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Quantum states are fragile and can easily be destroyed by their 
inevitable coupling to the uncontrolled environment, which 
presents a major obstacle to quantum computation1. A prac-

tical quantum computer capable of large circuit depth ultimately 
calls for operations on logical qubits protected by quantum error 
correction (QEC)2–5 against unwanted errors. Realization of a logi-
cal qubit with a longer coherence time than its individual physical 
components is considered to be one of the most challenging goals 
for current quantum information processing6. For QEC, fragile 
quantum information needs first to be redundantly encoded in a 
logical subspace of a larger Hilbert space4. Error syndromes that 
can distinguish the code space from the orthogonal error subspaces 
need to be monitored repetitively without perturbing the encoded 
information. Using quantum non-demolition (QND) syndrome 
measurements, unitary recovery gates are adaptively applied to 
restore the original encoded information. QEC and realization of 
universal unitary manipulations of the logical qubit within the code 
space are necessary steps towards a practical quantum computer. 
The next stage is to demonstrate gate operations on the logical qubit 
under continuous QEC protection.

In standard logical qubit schemes based on multiple physi-
cal qubits7–17, QEC and logical operations are difficult to achieve 
because the number of distinct error channels increases with the 
number of qubits, and non-local gates on a collection of physical 
qubits are required. A different encoding architecture based on a 
single bosonic oscillator has been proposed, using (for example) the 
Gottesman–Kitaev–Preskill codes18 and the cat codes19,20, and has 
attracted interest21–30. Taking advantage of the infinite-dimensional 
Hilbert space of a harmonic oscillator, quantum information can be 
encoded with a single degree of freedom. Most importantly, photon 
loss remains the dominant error channel, so there is still only one 
error syndrome that needs to be monitored. In addition, universal 

operations on the oscillator can be realized by dispersively coupling 
to a single ancilla transmon qubit, which allows fast and high-fidelity 
operations31. As a result, the requirements for hardware are greatly 
reduced19,20. For bosonic codes the break-even point is defined rela-
tive to the Fock ∣ ⟩ ∣ ⟩{ 0 , 1 }  encoding, since this non-correctable code 
has the lowest possible photon number and is thus the analogue of 
a single physical qubit. QEC protection exceeding the break-even 
point for quantum memory has been demonstrated with a cat-code 
encoding24 and, separately, gate operations on such logical qubits 
have been demonstrated without any QEC protection26.

In addition to the above advantages, the recently introduced 
binomial codes32 have the advantage that the mean photon numbers 
(and for higher-order binomial codes, several moments of the pho-
ton number) are exactly equal, and furthermore admit an explicit 
unitary operation for repumping photons into the photonic mode. 
This contrasts with the originally proposed cat code19,20, which 
suffers code deformations at small amplitudes owing to different 
mean photon numbers of the code words33. See Supplementary 
Information for further discussion of this point.

Binomial codes can exactly correct errors that are polynomial 
up to a specified order in photon creation and annihilation opera-
tors, including amplitude damping, dephasing and displacement 
noise, and thus provide significant improvement provided that 
the higher-order photon loss probabilities are sufficiently small. 
In addition, for a given mean photon number the required dimen-
sion of Fock space for a binomial code is smaller than that for a cat 
code, meaning that gate operations on the binomial logical qubit 
in principle should have higher fidelities owing to a smaller influ-
ence from Kerr effects. Recently, a controlled-NOT gate on a target 
qubit based on the lowest-order binomial code without QEC pro-
tection has been realized28. Here, we also choose the lowest-order 
binomial code that can protect against a single-photon loss error, 
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and demonstrate full control of a single bosonic logical qubit with a 
repetitive QEC and a high-fidelity universal gate set (97.0% average 
process fidelity). The corrected logical qubit exhibited a lifetime 2.8 
times longer than that of the uncorrected binomial logical qubit, 
and approaches the break-even point. The complete logical qubit 
operations demonstrated here could be the foundation for devel-
oping fault-tolerant quantum computing6,34 and one-way quantum 
repeaters33. Additionally, we perform a Ramsey experiment on 
the QEC protected logical qubit that shows a coherence two times 
longer than that of the uncorrected logical qubit, paving the way 
towards QEC-enhanced quantum metrology35. Our demonstration 
could also be generalized to superconducting systems hybridized 
with other bosonic excitations36.

