
ar
X

iv
:1

90
4.

09
56

2v
1

 [
cs

.D
S]

 2
1

A
pr

 2
01

9

An Improved FPTAS for 0-1 Knapsack

Ce Jin

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

jinc16@mails.tsinghua.edu.cn

Abstract

The 0-1 knapsack problem is an important NP-hard problem that admits fully polynomial-time

approximation schemes (FPTASs). Previously the fastest FPTAS by Chan (2018) with approxim-

ation factor 1 + ε runs in Õ(n + (1/ε)12/5) time, where Õ hides polylogarithmic factors. In this

paper we present an improved algorithm in Õ(n + (1/ε)9/4) time, with only a (1/ε)1/4 gap from the

quadratic conditional lower bound based on (min, +)-convolution. Our improvement comes from

a multi-level extension of Chan’s number-theoretic construction, and a greedy lemma that reduces

unnecessary computation spent on cheap items.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases approximation algorithms, knapsack, subset sum

Acknowledgements Part of this research was done while visiting Harvard University. I would like

to thank Professor Jelani Nelson for introducing this problem to me, advising this project, and

giving many helpful comments on my writeup.

1 Introduction

1.1 Background

In the 0-1 knapsack problem, we are given a set I of n items where each item i ∈ I has

weight wi and profit pi, and we want to select a subset J ⊆ I such that
∑

j∈J wj ≤ W and
∑

j∈J pj is maximized.

The 0-1 knapsack problem is a fundamental optimization problem in computer science

and is one of Karp’s 21 NP-complete problems [8]. An important field of study on NP-hard

problems is to find efficient approximation algorithms. A (1 + ε)-approximation algorithm

(for a maximization problem) outputs a value SOL such that SOL ≤ OPT ≤ (1 + ε) · SOL,

where OPT denotes the optimal answer. The 0-1 knapsack problem is one of the first

problems that were shown to have fully polynomial-time approximation schemes (FPTASs),

i.e., algorithms with approximation factor 1 + ε for any given 0 < ε < 1 and running time

polynomial in both n and 1/ε.

There has been a long line of research on finding faster FPTASs for the 0-1 knapsack

problem, as summarized in Table 1. The first algorithm with only subcubic dependence on

1/ε was due to Rhee [15]. Very recently, Chan [3] gave an elegant algorithm for the 0-1

knapsack problem in deterministic O(n log 1
ε + (1

ε)5/2/2Ω(
√

log(1/ε))) via simple combination

of the SMAWK algorithm [1] and a standard divide-and-conquer technique. The speedup of

superpolylogarithmic factor 2Ω(
√

log(1/ε)) is due to recent progress on (min, +)-convolution [2,

16, 4]. Using an elementary number-theoretic lemma, Chan further improved the algorithm

to O(n log 1
ε + (1

ε)12/5/2Ω(
√

log(1/ε))) time, and obtained two new algorithms running in

Õ(1
ε n3/2) and O((1

ε)4/3n + (1
ε)2)/2Ω(

√
log(1/ε))) time respectively, which are faster for small

n.

FPTASs on several special cases of 0-1 knapsack are also of interest. For the unboun-

ded knapsack problem, where every item has infinitely many copies, Jansen and Kraft [7]

obtained an O(n + (1
ε)2 log3 1

ε)-time algorithm; the unbounded version can be reduced to

0-1 knapsack with only a logarithmic blowup in the problem size [5]. For the subset sum

http://arxiv.org/abs/1904.09562v1
mailto:jinc16@mails.tsinghua.edu.cn

2 An Improved FPTAS for 0-1 Knapsack

Table 1 FPTASs for 0-1 knapsack

O(n log n + (1
ε
)4 log 1

ε
) Ibarra and Kim [6] 1975

O(n log 1
ε

+ (1
ε
)4) Lawler [13] 1979

O(n log 1
ε

+ (1
ε
)3 log2 1

ε
) Kellerer and Pferschy [11] 2004

O(n log 1
ε

+ (1
ε
)5/2 log3 1

ε
) (randomized) Rhee [15] 2015

O(n log 1
ε

+ (1
ε
)12/5/2Ω(

√
log(1/ε))) Chan [3] 2018

O(n log 1
ε

+ (1
ε
)9/4/2Ω(

√
log(1/ε))) This work

O(1
ε
n3) Textbook algorithm

O(1
ε
n2) Lawler [13] 1979

O((1
ε
)2n log 1

ε
) Kellerer and Pferschy [10] 1999

Õ(1
ε
n3/2) (randomized, Las Vegas) Chan [3] 2018

O(((1
ε
)4/3n + (1

ε
)2)/2Ω(

√
log(1/ε))) Chan [3] 2018

O(((1
ε
)3/2n3/4 + (1

ε
)2)/2Ω(

√
log(1/ε)) + n log 1

ε
) This work

problem, where every item has pi = wi, Kellerer et al. [9] obtained an algorithm with

O(min{n/ε, n + (1
ε)2 log 1

ε }) running time, which will be used in our algorithm as a sub-

routine. For the partition problem, which is a special case of the subset sum problem where

W = 1
2

∑

i∈I wi, Mucha et al. [14] obtained an algorithm with a subquadratic Õ(n + (1
ε)5/3)

running time.

On the lower bound side, recent reductions showed by Cygan et al. [5] and Künnemann

et al. [12] imply that 0-1 knapsack and unbounded knapsack have no FPTAS in O((n+ 1
ε)2−δ)

time, unless (min, +)-convolution has truly subquadratic algorithm [14]. It remains open

whether 0-1 knapsack has a matching upper bound.

1.2 Our results

In this paper we present improved FPTASs for the 0-1 knapsack problem. Our results are

summarized in the following two theorems.

◮ Theorem 1. There is a deterministic (1 + ε)-approximation algorithm for 0-1 knapsack

with running time O(n log 1
ε + (1

ε)9/4/2Ω(
√

log(1/ε))).

◮ Theorem 2. For n = O(1
ε), there is a deterministic (1 + ε)-approximation algorithm for

0-1 knapsack with running time O
(

(

n3/4(1
ε)3/2 + (1

ε)2
)

/2Ω(
√

log(1/ε))
)

.

Theorem 2 gives the current best time bound for (1
ε)2/3 ≪ n ≪ 1

ε , improving upon the

previous O((1
ε)4/3n + (1

ε)2)/2Ω(
√

log(1/ε))) algorithm by Chan [3]. For n ≪ (1
ε)2/3, Chan’s

Õ(1
ε n3/2) time randomized algorithm [3] remains the fastest.

