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Displacement detection of a sphere particle in focused laser beams with quadrant photodetector (QPD) pro-
vides a fast and high precision way to determine the particle location. In contrast to the traditional Gaussian
beams, the sensitivity of displacement detection using various doughnut beams are investigated. The sensitivity
improvement for large sphere particles along the longitudinal direction is reported. With appropriate vortex
charge l of the doughnut beams, they can outperform the Gaussian beam to get more than one order higher
sensitivity and thus have potential applications in various high precision measurement. By using the levitating
doughnut beam itself to detect the particle displacement, the result will also facilitate the recent proposal of
levitating a particle in doughnut beams to suppress the light absorption.

Introduction The displacement of the levitated particle is
usually measured by the interferometry method with quadrant
photodetector (QPD) in the back focal plane [1–8]. With high
sensitivity and high bandwidth, it is widely used in high preci-
sion displacement measurement [1], weak force measurement
[2, 3], photon force microscope [9], optical nanoprobing [10]
and even surface imaging [11]. Especially, with the sensitiv-
ity as high as 3 fm/

√
Hz [12], it can measure the instanta-

neous velocity of brownian particle [12, 13] and provides a
key tool to investigate the dynamics of the particle in various
physical systems [14, 15] including the optomechanical sys-
tem [16, 17].

Particle levitated by laser beam absorbs light and meets
heating problem [16, 17]. It is proposed to reduce heating of
strong absorptive particle by designing a core-shell structure
of the particle and trapping it in the doughnut-shaped beams
[18]. The proposal of the using doughnut beams show excel-
lent tolerance of the heat absorption of the particle and keeps
the high quality factor of the mechanical oscillation. When
the laser beam is changing from Gaussian beam to doughnut
beams, it is significant to know how the doughnut beams affect
the sensitivity in detecting the particle displacement.

The interferometry method with QPD has been investigated
extensively using Gaussian beam [1–8, 11]. However, few pa-
pers have investigated the sensitivity of displacement detec-
tion of a particle in doughnut beams [19–21]. Nes et. al. [19]
has investigated the scattering of a sphere particle in LG beam
and shown the response signal of QPD for certain LG beams.
Garbin et. al. [21] have investigated the signal of QPD for
LG beams with different sign of vortex charge l. It has shown
that the result can be used to distinguish the vortex charge of
the beam. Here, we give a detail and systematical investiga-
tion of interferometry method using various doughnut beams.
Especially, the displacement detection with the large sphere
particle size has been included. The result shows that the inter-
ferometry method is still efficient for doughnut beams. More
importantly, the sensitivity along the longitudinal direction is
dramatically improved for large sphere particles. By choosing
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FIG. 1. The schematic of the displacement detection setup in an opti-
cal levitating system (consisted of an optical trap and a trapped parti-
cle). Incident beams here include various doughnut beams. The field
after the particle scattering is collected by lens L2 to the quadrant
photodetector (QPD) to get the signal.

appropriate doughnut beams, they can outperform the Gaus-
sian beam with more than one order.

The system structure and method The system we consid-
ered is shown in Fig. 1. The incident laser beam is focused
by a high Numerical Aperture (NA) objective lens L1 to trap a
sphere particle near the focus in vacuum. The scattering beam
field, along with the incident beam field is collected by the
second lens L2 to the QPD as the detection signal. In the pre-
vious literatures [4–8], the incident beam is typically Gaussian
beam. Here we focused on various doughnut beams. The sys-
tem is described with the following parameters: the power of
incident beam P, the wavelength of the beam in vacuum λ0,
the polarization of incident beam e, the numerical aperture of
the object lens NA, the filling factor of the incident beam f01
and the radius of sphere particle a. Unless stated otherwise,
we assume P = 100 mW, λ0 = 1064 nm, NA = 0.95, e = x̂
and f01 = 1.0 in this work.