The bosonic logical qubit experiment is implemented in a circuit 
quantum electrodynamics architecture37,38 with a transmon qubit 
dispersively coupled to two three-dimensional cavities21,22,24,38,39, 
illustrated schematically in Fig. 1a. The ancilla qubit has an energy 
relaxation time T1 =  30 μ s and a pure dephasing time Tϕ =  120 μ s. 
The storage cavity serving as an oscillator (henceforth referred as the 
‘oscillator’) for encoding logical quantum states has a single-photon 
lifetime τs =  143 μ s (corresponding to κs/2π  =  1.1 kHz) and a Ramsey 
phase coherence time 252 μ s. Utilizing the large Hilbert space of the 
harmonic oscillator, we construct the binomial code by superpos-
ing Fock states with binomial coefficients32. In our experiment, we 
choose the lowest-order binomial code with the code words:

∣ ⟩ = ∣ ⟩ + ∣ ⟩ ∕0 ( 0 4 ) 2 (1)L

∣ ⟩ = ∣ ⟩1 2 (2)L

as shown in Fig. 1b. Both basis states have the same average pho-
ton number of two, as required by the QEC criteria1. This code can  

protect quantum information from single-photon loss errors, which 
is the dominant error channel for the microwave oscillator. A single-
photon loss sends the logical states from the code space with even 
parity to an error space with odd parity, that is ∣ ⟩ = ∣ ⟩â 0 2 3L  and 

∣ ⟩ = ∣ ⟩â 1 2 1L , where â is the photon annihilation operator of  
the oscillator.

A complete set of operations on the bosonic logical qubit is 
illustrated in Fig. 1b. Besides serving as an ancilla for the error syn-
drome detection of the logical qubit, the transmon qubit provides 
the necessary non-linearity for implementing the quantum encod-
ing, decoding and error-correcting recovery operation (UR), as well 
as the universal single logical qubit operations in the binomial code 
space (logical gates UL). Through a sequence of control pulses on 
the system, all these operations on the logical qubit are realized, 
based on the dispersive interaction between the ancilla and the 
oscillator24,40

χ= − ∣ ⟩ ⟨ ∣−† †H â â e e K â â
2

(3)int qs
2 2

where |e〉  is the excited state of the ancilla qubit (|g〉  is the ground 
state), χqs/2π  =  1.90 MHz is the dispersive interaction strength and 
K/2π  =  4.2 kHz is the self-Kerr coefficient of the oscillator. The con-
trol pulses are synchronized and generated by field programmable 
gate arrays with home-made logic, and allow for fast real-time feed-
back control of the logical qubit (see Supplementary Information 
for the experimental apparatus). The pulse shapes are numerically 
optimized using the gradient ascent pulse engineering (GRAPE) 
method41,42, based on carefully calibrated experimental parameters.

First, we demonstrate the encoding and decoding process, where 
quantum information is transferred between the ancilla qubit 

∣ ⟩ ∣ ⟩g e{ , }  and the binomial code space ∣ ⟩ ∣ ⟩{ 0 , 1 }L L  of the oscilla-
tor. Process tomography1 is used to benchmark our encoding and 
decoding performance, and the fidelity is defined as Fχ =  tr(χMχI), 
with χM(χI) being the derived 4 ×  4 process matrix for experimen-
tal (ideal) operation (see Methods). Figure 2b shows the χM for a 
sequential encoding and decoding process and indicates a fidelity 
of 93.1%.

The quantum information in the binomial code space can be 
protected from a single-photon loss by the QEC process (including 
both error detection and correction). A photon number parity mea-
surement can distinguish the code and error spaces (Fig. 1b) without 
perturbing the encoded information22, and thus serves as the error 
syndrome for error detection. Once a parity change is detected, the 
state in the error space can be converted back to the original code 
space by a unitary recovery gate UR. As opposed to the cat code, 
where corrections can be performed at the end of error-syndrome 
tracking24, the photon loss error in our experiment needs to be cor-
rected immediately, because this particular binomial code does not 
tolerate two or more photon losses. Repeated such processes can 
therefore protect the information stored in the logical qubit. As 
usual, a trade-off needs to be considered between more frequent 
parity measurement to avoid missing photon loss errors and finite 
detection and recovery fidelities causing extra information loss.