For n ≫ 1
ε , Theorem 1 gives a better time bound, improving upon the previous O(n log 1

ε +

(1
ε)12/5/2Ω(

√
log(1/ε))) algorithm by Chan [3].

1.3 Outline of our algorithm

We give an informal overview of our improved algorithm for 0-1 knapsack.

Using a known reduction [3], it suffices to solve an easier instance of 0-1 knapsack where

profits of all items satisfy pi ∈ [1, 2]. Here “solving an instance” means approximating the

function f(x) := [maximum total profit of items with at most x total weight] for all x ≥ 0,

C. Jin 3

rather than for just a single point x = W . In this restricted case, simple greedy (sorting

according to unit profits pi/wi) gives an additive error of at most maxj pj = O(1), so

it suffices to approximate the capped function min{ε−1, f(x)} with approximation factor

1+O(ε). Chan gave an algorithm that (1+ε)-approximates min{B, f(x)} in Õ(n+ε−2B1/2)

time (implied by [3, Lemma 7]), which immediately implies an Õ(n + ε−5/2) time FPTAS

by setting B = ε−1.

Greedy. Now we explain how to use a greedy argument (described in detail in Section 5)

to improve this algorithm to Õ(n + ε−7/3) time. We sort all items (with pi ∈ [1, 2]) in non-

increasing order of unit profits pi/wi, and divide them into three subsets H, M, L (items with

high, medium, low unit profits), where H contains the top Θ(ε−1) items, and L contains all

items i for which pi/wi ≤ (1 − ε2/3) · minh∈H{ph/wh}, so there is a gap between the unit

profits of H-items and L-items. Intuitively, there are sufficiently many H-items available,

so it’s not optimal to include too many cheap L-items when the knapsack capacity is not

very big. To be more precise, we prove that in any optimal solution we care about (i.e.,

having optimal total profit smaller than ε−1), the total profit contributed by L-items cannot

exceed O(ε−2/3). Hence, for subset L we only need to approximate up to B = Θ(ε−2/3) in

Õ(n + ε−2B1/2) = Õ(n + ε−7/3) time. Subset H has only O(ε−1) items and can be solved

using Chan’s Õ(ε−4/3n + ε−2) algorithm in Õ(ε−7/3) time. To solve subset M , we round

down the profit value pi for every item i ∈ M , so that the unit profit pi/wi becomes a power

of (1 + ε). Then there are O(ε−1/3) distinct unit profit values in M . Items with the same

unit profit can be solved together using the efficient FPTAS for subset sum by Kellerer et al.

[9] in Õ(n + ε−2) time. Finally we merge the results for H, M, L. The total time complexity

is Õ(n + ε−7/3).

Multi-level number-theoretic construction. The above approach invokes two of Chan’s

algorithms: an Õ(n + ε−2B1/2) algorithm (useful for small B) and an Õ(ε−4/3n + ε−2)

algorithm (useful for small n). The key ingredient in these algorithms is a number-theoretic

lemma: we can (1 + ε)-approximate all profit values pi ∈ [1, 2] by multiples of elements from

a small set ∆ ⊂ [δ, 2δ] of size |∆| = Õ(δ
ε) (small |∆| can reduce the additive error incurred

from rounding).

Chan obtained an Õ(n + ε−2B2/5) time algorithm using some additional tricks. First,

evenly partition ∆ into r subsets ∆(1), . . . , ∆(r), and divide the items into P = P (1)∪· · ·∪P (r)

accordingly, so that profit values from P (j) are approximated by ∆(j)-multiples. To (1 + ε)-

approximate the profit function fj for each P (j), pick a threshold B0 ≪ B, and return the

combination of a (1 + ε)-approximation of min{fj, B0} and an εB0-additive-approximation

of min{fj, B}. Since the size of ∆(j) is only |∆|/r, the latter function can be approximated

faster when r ≫ 1. Finally, merge fj over all 1 ≤ j ≤ r. By fine-tuning the parameters

r, δ, B1, the time complexity is improved to Õ(n + ε−2B2/5).

Our new algorithm extends this technique to multiple levels. To (1 + ε)-approximate

the profit function fj for each P (j), we will pick B0 ≪ B1 ≪ · · · ≪ Bd−1 ≪ Bd ≈ B, and

compute the εBi−1-additive-approximation of min{fj, Bi}, for all i ∈ [d]. An issue of this

multi-level approach is that, different levels have different optimal parameters δi and different

∆
(1)
i , . . . , ∆

(r)
i , but we have to stick to the same partition of items P = P (1) ∪ · · · ∪ P (r) over

all levels. We overcome this issue by enforcing that ∆
(j)
i at level i must be generated by

multiples of elements from ∆
(j)
i−1 at level i − 1, so that P (j) can be approximated by ∆

(j)
i -

multiples for all levels. To achieve this, we need a multi-level version of the number-theoretic

lemma. We will discuss this part in detail in Section 4.

4 An Improved FPTAS for 0-1 Knapsack

Using this multi-level construction, we obtain algorithms in Õ(n + ε−2B1/3) time and

Õ(ε−3/2n3/4 + ε−2) time. Combining these improved algorithms with the greedy argument

previously described (the threshold which splits M and L needs to be adjusted accordingly),

we obtain an algorithm in Õ(n + ε−9/4) time as claimed in Theorem 1.

2 Preliminaries

Throughout this paper, log x stands for log2 x, and Õ(f) stands for O(f · poly log(f)).

We will describe our algorithm with approximation factor 1+O(ε), which can be lowered

to 1 + ε if we scale down ε by a constant factor at the beginning.

We are only interested in the case where n = O(ε−4). For greater n, Lawler’s O(n log 1
ε +

(1
ε)4) algorithm [13] is already near-optimal. Hence we assume log n = O(log ε−1).

Assume 0 < wi ≤ W and pi > 0 for every item i. Then a trivial lower bound of

the maximum total profit is maxj pj . At the beginning, we discard all items i with pi ≤
ε
n maxj pj . Since the total profit of discarded items is at most ε maxj pj , the optimal total

profit is only reduced by a factor of 1 + O(ε). So we can assume that
maxj pj

minj pj
≤ n

ε .

We adopt Chan’s terminology in presenting our algorithm. For a set I of items, define

the profit function

fI(x) = max

{

∑

i∈J

pi :
∑

i∈J

wi ≤ x, J ⊆ I

}

over non-negative real numbers x ≥ 0. Note that fI is a monotone (nondecreasing) step

function. The complexity of a monotone step function refers to the number of its steps.

