ

b,c
k , respectively. That is, the length of the

secret key is |SB | = |SC | = ∑
b,c∈{0,ν,μ}

∑
k �

b,c
k .

2. The MDI QDS scheme

We now describe the procedure for signing a binary
message. As already mentioned above, the MDI QDS scheme
consists of the distribution and the messaging stages. See [19]
for more details. Below we assume that Bob and Charlie have
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already performed the MDI QKD scheme and they share a
secret key.

a. Distribution stage

For each possible bit message m ∈ {0,1}, Alice performs
a MDI KGP with Bob and Charlie. As discussed in the main
text, this protocol provides Alice with different L-bit strings
AB

m (AC
m), which are correlated with the ones that are obtained

by Bob (Charlie). We denote Bob’s (Charlie’s) L-bit strings
by KB

m (KC
m ).

For this, the MDI KGP builds on the MDI QKD protocol
described in the preceding section but with a few modifica-
tions. In particular, let us take the MDI KGP between Alice
and Bob as an example; the MDI KGP between Alice and
Charlie is analogous. To generate the correlated bit strings
AB

m and KB
m with m ∈ {0,1}, Alice and Bob only perform

the first four steps of the MDI QKD protocol. That is, they
do not implement the classical postprocessing steps of error
correction and privacy amplification. Also, for simplicity, we
will consider that they use only the data associated with a
projection onto one particular Bell state k and discard the rest.
In addition, Alice and Bob modify the parameter estimation
step of the MDI QKD scheme as follows. They randomly
distribute the bits from Ẑ

μ,μ

k into two sets of equal size,
which we will denote by Ẑ

μ,μ

k,m , with m ∈ {0,1}. Then they
both respectively obtain AB

m and KB
m by simply selecting at

random L bits from each of these sets. The remaining bits
(Rμ,μ

k,m ) from Ẑ
μ,μ

k,m are used to calculate the bit error rate E
μ,μ

k,m .
This bit error rate must be below a certain threshold value for
all m. Otherwise the protocol aborts.

Next Bob and Charlie symmetrize the resulting bit strings
KB

m and KC
m . This is achieved by each of them initially selecting

half of the bits of their respective bit strings at random and then
sending these bits (as well as the corresponding bit positions)
through their secure channel. That is, say Bob randomly
chooses L/2 bits from KB

m and sends them to Charlie (together
with the information of their positions in KB

m ) encrypted
with the one-time pad. Likewise, Charlie does the same with
KC

m . We will denote the symmetrized L-bit strings of Bob
and Charlie by SB

m and SC
m , respectively. That is, SB

m (SC
m) is

composed of the part of KB
m (KC

m ) that Bob (Charlie) decides
to keep, which we will denote by KB

keep,m (KC
keep,m), and the

part of KC
m (KB

m ) received from Charlie (Bob), which we will
denote by KC

forward,m (KB
forward,m).

Finally, Bob estimates the quantities nm,0, nm,1, and em,1

for the bit strings KB
keep,m, where nm,0 (nm,1) represents a lower

bound for the number of bits in KB
keep,m where Bob (Alice and

Bob) sent a vacuum (single-photon) state and em,1 is an upper
bound for the single-photon phase error rate. Likewise, Charlie
does the same with KC

keep,m.

b. Messaging stage

To sign a binary message m, Alice sends (m,Sm) to
the desired recipient (say, for instance, Bob), where Sm =
(AB

m,AC
m) is the signature of m. Then Bob records the number

of mismatches between Sm and SB
m by separately comparing

AB
m with the part KB

keep,m of SB
m received from Alice and

AC
m with the part KC

forward,m of SB
m received from Charlie. If

there are fewer than sa(L/2) mismatches in both cases, where

sa < 1/2 is a small threshold value that is determined by
certain experimental parameters that depend on the desired
security level of the protocol, Bob then accepts the message as
coming from Alice.

If Bob wants to prove to Charlie that he received the
message m from Alice, he forwards him (m,Sm). Then Charlie
checks the mismatches between Sm and SC

m in a similar way
like Bob and accepts m if the number of mismatches is less
than sv(L/2), where sv is another threshold value that satisfies
0 < sa < sv < 1/2.