We apply the generalized Lorentz-Mie Theory (GLMT) to
simulate the electromagnetic field scattering by the particle.
The GLMT has been widely used in literatures [22, 23], and
provides a powerful and convenient tool to calculated the scat-
tering field. In this method, the incident and scattering beam
are described by the partial wave expansion coefficients in the
bases of vector spherical wave functions. The two sets of co-
efficients are linked by the T -Matrix of the particle which is
independent of the incident beam. The strongly focused inci-
dent beam cannot be described by the expression of paraxial
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FIG. 2. (a) The sensitivity of displacement detection using QPD for
a silica sphere particle trapped in the x̂ direction linearly polarized
Gaussian beam. The inset: a typical response of the QPD for a sphere
particle (a = 400 nm) moving along the x axis in the Gaussian beam.
(b) The response signal of the QPD for particles with various radii in
the x̂ direction linearly polarized Gaussian beam.

beam, thus we described the beam by the generalized vector
Debye integral theory [23].

The incident and scattered electromagnetic fields are col-
lected by the lens L2. The QPD then outputs the response sig-
nal based on the interference distribution of the light intensity.
The responses signals of the QPD are [24]

S x =

"
xd>0

I(xd, yd)dxddyd −

"
xd<0

I(xd, yd)dxddyd, (1a)

S y =

"
yd>0

I(xd, yd)dxddyd −

"
yd<0

I(xd, yd)dxddyd, (1b)

S z =

"
I(xd, yd)dxddyd. (1c)

Among Eqs. (1a-1c), the subscripts x, y, z denote the QPD’s
three different signals respectively. Usually, S x is chosen to
measure the particle displacement for a particle moving along
the x direction for example, because the signal S x changes
most dramatically at the same time. So are the cases of
S y and S z. Since both S x and S y denote the signals in the
transverse direction and have similar behaviors, we mainly
show the results of S x and S z in the investigation below with-
out loss of generality. The light intensity on the detector is
I(xd, yd) =

cεd
2nd
|E(xd, yd)|2, where the permittivity and refrac-

tive index of medium before the detector are εd and nd re-
spectively. The velocity of light in vacuum is denoted as
c. The field E(xd, yd) is the electric field on the detector.
It can be written as E(xd, yd) = Einc(xd, yd) + Escat(xd, yd),
where Einc(xd, yd) comes from the incident beam which can
be expressed analytically for the confocal system here; and
Escat(xd, yd) comes from the scattering filed, which is calcu-
lated through the T -matrix method.

Result In this part, we show the numerical result of dis-
placement detection sensitivity for a particle in Gaussian
beam, and various doughnut beams. The definition of dough-
nut beams including LG beam with different vortex charge l,
radially polarized and azimuthally polarized beam follows the
convention in Ref. [24].

Sensitivity and Range of a sphere particle in Gaussian
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FIG. 3. (a) The typical response of the QPD for a silica particle
particle moving along the x axis in the x̂ direction linearly polarized
LG01 beam. Cases with some representative particle radii have been
shown. The slope near the beam focus (i.e., the sensitivity) could be
either positive or negative. (b) The response signal of the QPD for
particles with various radii in the x̂ direction linearly polarized LG01

beam.

beam Figure 2(a) shows the result of the detection sensitivity
using Gaussian beam, for a silica sphere particle moving along
x̂ direction in vacuum. Especially, the case for the sphere par-
ticle with large size (i.e., much larger than the wavelength)
is included. In the inset of Fig. 2(a), the response signal of
the QPD for a sphere with radius a = 0.4 µm is shown. The
sensitivity is defined as

ηi =
dS i

dri

∣∣∣∣∣
r=r0

, (2)

where i = x, y, z denote the sensitivity along different dis-
placement direction and r0 is the location of the particle. Here
we focus on r0 = 0 in the work because the sensitivity usu-
ally reaches it best at the axis origin. As shown in Fig. 2(a),
the sensitivity η increase with the increasing sphere particle
radius a and reaches the maximum when a ≈ 0.4 µm. At
this point, the particle size is comparable with the beam waist.
With larger radius a, the sensitivity decreases and shows shal-
low modulations. The shallow modulations in the sensitivity
curve when a > 0.4 µm are caused by the Mie resonance
which changes the scattering field distribution.