We say that a function f̃ approximates a function f with factor 1 + ε if f̃(x) ≤ f(x) ≤
(1 + ε)f̃(x) for all x ≥ 0. We say that f̃ approximates f with additive error δ if f̃(x) ≤
f(x) ≤ f̃(x) + δ for all x ≥ 0. Our goal is to approximate fI with factor 1 + O(ε) on the

input item set I.

Let I1, I2 be two disjoint subsets of items, and I = I1 ∪I2. We have fI = fI1 ⊕fI2 , where

⊕ denotes the (max, +)-convolution, defined by (f ⊕ g)(x) = max0≤x′≤x(f(x′) + g(x − x′)).

If two non-negative monotone step functions f, g are approximated with factor 1 + ε by

functions f̃ , g̃ respectively, then f ⊕ g is also approximated by f̃ ⊕ g̃ with factor 1 + ε.

For a monotone step function f with range1 contained in {0} ∪ [A, B], we can obtain a

function f̃ with complexity only O(ε−1 log(B/A)) which approximates f with factor 1 + ε,

by simply rounding f down to powers of (1 + ε). For our purposes, B/A will be bounded by

polynomial of n and 1/ε, hence we may always assume that the approximation results are

monotone step functions with complexity Õ(ε−1).

For an item set I with the same profit pi = p for every item i ∈ I, the step function

fI can be exactly computed in O(n log n) time by simple greedy: the function values are

0, p, 2p, . . . , np and the x-breakpoints are w1, w1 +w2, . . . , w1 +· · ·+wn, after sorting all wi’s

in nondecreasing order. We say that a monotone step function is p-uniform if its function

values are of the form 0, p, 2p, . . . , lp for some l. We say that a p-uniform function is pseudo-

concave if the differences of consecutive x-breakpoints are nondecreasing from left to right.

In the previous case where all pi’s are equal to p, fI is indeed p-uniform and pseudo-concave.

1 Here range refers to the set of possible output values of the function.

C. Jin 5

3 Chan’s techniques

In this section we review several useful lemmas by Chan [3].

3.1 Merging profit functions

◮ Lemma 3 ([3, Lemma 2(i)]). Let f1, . . . , fm be monotone step functions with total com-

plexity O(n) and ranges contained in {0} ∪ [A, B]. Then we can compute a monotone step

function that approximates f1 ⊕ · · · ⊕ fm with factor 1 + O(ε) and complexity Õ(1
ε log B/A)

in O(n) + Õ((1
ε)2m/2Ω(

√
log(1/ε)) log B/A) time.

◮ Remark 4. Lemma 3 is proved using a divide-and-conquer method, which was also used

previously in [10]. The speedup of superpolylogarithmic factor 2Ω(
√

log(1/ε)) is due to recent

progress on (min, +)-convolution [2, 16, 4].

Lemma 3 enables us to focus on a simpler case where all pi ∈ [1, 2]. For the general

case, we divide the items into O(log
maxj pj

minj pj
) = O(log ε−1) groups, each containing items

with pi ∈ [2j , 2j+1] for some j (which can be rescaled to [1, 2]), and finally merge the profit

functions of all groups by using Lemma 3 in Õ(n + ε−2) time.

Assuming ε−1 is an integer and every pi ∈ [1, 2], we can round every pi down to a

multiple of ε, introducing only a 1+ε error factor. Then there are only m = O(ε−1) distinct

values of pi. For every value of pi, the corresponding profit function fi is pi-uniform and

pseudo-concave, and can be obtained by simple greedy (as discussed in Section 2).

3.2 Approximating big profit values using greedy

When all pi’s are small, simple greedy gives good approximation guarantee when the answer

is big enough.

◮ Lemma 5. Suppose pi ∈ [1, 2] for all i ∈ I. For B = Ω(ε−1), the function fI can be

approximated with additive error O(εB) in O(n log n) time.

Proof. Sort the items in nonincreasing order of unit profit pi/wi. Let f̃ be the monotone

step function resulting from greedy, with function values 0, p1, p1 + p2, . . . , p1 + · · · + pn and

x-breakpoints 0, w1, w1 + w2, . . . , w1 + · · · + wn. It approximates fI with an additive error

of maxi pi ≤ 2 ≤ O(εB) for B = Ω(ε−1). ◭

When every pi ∈ [1, 2], we set B = ε−1 and let fH denote the result from greedy (Lemma 5).

Then we only need to obtain a function fL which 1 + O(ε) approximates min{fI , B}, and

finally return max{fL, fH} as a 1 + O(ε) approximation of fI (because when fI(x) exceeds

B, an additive error O(εB) implies 1 + O(ε) approximation factor).

3.3 Approximation using ∆-multiples of small set ∆

For a set ∆ of numbers, we say that p is a ∆-multiple if it is a multiple of δ for some δ ∈ ∆.

◮ Lemma 6 ([3, Lemma 5]). Let f1, . . . , fm be monotone step functions with ranges con-

tained in [0, B]. Let ∆ ⊂ [δ, 8δ]. If every fi is pi-uniform and pseudo-concave for some

pi ∈ [1, 2] which is a ∆-multiple, then we can compute a monotone step function that ap-

proximates min{f1 ⊕ · · · ⊕ fm, B} with additive error O(|∆|δ) in Õ(Bm/δ) time.

6 An Improved FPTAS for 0-1 Knapsack

◮ Remark 7. An intuition of Lemma 6 is as follows. When pi’s are exact multiples of

δ, standard dynamic programming algorithm maintains a result array of length B/δ, and

adding a new fi to the result can be done in linear time (by exploiting the pseudo-concavity

of fi using the SMAWK algorithm2). Now if the next pi to be considered is a multiple of

δ′ 6= δ, we first have to round down the current results to multiples of δ′, introducing an

additive error of δ′. We round our results for |∆| − 1 times, so smaller |∆| implies smaller

overall additive error.

◮ Corollary 8. Let f1, . . . , fm be monotone step functions with ranges contained in [0, B].

If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2], then we can compute a

monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 + O(ε) in

Õ(ε−1Bm) time.