The experimental protocol for repetitive QEC is shown in Fig. 2a,  
where a two-layer QEC procedure is adapted to balance the opera-
tion errors, no-parity-jump back-action errors and photon-loss 
errors. The top-layer QEC consists of several bottom-layer QEC 
steps, and (since double-photon loss would be fatal) each step cor-
rects photon-loss error but tolerates the back action from the detec-
tion of no parity jump until the last step. Therefore, the top-layer 
QEC recovers the quantum information in the code space and is 
repeated many times, while the bottom-layer QEC conserves parity 
in a deformed code space. The current experiment consists of two 
bottom-layer QEC steps with an optimal waiting time tw =  17.9 μ s  
(see Fig. 3b). The number of bottom-layer QEC steps is chosen as 
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Fig. 1 | Schematic of the experiments on binomial quantum code.  
a, The experimental device consists of a storage cavity as an oscillator for 
logical quantum state encoding, an ancillary transmon qubit facilitating all 
quantum operations, and a readout cavity for the ancilla measurement. The 
quantum states are encoded in the oscillator with the binomial code basis 
states ∣ ⟩ ∣ ⟩ ∣ ⟩= + ∕0 ( 0 4 ) 2L  and ∣ ⟩ ∣ ⟩=1 2L . b, Operations on a single logical 
qubit. The quantum state of the ancilla qubit ∣ ⟩ ∣ ⟩g e{ , } can be encoded 
(EN) to and decoded (DE) from the code space of the oscillator. A single-
photon loss changes the code space with even parity to the error space 

∣ ⟩ ∣ ⟩{ 3 , 1 } with odd parity. A high-fidelity and QND parity measurement 
can detect this error event, while leaving encoded quantum information 
untouched. Once a loss error is detected (ED), a unitary error correction 
(EC) recovery gate UR can convert the error space back to the original 
code space. If no parity jump is detected, the deterministic evolution of the 
code word can be corrected by another unitary recovery gate (not shown), 
completing a closed-loop QEC on the logical qubit. With the assistance of 
the ancilla, high-fidelity gate operations UL on the logic qubit can also be 
implemented within the code space.
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a compromise between tolerating more back action from the detec-
tion of no parity jump and fewer adaptive gate operations (see 
Supplementary Information). The outcome of first error detection 
PM =  0 indicates that no photon-loss error occurs and the state of 
the oscillator undergoes an evolution from ψ α β∣ ⟩ = ∣ ⟩ + ∣ ⟩0 10 L L  
to ψ α β∣ ⟩ = ∣ ⟩ + ∣ ⟩′ ′0 11 L L , with a deformation of code space basis 
states θ θ∣ ⟩ = ∣ ⟩ + ∣ ⟩′ φ0 cos 0 sin e 4i

L 1 1
4  and ∣ ⟩ = ∣ ⟩′ φ1 e 2i

L
2 . We note 

that the above unitary evolution is only an approximation to the 
non-unitary back action associated with the no-parity-jump evolu-
tion κ− ∕ †

e t( 2)â âs  valid to first order in κstw
32. It is also worth noting that 

no detected parity change cannot rule out the possibility of having 
two-photon losses (about 2.1%), which causes complete quantum 
information loss. For PM =  1, one photon-loss error occurs (the 
probability of having a three-photon loss of about 0.14% can be 
neglected), and the oscillator state becomes ψ α β∣ ⟩ = ∣ ⟩ + ∣ ⟩φe 3 1i

2
3  

and a unitary recovery gate U2 has to be applied immediately to con-
vert |ψ2〉  to |ψ1〉  in the deformed code space. After an additional 
waiting time tw, another error detection is performed for the second 
bottom-layer QEC step. Similarly, PM =  0 and 1 indicate a further 
deformation of code space to |ψ3〉  and a jump to error space with 
ψ α β∣ ⟩ = ∣ ⟩ + ∣ ⟩′φe 3 1i

4
3 , respectively. Then unitary gates U3 and U4 

are applied correspondingly to restore the original state |ψ0〉 , com-
pleting one round of top-layer error correction. In Fig. 2c–e, the 
process matrices are presented for the process after the second error 
detection in the first round of top-layer QEC, showing a good fidel-
ity of 81.4%.