Sensitivity of a particle in doughnut beams The QPD signal
of a sphere particle in LG beams is quite different from that in
Gaussian beam. As shown in Fig. 3(a), taking the LG01 beam
as an example, there are more maximums and minimums of
the signal S x when the particle location changes. The slope of
S x about x at the coordinate origin, which is defined as sen-
sitivity, could be either positive or negative depending on the
radius a. Figure 4(a) shows the result of the sensitivity ηx for
LG0l beams with l = 1, 2, 3. The sensitivity for Gaussian beam
(i.e., l = 0) is also shown for comparison. For particles with
size a much larger than the beam waist size, the sensitivity
of LG beams show the same behavior with that of Gaussian
beam. However, for a smaller than the beam waist size, the
sensitivity of LG beams (taking LG01 beam as an example)
will change from negative to positive at certain size R0. The
displacement direction can be positive or negative when the
response signal is positive, depending on whether the size of
the particle exceeds R0. This is different from that in Gaussian
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FIG. 4. (a) The sensitivity of the transverse displacement detection
for different particle radii in the x̂ direction linearly polarized LG01,
LG02 and LG03 beam and Gaussian beam (i.e., l = 0). (b) The same
as Fig. (a) for radially and azimuthally polarized beams.

beam (blue solid line), which is always positive.
The different behaviors here are caused by the doughnut

shape of intensity distribution of LG beams. The scattering
field will show totally different distribution depending on two
factors. One is whether the particle is inside or outside the
bright rings of LG beams. The other one is whether the parti-
cle radius is larger than the size of the bright rings. To show
this more clearly, the QPD signal S x are plotted with various
sphere radii and locations in Fig. 3(b) and Fig. 2(b) for lin-
early polarized LG01 beam and Gaussian beam, respectively.
For the LG01 beam, the QPD signal shows different behav-
iors when the particle size is smaller than the beam waist size.
There are more lobes which affect the sensitivity.

For Gaussian beam, the sensitivity increases first and then
decreases with the increasing size of the sphere particle, and
there is a tradeoff between the sensitivity and linear range of
displacement detection. It is the same for LG beams only
when the particle size is larger than the beam waist size.
For smaller particles in LG beams, as the sensitivity sign de-
pends on the particle size and changes dramatically near R0,
it could be used to measure the size of particle with high ac-
curacy. The sensitivity for radially and azimuthally polarized
beams is shown in Fig. 4(b). The azimuthally polarized beam
shows same behaviors as LG beams. The radially polarized
beam shows similar behavior as the linearly polarized Gaus-
sian beam, except the large modulations when the particle size
is smaller than the beam waist size.

The sensitivity along longitudinal direction ηz using various
beams is shown in Fig. 5(a) and Fig. 5(b). Similar to the case
for transverse displacement, the sensitivity increases first and
then decreases with the increasing size of the sphere particle.
With larger radius a, the sensitivity shows a large period oscil-
lation along with shallow modulations. The shallow modula-
tions is caused by the Mie resonance as in the transverse case.
The large period oscillation is induced by the interference be-
tween the incident beam propagating directly to the detector
and the scattering beam passing through the sphere particle to
the detector. The destruction interference point is then given
by

2ak0(nm − 1) = 2nπ, (3)
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FIG. 5. (a) The sensitivity ηz of the longitudinal displacement detec-
tion, for different particle radii a in the x̂ direction linearly polarized
LG01, LG02 and LG03 beam and Gaussian beam (i.e., l = 0). (b)
The same as Fig. 5(a) for radially and azimuthally polarized beams.
(c) The sensitivity improvement ratio ξ for LG beams. (d) The same
as Fig. 5(c) for radially and azimuthally polarized beams. The re-
gion is colored grey in Fig. 5(c) and Fig. 5(d) where the particle can
be trapped stably by LG03 beam and azimuthally polarized beam re-
spectively.

where n are positive integers, nm = 1.458 is the refractive in-
dex of the silica sphere particle and k0 is the vacuum wavevec-
tor. To verify this, minimum points for the case of Gaussian
beam in Fig. 5(b) are plotted in its inset to compare with the
theoretical result given by Eq. (3). Thus we also get the oscil-
lation period

λL =
λ0

2(nm − 1)
, (4)

and λL = 1.16 µm here. The existence of these destruction
interference point has a disadvantage in the displacement de-
tection for sphere particles with size a = nλL.