Proof. Assuming ε−1 is an integer, adjust every pi down to the nearest multiple of ε, and

adjust fi accordingly. This introduces a 1 + ε overall error factor. Then use Lemma 6 with

δ = ε, ∆ = {ε} to compute the desired function in Õ(Bmε−1) time. ◭

4 Extending Chan’s number-theoretic construction

As mentioned in Section 1.3, the main results of this section are two approximation al-

gorithms in Õ(n + ε−2B1/3) and Õ(ε−3/2n3/4 + ε−2) time respectively (the latter time

bound assumes n = O(1/ε)). These results rely on Lemma 6.

4.1 Number-theoretic construction

To avoid checking boundary conditions, from now on we assume ε > 0 is sufficiently small.

Our algorithm extends Chan’s technique by using a multi-level structure defined as fol-

lows.

◮ Definition 9. For fixed parameters δ1, δ2, . . . , δd satisfying condition

ε ≤ δ1, δi ≤ δi+1/2, δd ≤ 1/8 (1)

and a finite real number set ∆1 ⊂ [δ1, 8δ1], a set tower (∆1, ∆2, . . . , ∆d) generated by ∆1 is

defined by recurrence3

∆i+1 := [δi+1, 8δi+1] ∩
⋃

k∈Z

k∆i, i = 1, 2, . . . , d − 1. (2)

We refer to ∆1 as the base set and ∆d as the top set of this set tower. We also say that the

base set ∆1 generates the top set ∆d.

If ∆∗
d is the top set generated by a singleton base set ∆∗

1 = {x}, then for every y ∈ ∆∗
d

we say x generates y.

We have the following simple facts about set towers.

◮ Proposition 10. If x generates y then x ∈ ∆1 implies y ∈ ∆d. Conversely, for every

y ∈ ∆d, there exists x ∈ ∆1 which generates y, and for every 1 ≤ i ≤ d there exists z ∈ ∆i

such that both y/z and z/x are integers.

2 The SMAWK algorithm [1] finds all row-minima in an n × n matrix A satisfying the Monge property
A[i, j] + A[i + 1, j + 1] ≤ A[i, j + 1] + A[i + 1, j] using only O(n) queries.

3 For a number k and a set A of numbers, kA := {ka : a ∈ A}.

C. Jin 7

◮ Proposition 11. For any 1 ≤ i ≤ d, |∆i| ≤ 8i−1(δi/δ1)|∆1|, and we can compute ∆i in

Õ(8i−1(δi/δ1)|∆1|) time given ∆1 as input.

Proof. For 2 ≤ i ≤ d, we have

|∆i| =
∣

∣

∣
[δi, 8δi] ∩

⋃

k∈Z

k∆i−1

∣

∣

∣
≤

∑

x∈∆i−1

8δi/x ≤ |∆i−1|8δi/δi−1.

The proof of size upper bounds follows by induction. Elements of ∆i can be generated

straightforwardly within the time bound. ◭

◮ Lemma 12. Let T1, T2, . . . , Td be positive real numbers satisfying T1 ≥ 2 and Ti+1 ≥ 2Ti.

There exist at least Td

/

(log Td)O(d) integers t satisfying the following condition: t can be

written as a product of integers t = n1n2 · · · nd, such that n1n2 · · · ni ∈ (Ti/2, Ti] for every

1 ≤ i ≤ d.

The proof of Lemma 12 is deferred to Appendix A. Lemma 12 helps us prove the following

fact, which is a multi-level extension of [3, Lemma 6].

◮ Lemma 13. For any parameters δ1, . . . , δd satisfying condition (1), there exists a base set

∆1 of size δ1

ε · (log ε−1)O(d), such that every p ∈ [1, 2] can be approximated by a ∆d-multiple

with additive error O(ε), where ∆d is the top set generated by ∆1.

This base set ∆1 can be constructed in Õ(ε−1δ−1
1) time deterministically.

Proof. Let P = {1, 1 + ε, 1 + 2ε, . . . , 1 + ⌊ 1
ε ⌋ε}. It suffices to approximate every value p ∈ P

with additive error ε using ∆d-multiples. For any p ∈ P and y ∈ ∆d ⊂ [δd, 8δd], p is

approximated with additive error ε by a multiple of y if and only if y ∈ ⋃

j∈Z

[

p−ε
j , p

j

]

.

Our constructed base set ∆1 will satisfy ∆1 ⊂ [δ1, 4δ1]. Suppose integers k1, k2, . . . , kd−1

satisfy

k1k2 · · · ki−1 ∈ [δi/δ1, 2δi/δ1], for every 2 ≤ i ≤ d. (3)

Then by Definition 9, for any x ∈ ∆1 ⊂ [δ1, 4δ1], we have xk1k2 · · · ki−1 ∈ ∆i for every

2 ≤ i ≤ d.

For any integer j satisfying

k1k2 · · · kd−1j ∈ [p/(4δ1), p/(2δ1)], (4)

the interval [p−ε
k1k2···kd−1j , p

k1k2···kd−1j] is contained in [δ1, 4δ1].

We say an integer K is good for p, if K can be expressed as a product of integers

k1k2 · · · kd−1j satisfying conditions (3) and (4). For such K, any x ∈ [p−ε
K , p

K]∩∆1 generates

an element y = xk1k2 · · · kd−1 ∈ ∆d ∩[p−ε
j , p

j] such that p can be approximated by a multiple

of y with additive error ε.

By Lemma 12, the number of good integers K for p is at least

p/(4δ1)
(

log(p/(4δ1))
)O(d)

= Ω
(δ−1

1

(log ε−1)O(d)

)

,

and at most p/(2δ1) = O(δ−1
1), by (4). Using conditions (3) and (4) we can compute all these

K’s by simple dynamic programming. We denote the union of their associated intervals by

Ip :=
⋃

K good for p

[

p − ε

K
,

p

K

]

⊂
[

δ1, 4δ1

]

. (5)

8 An Improved FPTAS for 0-1 Knapsack

Note that these intervals are disjoint since p/(K + 1) ≤ (p − ε)/K, so the total length of Ip

can be lower-bounded as

λ(Ip) ≥ δ−1
1

(log ε−1)O(d)
· p − (p − ε)

max K
≥ ε

(log ε−1)O(d)
. (6)

We have seen that p is approximated by a ∆d-multiple with additive error ε as long as

∆1 ∩ Ip 6= ∅. We compute Ip for every p ∈ P , and use the standard greedy algorithm (for

Hitting Set problem) to construct a base set ∆1 ⊂ [δ1, 4δ1] which intersects with every Ip:

in each round we find a point x ∈ [δ1, 4δ1] that hits the most Ip’s, include x into ∆1, and

remove the Ip’s that are hit by x. In each round the number of remaining Ip’s decreases by

s :=
minp λ(Ip)

4δ1 − δ1
≥ ε/δ1

(log ε−1)O(d)
,

so the solution size |∆1| is upper-bounded by

1 + log1/(1−s) |P | = O

(

log |P |
s

)

=
δ1

ε
(log ε−1)O(d).