APPENDIX B: SECRET KEY DISTILLATION

The symmetrization step of the MDI QDS protocol requires
that Bob and Charlie interchange half of their bits (together
with the information of the positions of the bits interchanged)
in full secrecy. This means in particular that they need a secret
key of length at least 6L to be used with the one-time pad.
This is so because, as we saw in the main text, we need 3L/2
secret bits for each KB

m (or KC
m ) with m ∈ {0,1}.

To determine the secret key length of the MDI QKD link
between Bob and Charlie we follow the finite-key analysis
provided in [27]. In our experiment, Eve’s BSM performs
projections only onto one single Bell state k, so for simplicity
below we remove the label k from all the parameters. Also, as
already mentioned in the preceding section, note that Bob and
Charlie distill a secret key from all the events where both of
them select the Z basis and Eve declares a successful result,
i.e., independently of the particular intensity setting selected.
Thus, according to [27], we have that the length � of the secret
bit strings SB and SC is given by

� �
∑

b,c∈{0,ν,μ}
�b,c, (B1)

with

�b,c = max

(
n

b,c
0 + n

b,c
1

[
1 − h

(
e
b,c
1

)] − leakb,c
EC

− log2
8

ε
b,c
cor

− 2 log2
2

ε′b,cε̂b,c
− 2 log2

1

2ε
b,c
PA

,0

)
. (B2)

The definition of the different parameters is given in the
main text. We include it again here for completeness. In par-
ticular, we have that h(x) = −x log2(x) − (1 − x)log2(1 − x)
is the binary Shannon entropy function, εcor = ∑

b,c εb,c
cor is the

correctness parameter with εb,c
cor being the failure probability

of the error verification step that is applied to the bit strings
zb,c and ẑb,c, and εsec = ∑

b,c εb,c
sec is the secrecy parameter,

with εb,c
sec = 2(ε′b,c + 2εb,c

e + ε̂b,c) + ε
b,c
β + ε

b,c
0 + ε

b,c
1 + ε

b,c
PA .

The parameters ε
b,c
0 , ε

b,c
1 , and εb,c

e denote the failure prob-
ability associated with the estimation of n

b,c
0 , n

b,c
1 , and e

b,c
1 ,

respectively, and εbc
PA represents the failure probability of the

privacy amplification step.
To estimate the parameters n

b,c
0 , n

b,c
1 , and e

b,c
1 we follow

the method used in [20]. In particular, let us define the data
that we observe in the experiment as follows: N

αβ

bc is the total
number of pulses prepared by Bob and Charlie by using the
bases α and β and the intensities b and c, respectively, with
α,β ∈ {Z,X} and b,c ∈ {0,ν,μ}; D

αβ

bc is the total number of
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successful BSM events reported by Eve given that Bob and
Charlie used the bases α and β and the intensities b and c,
respectively; and E

αβ

bc is the number of errors in D
αβ

bc .
Then, after applying the sifting step of the protocol, we

have that only the data where Bob and Charlie use the same
basis remain. Importantly, however, the data associated with
those events where Bob or Charlie (or both of them together)
send a vacuum state do not need to be distinguished by the
encoding basis but can be assigned to any basis. This means in
particular that Bob and Charlie can use data from mismatched
basis events where they send vacuum states to obtain a tighter
estimation of the parameters n

b,c
0 , nb,c

1 , and e
b,c
1 in the finite-key

regime. For instance, they can redefine the observed data in
the Z and X bases as follows (see [20] for further details):

MZ
μμ = MZZ

μμ , MZ
μ0 = MZZ

μ0 , MZ
00 = MZZ

00 ,

MX
νν = MXX

νν , MX
0ν = MXX

0ν + MZX
0ν , MZ

μν = MZZ
μν ,

MZ
0μ = MZZ

0μ , MX
μμ = MXX

μμ , MX
μ0 = MXX

μ0 + MXZ
μ0 ,

MZ
νμ = MZZ

νμ , MX
00 = MXX

00 + MZX
00 + MXZ

00 ,

MZ
ν0 = MZZ

ν0 ; (B3)

MX
μν = MXX

μν , MX
0μ = MXX

0μ + MZX
0μ , MZ

νν = MZZ
νν ,

(B4)
MZ

0ν = MZZ
0ν , MX

νμ = MXX
νμ , MX

ν0 = MXX
ν0 + MXZ

ν0 ,

where M ∈ {N,D,E}, i.e., the equations above are applied
to N

αβ

bc , D
αβ

bc , and E
αβ

bc . Afterward, Bob and Charlie use a
standard estimation procedure [27] on the redefined parameters
to determine n

b,c
0 , n

b,c
1 , and e

b,c
1 .