At the same time, it is noticed that the sensitivity ηz in
doughnut beam is higher than that in Gaussian beam, when
the size of the particle is comparable or lager than the beam
waist. We define the sensitivity improvement ratio as

ξl = ηz,l/ηz,Gaussian, (5)

where l = 1, 2, 3 denotes different LG beams. The result is
shown in Fig. 5(c). The improvement ratio of sensitivity can
be more than one order. Especially, the grey region in Fig. 5(c)
shows where the particle could be trapped stably by LG beams
(taking the LG03 beam as an example) [18]. The region of im-
proved sensitivity (i.e., ξ > 1) falls just into the grey region,
thus the LG beam provides higher sensitivity in LG beam lev-
itated systems. The sensitivity improvement ratio for radially
and azimuthally polarized beams is shown in Fig. 5(d) and it
has the same improvement behavior as LG beams.
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Discussion It is significant to know the best sensitivity we
could get for a particle with certain size. The systematically
result for Gaussian beam and various doughnut beams here
will facilitate us to choose the proper beam to get optimal
sensitivity. Generally speaking, Gaussian beam will get better
sensitivity for transverse displacement detection. However,
doughnut beams can have one order higher sensitivity for lon-
gitude displacement detection, when the particle has the size
exceeds the beam waist.

As a conclusion, the sensitivity of displacement detection of
a particle in various doughnut beams are studied. We pay at-
tention especially to the case of large particle size. The result
for doughnut beams provides us the ability to choose proper
beam to get best sensitivity. By using the levitating doughnut
beam itself to detect the particle displacement, it will also ben-
efit the recent proposal of levitating a particle using doughnut
beams to suppress the light absorption.

Note: In the last version of this manuscript on arXiv, there
was a mistake: the incident beam hasn’t been normalized to
the power P = 100 mW while the scattering beam has. So, as
the incident beam has the power of only several percent of the
scattering beam power, the last version showed approximately
the signal behaviors of scattering beams.

Acknowledgement We thank Prof. Zhi-Fang Lin and Dr.
Wen-Zhao Zhang for the helpful discussion. This work is
supported by Science Challenge Project No. TZ2018003, Na-
tional Basic Research Program of China No. 2014CB848700,
No. 2016YFA0301201, NSFC No. 11534002, NSAF
U1730449 and NSAF No. U1530401. Z.-Q. Y. is supported
by NSFC Grant 61771278, 61435007, and the Joint Fund of
the Ministry of Education of China (6141A02011604). J.C. is
supported by NSFC No. 11674204.

Appendix A: Field on the detector

For the detection system described in the main text, it can be
simplified as a confocal system as show in Fig. 6. The incident
field Einc(xd, yd) on the detector is denoted as E4(x, y, f2) here.
It can be expressed by the incident filed Einc(x, y,− f1) as

E4(x2, y2, f2) = −eik( f2+ f1)eilφEinc(−
x2

M
,−

y2

M
,− f1). (A1)

To make our convention clear, we will show the procedures to
get this relation here.