To implement this greedy algorithm, we use standard data structures (for example, segment

trees) that support finding x which hits the most intervals, reporting an interval hit by x,

removing an interval, all in logarithmic time per operation. The number of operations is

bounded by the total number of small intervals, so the running time is at most Õ(|P | · p
2δ1

) =

Õ(δ−1
1 ε−1). ◭

The following lemma evenly partitions the base set ∆1 into r subsets ∆
(1)
1 , . . . , ∆

(r)
1 , and

partitions the profit values P = {p1, . . . , pm} into P (1) ∪ · · · ∪ P (r), so that P (j) can be

approximated by ∆
(j)
d -multiples. An additional requirement is that P (1), . . . , P (r) should

have size O(|P |/r) each.

◮ Lemma 14. Let δ1, . . . , δd be parameters satisfying condition (1). Let P = {p1, . . . , pm} ⊂
[1, 2] with m = O(ε−1). Given a positive integer parameter r = O(min{ δ1

ε , m}), there

exist r base sets ∆
(1)
1 , ∆

(2)
1 , . . . , ∆

(r)
1 each of size δ1

εr · (log ε−1)O(d), and a partition of P =

P (1) ∪ P (2) ∪ · · · ∪ P (r) each of size O(m/r), such that for every 1 ≤ j ≤ r, every p ∈ P (j)

can be approximated by a ∆
(j)
d -multiple with additive error O(ε), where ∆

(j)
d is the top set

generated by ∆
(j)
1 .

These r base sets and the partition of P can be computed by a deterministic algorithm

in Õ(ε−2/r) time .

Proof. First construct the base set ∆1 of size δ1

ε (log ε−1)O(d) from Lemma 13 in Õ(δ−1
1 ε−1) =

Õ(ε−2/r) time, and compute the top set ∆d that it generates. By Proposition 11, |∆d| ≤
8d−1 δd

δ1
|∆1| ≤ δd

ε (log ε−1)O(d). Generate and sort all ∆d-multiples in interval [1, 2]. For

every p ∈ P , use binary search to find the ∆d-multiple ky ≤ p (y ∈ ∆d) closest to p, and

then add p to the set Qx, where x ∈ ∆1 is an element that generates y. (Qx is initialized

as empty for every x ∈ ∆1.) Then remove every x with Qx = ∅ from ∆1, so that |∆1| ≤ m,

while every p ∈ P can still be approximated with O(ε) additive error by a ∆d-multiple.

Let D := max{r, |∆1|} and let s := ⌈m/D⌉. For every x ∈ ∆1 we divide Qx evenly into

small subsets each having size at most s. The total number of these small subsets is

∑

x∈∆1

⌈|Qx|/s⌉ ≤ |∆1| +
∑

x∈∆1

|Qx|/s = |∆1| + m/s ≤ 2D.

C. Jin 9

We merge these small subsets into r groups, each having at most ⌈2D/r⌉ small subsets. Then,

define set P (j) as the union of small subsets from the j-th group, and let base set ∆
(j)
1 contain

x ∈ ∆1 if any of these small subsets comes from Qx. So |∆(j)
1 | ≤ ⌈2D/r⌉ = δ1

εr (log ε−1)O(d),

and |P (j)| ≤ s · ⌈2D/r⌉ = O(m/D) · O(D/r) = O(m/r). ◭

4.2 Approximation using set towers

We first prove a slightly improved version of Corollary 8. The only purpose of this lemma

is to get rid of the (log ε−1)O(log log ε−1) factor in the final running time.

◮ Lemma 15. Let f1, . . . , fm be monotone step functions with ranges contained in [0, B] for

some 1 ≤ B ≤ O(ε−1). If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2],

then we can compute a monotone step function that approximates min{f1 ⊕· · ·⊕fm, B} with

factor 1 + O(ε) in Õ(ε−1(Bm + ε−1)/B0.01) time.

Proof. Using Lemma 13 with parameters d = 1, δ1 = εB0.01, we get ∆ ⊂ [δ1, 8δ1] with size

|∆| ≤ Õ(δ1/ε) = Õ(B0.01), in Õ(ε−2/B0.01) time. Adjust every pi down to the nearest ∆-

multiple, and adjust fi accordingly. This introduces at most 1+O(ε) error factor. Then use

Lemma 6 to compute a monotone step function fH that approximates min{f1 ⊕· · ·⊕fm, B}
with additive error e = O(|∆|δ1) = Õ(εB0.02), in Õ(B0.99mε−1) time.

Let BL := e/ε, and use Corollary 8 to compute a monotone step function fL that approx-

imates min{f1 ⊕ · · · ⊕ fm, BL} with factor 1 + O(ε) in only Õ(BLmε−1) = Õ(B0.02mε−1)

time.

Since fH approximates min{f1 ⊕ · · · ⊕ fm, B} with additive error εBL, max{fL, fH} is

a 1 + O(ε) approximation of min{f1 ⊕ · · · ⊕ fm, B}. ◭

Now we can approximate the profit function min{B,
⊕

pk∈P (j) fk} for each group P (j),

using the multi-level approach described in Section 1.3.

◮ Lemma 16. Let f1, . . . , fm be given monotone step functions with ranges contained in

[0, B], and every fk is pk-uniform and pseudo-concave for some pk ∈ [1, 2]. Assume m =

O(ε−1), Ω(ε−0.01) ≤ B ≤ O(ε−1). Let r be a given positive integer parameter with r =

O(m), r = o(B).

We can set d = O(log log ε−1) and choose d parameters δ1, . . . , δd satisfying condition

(1), such that the following statement holds:

Let P (1) ∪ · · · ∪ P (r) be the partition of set P = {p1, . . . , pm} returned by the algorithm

in Lemma 14 with the above parameters. Then for any 1 ≤ j ≤ r, using the base set ∆
(j)
1 from

Lemma 14, we can compute a monotone step function that approximates min{B,
⊕

pk∈P (j) fk}
with factor 1 + O(ε), in (ε−2/r0.01 + mε−1B1/2/r3/2)(log ε−1)O(d) time.