APPENDIX C: SECURITY PARAMETERS
OF MDI QUANTUM DIGITAL SIGNATURES

Since the secret key obtained from the MDI QKD protocol
is used to encrypt the information interchanged between Bob
and Charlie in the key symmetrization step of the MDI QDS
scheme, the security parameters of both protocols should be of
the same order of magnitude in order to optimize the security
level of the experiment.

Next we describe how to calculate the security parameters
of the MDI QDS protocol. The analysis is based on the results
introduced in [19]. In particular, we have that the robustness
of the protocol, i.e., the probability of an honest run aborting,
depends mainly on the parameter sa , which determines if Bob
accepts a message received from Alice. For MDI QDSs, we
choose sa > Ē, where Ē = max{EB

m,EC
m} and

EB
m � E

μμ

AB,m + g

(
L

2
,R

μμ

AB,m,εpE

)
, (C1)

with

g

(
L

2
,R

μμ

AB,m,εpE

)
=

√√√√
(
R

μμ

AB,m + L/2
)

ln(εpE
−1)(

R
μμ

AB,m

)2
L/2

×
√

R
μμ

AB,m + 1. (C2)

The parameters E
μμ

AB,m and R
μμ

AB,m refer to the quantities E
μμ

k,m

and R
μμ

k,m introduced in Appendix A 2 for the MDI KGP
between Alice and Bob. Here we have removed the subscript
k because, as already mentioned, in our experiment Eve
performs projections onto only one single Bell state and we
have added the subscript AB to emphasize that we refer to
the Alice-Bob link. Equation (C1) represents an upper bound
on the error rate between Bob’s bit string KB

keep,m and the
corresponding bits from Alice’s bit string AB

m, which is correct
except for a failure probability εpE

. The parameter EC
m is

defined in a similar way but now for the Alice-Charlie link.
Then it can be shown that the robustness of the MDI QDS

protocol is given by

εrob � 2εpE
, (C3)

which is the probability that either Ē
μμ

AB,m or Ē
μμ

AC,m is not an
upper bound for E

μμ

AB,m or E
μμ

AC,m, respectively. On the other
hand, it turns out that the probability that Alice can successfully
repudiate the signature of a message satisfies

εrep � 2 exp
[− 1

4 (sv − sa)2L
] + εQKD, (C4)

where εQKD = εcor + εsec is the probability that the secret key
shared between Bob and Charlie by means of MDI QKD is
insecure.

In our simulations, we set the threshold parameters sa and
sv as sa = Ē + pE−Ē

50 and sv = Ē + 49(pE−Ē)
50 , respectively. In

general, the parameter pE represents the minimum rate at
which a potential eavesdropper can make errors when guessing
KB

keep,m or KC
keep,m. That is, we set pE := min{pAB

E ,pAC
E },

where pAB
E and pAC

E are the rates at which the eavesdropper
can make errors in guessing the respective strings KB

keep,m and
KC

keep,m. This is given by

h
(
pJ

E

) = cJ
m,0 + cJ

m,1

[
1 − h

(
eJ
m,1

)]
, (C5)

where J ∈ {AB,AC}. Here cJ
m,i := 2nJ

m,i/L and eJ
m,1 refer to

the parameters estimated from KB
keep,m and KC

keep,m. In our
experiment, since we implement the case where Alice sends a
signed message to Bob, we can take pE as pAB

E .
The threshold parameters sa and sv have to satisfy the

condition Ē < sa < sv < pE [19]. Also, Eq. (C4) indicates
that the bigger the gap between sa and sv is, the smaller εrep

would be. This means that sa should be chosen close to Ē. In
the case of sv , however, there is one additional constraint that
must be satisfied. It arises from the need that the probability pr

that Bob makes fewer than svL/2 errors when guessing KC
keep,m

has to be smaller than a security parameter f , which protects
the protocol against forging. More precisely, according to [19],
we have that the probability pr is upper bounded by