Figure 3a shows the process fidelity Fχ(t) with the repetitive QEC 
(green) decaying exponentially as a function of time, where the two-
layer error correction process is repeated j =  1–19 times. For com-
parison, the process fidelities of the uncorrected binomial quantum 
code (red), the uncorrected transmon qubit (black), and the uncor-
rected Fock state ∣ ⟩ ∣ ⟩{ 0 , 1 }  encoding of the oscillator (blue) are also 
plotted. All curves are fitted using Fχ(t) =  0.25 +  Ae−t/τ, where τ is the 
lifetime. τ of the corrected binomial code is 5.3 times longer than the 
uncorrected transmon qubit, 2.8 times longer than the uncorrected 
binomial code, and only 8% or less lower than the uncorrected Fock 
encoding that defines the break-even point for the QEC23. These 
results demonstrate that the experimental system and scheme are 
robust and can indeed protect the encoded bosonic code from the 
photon loss error.

The experiment with the two-layer QEC procedure is limited 
mainly by the decoherence of the ancilla qubit, which induces 
imperfections and deserves further investigation. Since the ancilla 
facilitates both error detection and gate operations, the ancilla 
decoherence induces errors for these processes and prevents more 
frequent QEC. On the other hand, with a larger interval between 
QECs, there is a higher probability of having undetectable two-pho-
ton losses and a larger dephasing effect induced by photon losses 
owing to the non-commutativity of the annihilation operation â and 
the self-Kerr term †â âK

2
2 2. To illustrate this trade-off, Fig. 3b shows 

the numerically predicted decay time as a function of the tracking 
interval per two error detections following the protocol in Fig. 2a  

EN

tr(χj=0χI) = 93.1% tr( χj=1χI) = 81.4%tr(χPM     = 0χI) = 83.7%1
2 tr(χPM    =1χI) = 72.2%1

2
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Fig. 2 | Protocol of the repetitive QeC and process tomography. a, The experimental procedure. The experiment begins with encoding an arbitrary 
superposition state ∣ ⟩ ∣ ⟩ ∣ ⟩ψ α β= +g eq

 of the ancilla qubit onto the oscillator state ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ α β= + ∕ +( 0 4 ) 2 20
 (process EN). After a waiting time tw ≈  

17.9 μ s, a parity measurement is performed. =PM 0j
1  (the first parity measurement of the jth round) indicates that no photon-loss error occurs (two or more 

photon-loss errors cannot be distinguished but have a small probability), and the state of the oscillator undergoes a deterministic evolution to a deformed 
code space as ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ α θ θ β= + ∕ +φ φ(cos 0 sin e 4 ) 2 e 2i i

1 1 1 4 2 , and no correction action is applied. =PM 1j
1  indicates that one photon-loss error occurs, 

and the oscillator state becomes ∣ ⟩ ∣ ⟩ ∣ ⟩ψ α β= +φe 3 1i
2

3 . A π  pulse is first applied to flip the ancilla qubit to the |g〉  state to minimize the detrimental effect 
from the ancilla qubit decoherence, and then a unitary recovery gate U2 is applied immediately to convert |ψ2〉  to |ψ1〉 . Note that after another waiting 
time tw, a second parity measurement is performed. Similarly, =PM 0j

2  or 1 indicates that no or one photon loss occurs, and the oscillator state becomes 
′ ′∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ α θ θ β= + ∕ +φ φ(cos 0 sin e 4 ) 2 e 2i i

3 2 2 4 2  and ′∣ ⟩ ∣ ⟩ ∣ ⟩ψ α β= +φe 3 1i
4

3 , respectively. Unitary gates U3 and U4 are then applied correspondingly to 
restore the original state |ψ0〉 . This error correction process is repeated 1− 19 times followed by a decoding process (DE) to the ancilla qubit. ∣ ⟩ψ −0 4

 are all 
measured Wigner functions for α = ∕1 2 and β = − ∕i 2. b–e, χ matrices of the process tomography, showing encoding followed immediately by the decoding 
process (b), one round of error correction for =PM 02