Proof. We can assume B ≥ 4r, and define d to be the unique positive integer such that

22d−1 ≤
√

B√
r

< 22d

= 42d−1

.

Then d = O(log log
√

B√
r

) = O(log log ε−1). Pick α ∈ [2, 4) such that

α2d−1

=

√
B√
r

. (7)

Define

δi := ε
√

Br
/

α2d−i

, 0 ≤ i ≤ d. (8)

10 An Improved FPTAS for 0-1 Knapsack

Then

δd =
ε
√

Br

α
, δ1 = εr (9)

Note that δd = ε
√

B · O(
√

r) = ε
√

B · o(
√

B) = ε · o(B) = o(1). Hence the parameters

δ1, . . . , δd satisfy condition (1) for sufficiently small ε.

The base set ∆
(j)
1 from Lemma 14 has size δ1

εr (log ε−1)O(d). We compute the generated

set tower ∆
(j)
1 , ∆

(j)
2 , . . . , ∆

(j)
d . By Proposition 11, |∆(j)

i | ≤ δi

εr (log ε−1)O(d). Let

t := max
{

α, max
j

|∆(j)
i |

/ δi

εr

}

= (log ε−1)O(d) (10)

and define

Bi := Bt
/

α2d−i

, 0 ≤ i ≤ d. (11)

Then B ≤ Bd ≤ B · (log ε−1)O(d), and it’s easy to verify that

|∆(j)
i | · δi ≤ Bi−1ε, (1 ≤ i ≤ d). (12)

For every 1 ≤ i ≤ d, adjust every pk ∈ P (j) down to the nearest ∆
(j)
i -multiple and adjust

fk accordingly, which introduces a 1 + O(ε) error factor. Then use Lemma 6 to obtain a

monotone step function gi which approximates min{⊕

pk∈P (j) fk, Bi} with additive error

O(|∆(j)
i |δi) = O(εBi−1) in Õ(|P (j)|Bi/δi) time.

Then we use Lemma 15 to obtain a monotone step function g0 which approximates

min{⊕

pk∈P (j) fk, B0} with 1 + O(ε) factor, in Õ(ε−1(|P (j)|B0 + ε−1)B−0.01
0) time. Notice

that B0 = rt.

Finally, max{g0, g1, g2, . . . , gd} is a 1 + O(ε) approximation of min{⊕

pk∈P (j) fk, Bd},

where Bd ≥ B. Overall running time is

Õ(ε−1(|P (j)|B0 + ε−1)B−0.01
0) +

∑

1≤j≤d

Õ(|P (j)|Bj/δj)

= Õ
(

ε−1(
m

r
· (rt) + ε−1)(rt)−0.01

)

+ d · Õ
(m

r
Bd/δd

)

= (ε−2/r0.01 + mε−1B1/2/r3/2)(log ε−1)O(d).

◭

Now we merge the results from all r groups, and obtain an approximation of the final

result min{f1 ⊕ · · · ⊕ fm, B}.

◮ Lemma 17. Let f1, . . . , fm be given monotone step functions with ranges contained in

[0, B], and every fk is pk-uniform and pseudo-concave for some pk ∈ [1, 2]. Assume m =

O(1/ε), Ω(ε−0.01) ≤ B ≤ O(ε−1). We can approximate min{f1 ⊕ · · · ⊕ fm, B} with factor

1 + O(ε) in O(ε−2B1/3/2Ω(
√

log(1/ε))) time.

Proof. Assume m ≥ ε−1, by adding zero functions which do not change the answer.

Let r = o(B) be a positive integer parameter to be determined later.

Using Lemma 14 and Lemma 16, we can get a partition of {p1, . . . , pm} = P (1) ∪· · ·∪P (r)

and then get an 1 + O(ε) approximation of min{⊕

pk∈P (j) fk, B} for every 1 ≤ j ≤ r, in

r·(ε−2/r0.01+mε−1B1/2/r3/2)(log ε−1)O(d) = (r0.99 +
√

B/r)ε−2(log ε−1)O(log log ε−1) overall

time.

C. Jin 11

Then we use Lemma 3 to merge all these r functions in Õ((1
ε)2r/2Ω(

√
log(1/ε))) time.

Setting r = B1/32c
√

log(1/ε), where c > 0 is some small enough constant, the total

complexity is

O(ε−2B1/3/2Ω(
√

log(1/ε))).

◭

◮ Lemma 18. Let I be a set of m items with pi ∈ [1, 2] for every i ∈ I, where Ω(ε−2/3) ≤
m ≤ O(ε−1). One can approximate fI with factor 1 + O(ε) in O(ε−3/2m3/4/2Ω(

√
log(1/ε)))

time.

Proof. Let f1, . . . , fm denote the profit functions of the m items.

Let r = o(m1/2) be a positive integer parameter to be determined later. Obtain a par-

tition of {p1, . . . , pm} = P (1) ∪ · · · ∪ P (r) using Lemma 14. Let B := maxi

∑

p∈P (i) p ≤
2 maxi |P (i)| = Θ(m/r). Then r = o(B). Use Lemma 16 to get an 1 + O(ε) approx-

imation of
⊕

pk∈P (j) fk = min{⊕

pk∈P (j) fk, B} for every 1 ≤ j ≤ r, in r · (ε−2/r0.01 +

mε−1B1/2/r3/2)(log ε−1)O(d) = (ε−2r0.99 + m3/2ε−1/r)(log ε−1)O(log log ε−1) overall time.

Then we use Lemma 3 to merge all these r functions in Õ((1
ε)2r/2Ω(

√
log(1/ε))) time.

Setting r = m3/4ε1/22c
√

log(1/ε), where c > 0 is some small enough constant, the total

complexity is

O(ε−3/2m3/4/2Ω(
√

log(1/ε))).

◭

◮ Corollary 19 (restated Theorem 2). For n = O(1
ε), there is a deterministic (1 + ε)-

approximation algorithm for 0-1 knapsack in O
(

(

n3/4(1
ε)3/2 + (1

ε)2
)

/2Ω(
√

log(1/ε))
)

time.

Proof. Divide the items into O(log n
ε) groups, each containing items with pi ∈ [2j , 2j+1] for

some j. Use Lemma 18 to solve each group, and merge them using Lemma 3. ◭

5 Main algorithm

5.1 A greedy lemma

Our improved algorithm uses the following lemma, which gives an upper bound on the total

profit of cheap items (with low pi/wi) in an optimal knapsack solution.