〈pr〉 �
svL/2∑
i=0

(
L/2

i

)
2−Hε

min(KC
keep,m|B) + εH , (C6)

where

Hε
min

(
KC

keep,m|B) ≈ nm,0 + nm,1[1 − h(em,1)] (C7)

is Bob’s smooth minimum entropy about Charlie’s bit string
KC

keep,m and εH is the failure probability related to the
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estimation of this smooth minimum entropy. Equation (C6)
can be further upper bounded as

〈pr〉 �
svL/2∑
i=0

(
L/2

i

)
2−{nm,0+nm,1[1−h(em,1)]} + εH

=
svL/2∑
i=0

(
L/2

i

)
2−(L/2)h(pE ) + εH

�
svL/2∑
i=0

(
L/2

svL/2

)
2−(L/2)h(pE ) + εH

�
svL/2∑
i=0

2(L/2)h(sv )2−(L/2)h(pE ) + εH

=
(

svL

2
+ 1

)
2−(L/2)[h(pE )−h(sv )] + εH . (C8)

The first inequality is due to Eq. (C7), in the second one we use
Eq. (C5), in the third one we use a property of the binomial
coefficient together with the fact that sv < 1/2, and in the
fourth inequality we use

(
N

k

)
� 2Nh(k/N).

This means in particular that if sv is chosen smaller than
(but very close to) pE such that ( svL

2 + 1)2−(L/2)[h(pE )−h(sv )] is
relatively small in comparison to εH and f is chosen larger
than Eq. (C8), the resulting value of εrep decreases. This can

be achieved, for instance, by setting sa = Ē + pE−Ē

50 and sv =
Ē + 49(pE−Ē)

50 , which provide better results than those reported
in [19]. Finally, we have that the probability that Bob can

successfully forge a message m is given by

εfor � pF + f + εpE
+ εm,0 + εm,1 + εm,e, (C9)

where

pF := 1

f
(2−(L/2){cm,0+cm,1[1−h(em,1)]−h(sv )} + εH ) (C10)

and εm,0, εm,1, and εm,e are the failure probabilities related to
the estimation of nm,0, nm,1, and em,1.

For simulation purposes, we set the security level of the
MDI QKD protocol as εQKD = 8×10−8 and we obtain a final
secret key length of � = 4 724 819. The threshold parameters
of the MDI QDS scheme take the values sa = 0.27% and
sv = 1.21% and we obtain εrob = 2×10−8, εrep = 1.51×10−7,
and εfor = 9.76×10−8. That is, we observe an experimental
demonstration of the complete MDI QDS protocol with a total
security level of the order of 10−7.

APPENDIX D: EXPERIMENTAL RESULTS

The detailed experimental results for the MDI KGP and
the MDI QKD protocol are shown in Tables III–V. These
tables present the total number of signals sent, the number
of detection events, and the number of errors for all possible
combinations of intensity and basis settings.

Finally, in Table VI we show the experimental results
related to the creation of the signatures AB

m, AC
m, KB

m , and KC
m .

As already mentioned above, the sets Ẑ
μ,μ

k,m with m ∈ {0,1} are
obtained by randomly distributing the bits from Ẑ

μ,μ

k into two
sets. Then, from each set Ẑ

μ,μ

k,m we select L bits at random to
form the signatures, while the remaining bits R

μ,μ

k,m from Ẑ
μ,μ

k,m

are used to estimate the error rate. In Table VI the column that
contains the number of errors refers to the number of error
found in R

μ,μ

k,m .

TABLE III. List of the experimental results in the MDI KGP between Bob and Alice.