1  (with probability 79.3%) and =PM 12
1  (with probability 20.7%), respectively (c and d), and one round of 

correction without post-selecting =PM 02
1  or 1 (e). I, X, Y and Z are the Pauli basis. Here, only the real parts are shown while the imaginary parts are nearly zero.
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(see Supplementary Information). It predicts a shorter optimal tw 
and a longer decay time for a higher recovery gate fidelity. Our 
experimental result is indicated by the cross, implying a recovery 
gate fidelity of about 97.0% that is mainly limited by the ancilla 
qubit decoherence during the recovery gates. To extend the logi-
cal qubit lifetime beyond that of the Fock state ∣ ⟩ ∣ ⟩{ 0 , 1 }  encoding, 
either a better strategy with at least four bottom-layer QEC steps 
needs to be implemented with current qubit coherence (although 
this requires more adaptive gate operations; see Supplementary 
Information), or the coherence time of the ancilla qubit needs to 
be improved. As depicted in Fig. 3c, this goal can be achieved if 
we can double T1 while keeping the same Tϕ. By comparison, a cat 
code does not have this recovery gate error issue, and instead only 
requires tracking of the number of errors and a correction at the end 
of the whole QEC process24 (provided that the cat-state amplitudes 
remain large enough). If the recovery gate itself is perfect and we 
have only detection errors, we can in principle achieve a decay time 
after QEC of over 260 μ s, more than 20% longer than for the Fock 
state ∣ ⟩ ∣ ⟩{ 0 , 1 }  encoding.

To fully exploit the binomial encoding for future quantum infor-
mation processing, gate operations on the logical qubits are indis-
pensable. Thanks to the single bosonic oscillator encoding, we are 
able to implement the logical qubit gates by universal control of the 
state of the oscillator, instead of encoding/decoding to the ancilla 

qubit. We performed a randomized benchmarking experiment43–46 
to determine the fidelity of the Clifford gates on the logical qubit. 
Figure 4a shows the results with an average gate error rgate ≈  0.031. 
These gate fidelities could be improved further by a more careful 
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calibration of the GRAPE pulses. Since the T gate does not belong 
to the Clifford group, in our experiment, we instead performed 
repeated gates to extract its gate fidelity, of about 98.7% (data shown 
in the Supplementary Information). We note that recently it has 
been proposed that the T gate can also be characterized by random-
ized benchmarking47–49.

With QEC and high-fidelity universal operation of the logical 
qubit in hand, we demonstrate a Ramsey experiment on the QEC-
protected logical qubit that indeed shows longer coherence. The 
insets to Figure 4b show the experimental sequences for the logical 
qubit Ramsey experiments with and without QEC, and both experi-
ments also combine an encoding and decoding process. The results 
are fitted with an exponentially damped sinusoidal function. The 
Ramsey experiment performed on the logical qubit without QEC 
gives a coherence time of 101 μ s. The interference fringes against the 
evolution time correspond to a Kerr-nonlinearity-induced phase 
change of the logical qubit. It is worth noting that the self-Kerr does 
not cause errors in the lowest-order binomial code in the absence of 
cavity photon decay. A particular frame can be chosen to match the 
rotation of |4〉  relative to |0〉  so that |0〉  and |4〉  are degenerate, while 
|2〉  has a slightly different frequency. However, the resulting phase 
rotation of the logical qubit is purely deterministic and so there is no 
decoherence associated with the self-Kerr effect. This is true even 
if the higher-order corrections to Kerr nonlinearity are taken into 
account, which is a useful feature of the lowest-order binomial code.

For comparison, the experiment on the QEC-protected logical qubit 
gives a coherence time of 207 μ s, twice as long as without QEC protec-
tion, demonstrating a real gain in coherence from QEC. The Ramsey 
oscillation in this QEC-protected case comes from the variable rota-
tion axis of the second π /2 gate. Since Ramsey interferometry is widely 
used for precision measurements, our results represent an important 
advance towards QEC-enhanced metrology based on logical qubits.