1. Angular spectrum representation of a propagating wave

An electromagnetic field E(x, y, z) in the space satisfies the
Maxwell equations. The electric field E(x, y, z) can be ex-
pressed as

E(x, y, z) =

∞"
−∞

Ê(kx, ky; z)ei(kx x+kyy)dkxdky, (A2)

where Ê(kx, ky; z) is the Fourier transform of the electrical field
on the z = constant plane E(x, y, z):

Ê(kx, ky; z) =
1

4π2

∞"
−∞

E(x, y, z)e−i(kx x+kyy)dxdy. (A3)

Considering the case that the medium in the space is source
free, linear, homogeneous and isotropic, the E(x, y, z) satisfy
the vector Helmholtz equation:

(∇2 + k2)E(x, y, z) = 0. (A4)

Substituting Eq. (A2) into Eq. (A4), we get the general solu-
tion (see similar materials on pp. 110 in Ref. [25])

Ê(kx, ky; z) = Â(kx, ky)eikzz + B̂(kx, ky)e−ikzz, (A5)

where we define kz = (k2 − k2
x − k2

y )
1
2 and Im(kz) > 0. On

substituting Eq. (A5) into Eq. (A2) the field

E(x, y, z) =

∞"
−∞

[Â(kx, ky)eikzz + B̂(kx, ky)e−ikzz]

×ei(kx x+kyy)dkxdky. (A6)

It is noted that so far we haven’t specified the propagating di-
rection of E(x, y, z) or any other physical information. In fact,
E(x, y, z) expressed by Eq. (A6) has four parts: homogeneous
wave propagating in the positive z direction (eikzz, k2

x+k2
y < k2),

evanescent wave propagating in the positive z direction (eikzz,
k2

x + k2
y > k2), homogeneous wave propagating in the negative

z direction (e−ikzz, k2
x + k2

y < k2), and evanescent wave propa-
gating in the negative z direction (e−ikzz, k2

x + k2
y > k2).

Now we consider an electromagnetic wave propagating
along positive z direction into the z ≥ zs half space where
zs → −∞. First, since we have known the direction of the
wave, then B(kx, ky) = 0. Thus Eq. (A5) is reduced to

Ê(kx, ky; z) = Â(kx, ky)eikzz. (A7)

Also, setting z = 0 in Eq. (A7) we get

Â(kx, ky) = Ê(kx, ky; 0), (A8)

where Ê(kx, ky; 0) is the Fourier transform of the electrical
field on the z = 0 plane E(x, y, 0):

Ê(kx, ky; 0) =
1

4π2

∞"
−∞

E(x, y, 0)e−i(kx x+kyy)dxdy. (A9)

Second, Ê(kx, ky; zs) = Ê(kx, ky; 0)eikzzs with zs → −∞ should
be a finite value when k2

x + k2
y > k2, because it represents

a physical field. Thus Ê(kx, ky; 0) = 0 when k2
x + k2

y > k2.
It means that a propagating wave has none evanescent part
(saying in another way, the evanescent wave can’t propagate
along the positive z direction to far from z = zs). The electric
field E(x, y, z) in the z ≥ zs half space with |z − zs| � 0 now
reads

E(x, y, z) =

"
k2

x+k2
y≤k2

Ê(kx, ky; 0)ei(kx x+kyy+kzz)dkxdky. (A10)
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FIG. 6. Theoretical model of the detection system. Here Einc(x, y,− f1) and E1(x, y,− f1) are used to denote the field on the left and right side of
the focusing lens L1. Field E3(x, y, f2) and E4(x, y, f2) are used to denote the field on the left and right side of the collecting lens (condensor)
L2. And E2(x, y, 0) denotes the field on the z = 0 plane.

2. Focusing of the propagating wave by aplanatic lens

As shown in Fig. 6, Einc(x, y,− f1) and E1(x, y,− f1) are used
to denote the field on the left and right side of the lens L1.
E3(x, y, f2) and E4(x, y, f2) are used to denote the field on the
left and right side of the lens L2. And E2(x, y, 0) denotes the
field on the z = 0 plane.