◮ Lemma 20. Let H, L be two subsets of items with pi ∈ [1, 2]. Let W =
∑

h∈H wh and

q = minh∈H
ph

wh
. Suppose maxl∈L

pl

wl
≤ q(1 − α) for some 0 < α < 1. Let f = fH ⊕ fL, f̃ =

fH ⊕ min{ 2
α , fL}. Then for every x ≤ W , f(x) = f̃(x).

Proof. By greedy, f(W) =
∑

h∈H ph = f̃(W) clearly holds. Now consider 0 ≤ x < W .

Suppose fL(x′) + fH(x − x′) achieves its maximum value at x′ = wL, i.e., f(x) = fL(wL) +

fH(x − wL). It suffices to prove fL(wL) ≤ 2
α .

Let J ⊆ H be a subset of items with total weight wJ ≤ x−wL and total profit achieving

optimal value fH(x − wL). Let K ⊆ H\J be a subset of items with total weight wK , such

that wK ≤ wL, and wK + wi > wL for every remaining item i ∈ H\(J ∪ K). Such K can

be constructed by a simple greedy algorithm.

Since wJ + wK ≤ (x − wL) + wL < W =
∑

h∈H wh, the remaining set H\(J ∪ K)

contains at least one item h0. Hence, wL − wK < wh0 = ph0/
ph0

wh0
≤ 2/q, and equivalently

qwK > qwL − 2.

12 An Improved FPTAS for 0-1 Knapsack

Since J ∪K is a subset of H with total weight bounded by x, we have fH(x) ≥ ∑

k∈K pk +
∑

j∈J pj , and thus fH(x) − fH(x − wL) = fH(x) − ∑

j∈J pj ≥ ∑

k∈K pk ≥ qwK > qwL − 2.

Hence qwL − 2 < fH(x) − fH(x − wL) ≤ f(x) − fH(x − wL) = fL(wL) ≤ q(1 − α)wL,

which shows that qαwL ≤ 2. So fL(wL) ≤ q(1 − α)wL ≤ qwL ≤ 2/α, which concludes the

proof. ◭

5.2 FPTAS for Subset Sum

We will use the efficient FPTAS for the subset sum problem by Kellerer et al. [9] as a

subroutine in our algorithm.

◮ Lemma 21 ([9], implicit). Let I be a set of n items and W be a number. We can obtain

a list S of O(1
ε) numbers in O(n + (1

ε)2 log 1
ε) time, such that for every s ≤ W that is the

subset sum s =
∑

j∈J wj of some subset J ⊆ I, there exists s′ ∈ S with s − εW ≤ s′ ≤ s.

◮ Remark 22. This result wasn’t explicitly stated in [9], but can be easily seen from their

analysis of the correctness of the FPTAS.

◮ Corollary 23. Let I be a set of n items with pi ∈ [1, 2] and pi = wi for every item i ∈ I.

We can approximate fI with factor 1 + O(ε) in O(n log n + ε−2 log 1
ε log n) time.

Proof. Notice that approximating s with additive error εW implies approximation factor

1+O(ε) for W/2 ≤ s ≤ W . So we simply apply Lemma 21 with W = 2j for 0 ≤ j ≤ 1+log n,

and merge all obtained lists. ◭

5.3 Improved algorithm

◮ Lemma 24. Let I be a set of n items with pi ∈ [1, 2] for every i ∈ I. We can approximate

fI with factor 1 + O(ε) in O(n log 1
ε + (1

ε)9/4/2Ω(
√

log(1/ε))) time.

Proof. Let B = ⌈ε−1⌉ and assume n ≥ B (if n < B, we can simply apply Lemma 18). By

Lemma 5, we can approximate fI with additive error O(εB) in O(n log 1
ε) time, so we only

need to approximate min{fI , B} with factor 1 + O(ε).

We sort the items by their unit profits pi/wi. Let set H contain the top B items with

the highest unit profits. Define q = minh∈H
ph

wh
, and let M be the set of remaining items i

with q(1 − α) ≤ pi

wi
≤ q, where parameter 0 < α < 1 is to be determined later. Let set L

contain the remaining items not included in H or M .

Using Lemma 18, we can compute f̃H which approximates fH with factor 1 + O(ε) in

time O(B3/4ε−3/2/2Ω(
√

log(1/ε))) = O(ε−9/4/2Ω(
√

log(1/ε))).

Since maxl∈L
pl

wl
< q(1 − α), Lemma 20 states that fH ⊕ fL and fH ⊕ min{2/α, fL}

agree when x ≤ WH =
∑

h∈H wh. Since (fH ⊕ fL)(WH) =
∑

h∈H ph ≥ B, this implies

min{B, fH ⊕ fL} = min{B, fH ⊕ min{2/α, fL}}. For every item l ∈ L, we round down pl to

a power of 1+ε, so that there are only log1+ε 2 = O(ε−1) distinct values. This only multiplies

the approximation factor by 1 + ε. Then we use Lemma 17 to compute an approximation of

min{2/α, fL} with factor 1 + O(ε) in Õ(ε−2(2/α)1/3/2Ω(
√

log(1/ε))) time. We merge it with

f̃H and obtain an approximation of min{fH ⊕ fL, B} with factor 1 + O(ε).

For every m ∈ M , we round down pm so that the unit profit pm/wm becomes a power

of 1 + ε. After rounding, the approximation factor is only multiplied by 1 + ε, and there are

at most log1+ε
q

q(1−α) = O(α/ε) distinct unit profits in M . Let Mq denote the set of items

in M with unit profit q. For each q, we use Lemma 23 to obtain a 1 + ε approximation of

C. Jin 13

the function fMq
in O(|Mq| + ε−2) time. Then we use Lemma 3 to merge these functions

and obtain a 1 + ε approximation of fM . The total time is O(|M | log n) + Õ(αε−3).

Finally we merge the functions and get an approximation of min{B, fL ⊕ fH ⊕ fM} with

factor 1 + O(ε). The total time is O(n log 1
ε) + Õ(αε−3 + ε−2(2/α)1/3/2Ω(

√
log(1/ε))), which

is O(n log 1
ε + ε−9/4/2Ω(

√
log(1/ε))) if we choose α = ε3/4/2c

√
log(1/ε) for a sufficiently small

constant c. ◭

◮ Corollary 25 (restated Theorem 1). There is a deterministic (1 + ε)-approximation al-

gorithm for 0-1 knapsack with running time O(n log 1
ε + (1

ε)9/4/2Ω(
√

log(1/ε))).