B-E-A Number of detection events Number of errors Total number of pulses

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − Z 5 2281 9410 0 1151 4678 3.48×1010 9.46×1010 1.13×1011

ν − Z 6102 1749934 6900463 3097 11321 23079 9.46×1010 2.56×1011 3.04×1011

μ − Z 25327 6637000 25920132 12597 37586 57933 1.13×1011 3.04×1011 3.61×1011

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − X 3 221587 0 0 109383 0 3.48×1010 1.62×1011 0

ν − X 1567663 13559453 0 792879 4495014 0 1.62×1011 7.50×1011 0

μ − X 0 0 0 0 0 0 0 0 0

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − X 8 2109 9926 0 1023 5094 3.58×1010 8.91×1010 1.17×1011

ν − X 1559324 7353412 16949068 752481 3699305 8601812 1.61×1011 4.43×1011 5.16×1011

μ − X 0 0 0 0 0 0 0 0 0

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − Z 10 224153 0 1 108354 0 3.32×1010 1.63×1011 0

ν − Z 6342 3600069 0 3150 1794446 0 9.91×1010 4.33×1011 0

μ − Z 24754 12375438 0 12589 6171201 0 1.10×1010 5.23×1011 0
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TABLE IV. List of the experimental results in the MDI KGP between Alice and Charlie.

A-E-C Number of detection events Number of errors Total number of pulses

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − Z 56 2732 11538 33 1358 5889 7.12×1010 1.93×1011 2.30×1011

ν − Z 2676 1901132 7467976 1396 7043 19402 1.93×1011 5.22×1011 6.21×1011

μ − Z 11164 7547507 29400832 15521 18995 37340 2.30×1011 6.21×1011 7.37×1011

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − X 53 934208 0 29 468323 0 7.12×1010 3.30×1011 0

ν − X 468796 12232268 0 233884 3784406 0 3.30×1011 1.53×1012 0

μ − X 0 0 0 0 0 0 0 0 0

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − X 71 2644 11841 32 1303 6184 7.32×1010 1.82×1011 2.40×1011

ν − X 459779 4574929 14265714 226537 2306807 7214626 3.28×1011 9.05×1011 1.05×1012

μ − X 0 0 0 0 0 0 0 0 0

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − Z 55 894712 0 38 435637 0 6.79×1010 3.34×1011 0

ν − Z 2634 5801820 0 1306 2909919 0 2.02×1011 8.85×1011 0

μ − Z 10616 16239773 0 5316 7809247 0 2.25×1011 1.07×1012 0

TABLE V. List of the experimental results in the MDI QKD protocol between Bob and Charlie.

B-E-C Number of detection events Number of errors Total number of pulses

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − Z 26 3030 12044 9 1577 6040 3.87×1010 1.05×1011 1.25×1011

ν − Z 7767 2270167 8869003 3864 13852 27681 1.05×1011 2.84×1011 3.38×1011

μ − Z 30578 8584134 33191574 15469 46320 68734 1.25×1011 3.38×1011 4.01×1011

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − X 16 374541 0 10 189842 0 3.87×1010 1.80×1011 0

ν − X 1692163 16386192 0 843731 5228055 0 1.80×1011 8.34×1011 0

μ − X 0 0 0 0 0 0 0 0 0

0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z 0 − Z ν − Z μ − Z

0 − X 17 3055 12550 10 1487 6412 3.98×1010 9.90×1010 1.30×1011

ν − X 1699809 8511993 20790027 829897 4220816 10849002 1.79×1011 4.93×1011 5.74×1011

μ − X 0 0 0 0 0 0 0 0 0

0 − X ν − X μ − X 0 − X ν − X μ − X 0 − X ν − X μ − X

0 − Z 26 359290 0 14 173852 0 3.69×1010 1.82×1011 0

ν − Z 7270 5072023 0 3632 2560729 0 1.10×1011 4.82×1011 0

μ − Z 30047 16514489 0 14986 8200455 0 1.22×1011 5.82×1011 0

TABLE VI. List of experimental parameters related to the creation of the signatures AB
m, AC

m, KB
m , and KC

m .

Signature |Ẑμ,μ

k,m | L |Rμ,μ

k,m | Number of errors E
μ,μ

k,m

AB
0 − KB

0 12960066 787468 12172598 26880 0.219%
AB

1 − KB
1 12960066 787468 12172598 27479 0.225%

AC
0 − KC

0 14700416 787468 13912947 17786 0.127%
AC

1 − KC
1 14700416 787468 13912947 17573 0.126%
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