Using the stationary phase method [25, 26], Eq. (A10) can
be evaluated. For z > 0 and kr → +∞, it reads

E+∞(x, y, z) = −2πiszkÊ(ksx, ksy; 0)
eikr

r
. (A11)

Thus substituting Eq. (A11) into Eq. (A10) and using variable
substitution, it arrives

E(x, y, z) =
ire−i f r

2π

"
k2

x+k2
y≤k2

E+∞(rtx, rty, rtz)

×ei(kx x+kyy+kzz) 1
kz

dkxdky. (A12)

Here, we have defined those symbols:

r =

√
x2 + y2 + z2, (A13)

s = (sx, sy, sz) = (
x
r
,

y
r
,

z
r

), (A14)

t = (tx, ty, tz) = (
kx

k
,

ky

k
,

kz

k
). (A15)

For z < 0 and kr → −∞, using the same method, we get

E−∞(x, y, z) = −2πiszkÊ(−ksx,−ksy; 0)
e−ikr

r
, (A16)

and

E(x, y, z) = −
ire+i f r

2π

"
k2

x+k2
y≤k2

E−∞(−rtx,−rty,−rtz)

×ei(kx x+kyy+kzz) 1
kz

dkxdky. (A17)

It is noted that the focal point is usually chosen as the original
point of the axis frame as shown in Fig. 6. The lens L1 locates
at z = − f1, so kr → −∞ is satisfied since f1 is much larger
than the wavelength. Then Eq. (A17) describes the filed near
the focus.

Usually the incident beam is linearly polarized Gaussian
beam, so the field is with even symmetry. At this time, the
field on the z = − f1 plane is even, i.e.,

E(−x,−y, z) = E(x, y, z),

then Eq. (A17) can be written as

E(x, y, z) = −
irei f r

2π

"
k2

x+k2
y≤k2

E−∞(rtx, rty,−rtz)

×ei(kx x+kyy+kzz) 1
kz

dkxdky. (A18)

For linearly polarized LG beams, the vortex phase term eilφ

in E(x, y, z) will add a total phase eilπ before the right side of
Eq. (A18). Similar equations as Eq. (A18) can be found in
Ref. [24, 27] (with the phase term in the front different, which
can be omitted).

As a systematical formulation, we also list the relations be-
tween the focal field and far field for the case of wave propa-
gating along negative z direction. For z > 0 and kr → +∞:

E+∞(x, y, z) = 2πiszkÊ(−ksx,−ksy; 0)
e−ikr

r
, (A19)

and

E(x, y, z) = −
irei f r

2π

"
k2

x+k2
y≤k2

E+∞(−rtx,−rty, rtz)

×ei(kx x+kyy−kzz) 1
kz

dkxdky. (A20)

For z < 0 and kr → −∞:

E−∞(x, y, z) = 2πiszkÊ(ksx, ksy; 0)
eikr

r
, (A21)
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and

E(x, y, z) =
ire−i f r

2π

"
k2

x+k2
y≤k2

E−∞(rtx, rty,−rtz)

×ei(kx x+kyy−kzz) 1
kz

dkxdky. (A22)

3. Relation of the field on the detector and the focusing lens

Now we use the theory in last subsection to derive the rela-
tion between E3(x, y,− f2) and E1(x, y,− f1). For E1(x, y,− f1),
taking −k f1 → −∞, according Eq. (A16) we get

Ê2(k
x1

f1
, k

y1

f1
; 0) =

i f1e+ik f1

2πs1zk
E1(−x1,−y1,− f1). (A23)

In aplanatic system, r1 = f1 and r2 = f2. For E3(x, y, f2),
taking k f2 → +∞, according Eq. (A11) we get

Ê2(k
x2

f2
, k

y2

f2
; 0) =

i f2e−ik f2

2πs2zk
E3(x2, y2, f2). (A24)

Since the left sides of last two equations denote the same field,
using the variable substitutions x1 =

f1
f2

x2 and y1 =
f1
f2

y2 in
Eq. (A23), the right sides of Eq. (A23) and Eq. (A24) are
equal. Then it arrives

E3(x2, y2, f2) = −eik( f2+ f1)eilφE1(−
x2

M
,−

y2

M
,− f1), (A25)

where M =
f2
f1

is the magnification factor. Usually it is sup-
posed that all the light ( s-polarized and p-polarized light
with various incident angle) transmits through the aplanatic
lens completely (transmission t(p) = t(s) = 1), thus we get
Eq. (A1).
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