In addition to the real-time repetitive QEC and universal gate set 
on a bosonic logical qubit demonstrated in this work, two-logical-
qubit gates still remain to be demonstrated for universal quantum 
computation. Our work provides a starting point for future work: 
to realize a logical qudit with binomial code, to generalize the tools 
realized in this work to multiple oscillators (logical qubits) and 
to realize fault-tolerant error detection and correction, as well as 
logical gates. Current experimental techniques could realize more 
logical qubits by integrating more cavities or modes in a compact 
three-dimensional structure50. Our results motivate further inves-
tigation of superconducting quantum processors, paving the way 
towards fault-tolerant implementation of QEC and gates based on 
bosonic encodings6,34. The quantum bosonic code demonstrated 
here can also be directly applied to phonon51 and magnon52 exci-
tations by hybridizing with superconducting circuits. In addition, 
a similar architecture could be realized in the neutral atom53 and 
trapped-ion54 systems, in which the atomic motion provides a 
bosonic mode with long coherence times while the internal atomic 
energy levels serve as the ancilla qubit.
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Methods
The ancillary transmon qubit has a frequency ωq/2π  =  5.692 GHz, an energy 
relaxation time T1 =  30 μ s, and a pure phasing time Tϕ =  120 μ s. The binomial code is 
encoded in the storage cavity (the oscillator) with a frequency ωs/2π  =  7.634 GHz, a  
single-photon lifetime τs =  143 μ s (κs/2π  =  1.1 kHz), and a coherence time 252 μ s.  
The self-Kerr of the oscillator induced by the ancilla qubit is Ks/2π  =  4.2 kHz. 
The logical qubit can be manipulated by the ancillary qubit through its 
dispersive interaction with the oscillator, χqs/2π  =  1.90 MHz. The readout cavity 
is at a frequency of ωr/2π  =  8.610 GHz and has a lifetime of 44 ns, such that 
κr/2π  =  3.62 MHz is matched with the dispersive interaction between the ancilla 
qubit and the readout cavity χqr/2π  =  3.65 MHz for a best readout signal-to-noise 
ratio. A Josephson parametric amplifier is also used for a high-fidelity and high-
QND single-shot readout of the ancilla qubit with a duration of 320 ns: > 99.9% for 
the ground state |g〉  and 98.9% for the excited state |e〉 . The dispersive interaction 
allows for a Ramsey-type parity measurement of the photon numbers in the 
oscillator, where two unconditional π /2 rotations of the ancilla qubit are separated 
by a delay of π /χqs ≈  260 ns, with > 99.9% QND and a fidelity of 97.2% for =n 2. An 
error syndrome measurement process takes about 1 μ s, during which a photon loss 
occurs with a possibility of 1.4%.

The ancilla qubit, the oscillator and the readout cavity are each controlled by 
a field programmable gate array with home-made logic, allowing for both a fast 

readout of the ancilla qubit and a fast real-time feedback control of the oscillator 
with a latency of about 330 ns (the time interval between sending out the last point 
of the readout signal and sending out the first point of the control signal) including 
the signal travel time through the experimental circuitry, which is about 1% of the 
ancilla qubit lifetime.

Process tomography is realized by preparing four linear independent initial 
states ∣ ⟩ ∣ ⟩ ∣ ⟩ + ∣ ⟩ ∕ ∣ ⟩− ∣ ⟩∕g e g e g i e{ , , ( ) 2 , ( 2 )} , and then performing the 
corresponding final-state tomography of the ancilla after encoding, repetitive  
QEC and decoding information back to the ancilla. From these processes, we 
derive the 4 ×  4 process matrix χM. The fidelity is defined as the overlap between  
χM and χI (χI is for a perfect QEC process) Fχ =  tr(χMχI).

Supplementary methods. For more details, including those regarding the 
experimental device and set-up, comparison between binomial codes and cat 
codes, measured system parameters, coherence times, measurement properties, 
experimental sequences, T gate fidelity, and theoretical analysis and error model of 
QEC performance, see the Supplementary Information.
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