Proof. Divide the items into O(log n
ε) groups, each containing items with pi ∈ [2j , 2j+1] for

some j. Use Lemma 24 to solve each group, and merge them using Lemma 3. ◭

References

1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber. Geometric

applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, November 1987.

doi:10.1007/BF01840359.

2 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John

Iacono, Stefan Langerman, Mihai Pǎtraşcu, and Perouz Taslakian. Necklaces, convolutions,

and x+y. Algorithmica, 69(2):294–314, June 2014. doi:10.1007/s00453-012-9734-3.

3 Timothy M. Chan. Approximation Schemes for 0-1 Knapsack. In Proceedings

of the 1st Symposium on Simplicity in Algorithms (SOSA), pages 5:1–5:12, 2018.

doi:10.4230/OASIcs.SOSA.2018.5.

4 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and

more: Quickly derandomizing razborov-smolensky. In Proceedings of the 27th An-

nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1246–1255, 2016.

doi:10.1137/1.9781611974331.ch87.

5 Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. On problems

equivalent to (min,+)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, January 2019.

doi:10.1145/3293465.

6 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and

sum of subset problems. Journal of the ACM (JACM), 22(4):463–468, October 1975.

doi:10.1145/321906.321909.

7 Klaus Jansen and Stefan E.J. Kraft. A faster fptas for the unbounded knapsack problem.

European Journal of Combinatorics, 68:148 – 174, 2018. doi:10.1016/j.ejc.2017.07.016.

8 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.

9 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient

fully polynomial approximation scheme for the subset-sum problem. Journal of Computer

and System Sciences, 66(2):349 – 370, 2003. doi:10.1016/S0022-0000(03)00006-0.

10 Hans Kellerer and Ulrich Pferschy. A new fully polynomial time approximation scheme

for the knapsack problem. Journal of Combinatorial Optimization, 3(1):59–71, July 1999.

doi:10.1023/A:1009813105532.

11 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with an

fptas for the knapsack problem. Journal of Combinatorial Optimization, 8(1):5–11, March

2004. doi:10.1023/B:JOCO.0000021934.29833.6b.

12 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained com-

plexity of one-dimensional dynamic programming. In Proceedings of the 44th International

Colloquium on Automata, Languages, and Programming (ICALP), pages 21:1–21:15, 2017.

doi:10.4230/LIPIcs.ICALP.2017.21.

http://dx.doi.org/10.1007/BF01840359
http://dx.doi.org/10.1007/s00453-012-9734-3
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.5
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1145/3293465
http://dx.doi.org/10.1145/321906.321909
http://dx.doi.org/10.1016/j.ejc.2017.07.016
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1016/S0022-0000(03)00006-0
http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.21

14 An Improved FPTAS for 0-1 Knapsack

13 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

14 Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. Subquadratic approximation

scheme for partition. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 70–88, 2019. doi:10.1137/1.9781611975482.5.

15 Donguk Rhee. Faster fully polynomial approximation schemes for knapsack prob-

lems. Master’s thesis, Massachusetts Institute of Technology, 2015. URL:

http://hdl.handle.net/1721.1/98564.

16 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of

the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 664–673, 2014.

doi:10.1145/2591796.2591811.

A Proof of Lemma 12

◮ Theorem 26 (Reminder of Lemma 12). Let T1, T2, . . . , Td be positive real numbers satisfying

T1 ≥ 2 and Ti+1 ≥ 2Ti. There exist at least Td

/

(log Td)O(d) integers t satisfying the following

condition: t can be written as a product of integers t = n1n2 · · · nd, such that n1n2 · · · ni ∈
(Ti/2, Ti] for every 1 ≤ i ≤ d.

Proof. For every 1 ≤ k ≤ d, we say an ordered k-tuple (p1, p2, . . . , pk) is valid if every pi

is prime, and p1p2 · · · pi ∈ (Ti/2, Ti] for every 1 ≤ i ≤ k. Then the product t = p1p2 · · · pd

of any valid d-tuple (p1, . . . , pd) satisfies our condition. For any integer t, there are at

most d! different valid d-tuples with product t (which could be obtained by permuting t’s

prime factors). Let Nk denote the number of valid k-tuples. Then it suffices to show

Nd/(d!) ≥ Td/(log Td)O(d).

By the prime number theorem and Bertrand-Chebyshev theorem, there exists a positive

constant C such that

π(x) − π(x/2) ≥ x/(C log x), for all x ≥ 2,

where π(x) denotes the number of primes less than or equal to x. We will prove Nk ≥
Tk/(C log Tk)k for all 1 ≤ k ≤ d by induction.

First note that this statement is trivial for k = 1. For k ≥ 2, a valid k-tuple (p1, . . . , pk)

can be obtained by appending any prime pk ∈
(

Tk/(2P), Tk/P
]

to any valid (k − 1)-tuple

(p1, . . . , pk−1) with product P = p1 · · · pk−1 ≤ Tk−1. The number of such primes pk is

π(Tk/P) − π
(

Tk/(2P)
)

≥ Tk/P

C log(Tk/P)
≥ Tk/Tk−1

C log Tk
.

Summing over all valid (k − 1)-tuples, we have

Nk ≥ Nk−1 · Tk/Tk−1

C log Tk
≥ Tk−1

(C log Tk−1)k−1
· Tk/Tk−1

C log Tk
≥ Tk

(C log Tk)k
.

Hence, Nd ≥ Td/(C log Td)d by induction. Observe that Td ≥ 2d and we have

Nd

d!
≥ Td

(Cd log Td)d
≥ Td

(C log2 Td)d
≥ Td

(log Td)O(d)
,

which finishes the proof. ◭

http://dx.doi.org/10.1287/moor.4.4.339
http://dx.doi.org/10.1137/1.9781611975482.5
http://hdl.handle.net/1721.1/98564
http://dx.doi.org/10.1145/2591796.2591811

	1 Introduction
	1.1 Background
	1.2 Our results
	1.3 Outline of our algorithm

	2 Preliminaries
	3 Chan's techniques
	3.1 Merging profit functions
	3.2 Approximating big profit values using greedy
	3.3 Approximation using Delta-multiples of small set Delta

	4 Extending Chan's number-theoretic construction
	4.1 Number-theoretic construction
	4.2 Approximation using set towers

	5 Main algorithm
	5.1 A greedy lemma
	5.2 FPTAS for Subset Sum
	5.3 Improved algorithm

	A Proof of Lemma ??

