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Abstract
Distributed clustering has attracted significant at-
tention in recent years. In this paper, we study
the k-means problem in the distributed dimen-
sion setting, where the dimensions of the data are
partitioned across multiple machines. We pro-
vide new approximation algorithms, which incur
low communication costs and achieve constant
approximation ratios. The communication com-
plexity of our algorithms significantly improve
on existing algorithms. We also provide the
first communication lower bound, which nearly
matches our upper bound in a certain range of pa-
rameter setting. Our experimental results show
that our algorithms outperform existing algo-
rithms on real data-sets in the distributed dimen-
sion setting.

1. Introduction
Clustering is a central problem in unsupervised learning
and data analytics. Among hundreds of clustering prob-
lems and algorithms, the k-means problem is arguably the
most popular one, due to its simplicity and effectiveness
in numerous applications. Specifically, given n points in
Rd, k-means seeks k points (cluster centers) to induce a
partition of the given point-set, so that the average squared
distance from each data point to its closest cluster center is
minimized.

Due to the sheer increase in volume and dimensionality of
data, clustering (in particular k-means) in the distributed
setting has attracted significant attention from various re-
search communities in recent years. While much prior
work has focused on the model where the data records
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(points, items) are distributed in different locations, we
study the k-means problem in the distributed dimension
model, in which the dimensions of the data points are
stored across multiple machines.

Suppose the input data points are vectors in Rd. In the dis-
tributed dimension model, each party is assigned a subset
of the d dimensions, and holds the projection of all the data
points onto these dimensions. If the whole input point-set
is represented by an n × d matrix, where each row indi-
cates one point and each column indicates one dimension,
each party holds a column partition in our model, while
the prior work focused on row partition. The distributed
dimension (or column partition) model arise naturally in
a variety of applications and data management platforms,
some of which we briefly mention below.

(1). Suppose that we want to cluster online users based
on several features such as online shopping records, on-
line social relationships, and job hunting records, which
are collected by different companies (Amazon, Facebook,
and Linkedin) (assuming that there is a unique id, e.g.,
email address, which can be used to identify the same user).
It is also quite common that different teams in the same
company develop apps which automatically store different
features in different machines. (2). Several widely de-
ployed distributed DBMS systems, such as MonetDB, C-
Store, VectorWise, HBASE, are column-oriented by design
(Stonebraker et al., 2005; Abadi et al., 2009; 2013). These
systems partition and store the data based on the columns.1

(3). Another motivation comes from the proliferation of
networked sensing systems, where we need to monitor sev-
eral attributes of the objects using multiple sensors of dif-
ferent types. For example, an environment monitoring sys-
tem (Gu et al., 2005; Su et al., 2011) may have video cam-
eras, and different sensors recording audio, temperature, il-

1Such systems typically perform compression of the columns,
particularly for sparse data. We ignore such issue and assume the
raw columns are stored and readily available in each server.
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lumination, etc., separately.

1.1. Formulation
We formally introduce some notations and our commu-
nication model. We use [n] as a short-hand notation for
{1, 2, · · · , n}. Let P = {p1, p2, · · · , pn} ⊂ Rd be the set
of points we want to cluster. There are T parties. The l-
th party holds a subset Dl of dl dimensions. Assume that
∪Tl=1Dl = [d] and

∑T
l=1 dl = d (i.e., {Dl}l=1,...,T is a

partition of [d]). For each point pi ∈ Rd, we can write
pi = (p1i , p

2
i , · · · , pTi ), where pli ∈ Rdl (1 ≤ l ≤ T ). Let

Pl = {pli}i∈[n] be the data stored in the l-th party. With
a slight abuse of notation, we also use P and Pl to denote
their induced n× d and n× dl matrices. Given a small in-
teger k ≥ 1, our goal is to find k cluster centers and a parti-
tion of P in the central server, such that the corresponding
k-means clustering cost is minimized, and the communica-
tion complexity is as small as possible.

Central server

Party 1 Party 2 Party T

Figure 1. Our communication model. Suppose the input n × d
matrix P is divided to T mutually disjoint subsets of columns,
and each of the T parties reserves one individual subset; the com-
munication is allowed only between the server and each party.

Communication model: We assume that there is a central
server (or server in short) and only allow the communica-
tion between the central server and each of the T parties.
We only require the central server to know the final so-
lution. See Fig. 1 for an illustration. For simplicity, the
communication cost are measured in words, i.e., sending
one single number costs 1. The communication complex-
ity/cost of an algorithm is the total number of words trans-
mitted between the server and the parties. We also briefly
discuss the communication complexity measured in bits in
Section 7.

To capture the high volume and dimensionality of the data,
we should think that n and d are very large, while k and
T are much smaller in typical applications and treated as
constants.

Note: To measure the quality of the clustering result, we
compute the ratio between the obtained and minimum clus-
tering costs, which is called approximation ratio (the closer
to 1, the better).

1.2. Prior Work
We are not aware of any prior work explicitly focusing on
clustering in distributed dimension setting (most existing
algorithms for distributed clustering are for the row parti-
tion model, or some other purposes such as privacy preserv-
ing or making a consensus from different subspaces; the
reader is referred to the end of this subsection for the de-
tails of these results), however, some can be easily adopted,
which we briefly sketch below.

Random projection is a powerful technique for handling
high dimensional data, and has been studied by (Boutsidis
et al., 2015; Cohen et al., 2015) in the distributed clustering
context. We can use random projection in the distributed
dimension setting as follows: We multiply the sub-matrix
Pl by a sub-matrix of the unified random projection matrix
in the l-th party (see Fig. 2). Once the central server obtains
P ×R by receiving Pl×Rl from each party, it can perform
any existing k-means clustering algorithm on it. The ran-
dom projection ensures that the cost of k-means clustering
is approximately preserved so that the performance guar-
antee of the distributed algorithm is almost the same as the
centralized one.

××

P1P1 P2P2 P3P3

R1R1

R2R2

R3R3

PP RR

Figure 2. Matrices P ∈ Rn×d and R ∈ Rd×t represent the input
data points and random projection matrix, respectively, where t
indicates the reduced dimensionality depending on each individ-
ual method. In our setting of distributed dimensions, each party
reserves a subset of columns of P , say Pl. The unified random
projection matrix R can be independently generated in each party
as long as they all use the same random seed, and the rows are
divided into T groups with the indices consistent to the column
partition on P . Then, each party computes the corresponding
multiplication Pl ×Rl, and sends it to the central server. Finally,
the central server obtains the summation

∑T
l=1 Pl × Rl which is

equal to P ×R.

SVD can also be applied to k-means with distributed di-
mensions. There are two different ways to use SVD. (1).
In the first approach, the server computes the orthonor-
mal basis of a low dimensional subspace for approximat-
ing P (Feldman et al., 2013; Liang et al., 2014; Boutsidis
et al., 2015; Cohen et al., 2015) (i.e., approximate PCA)
by computing the SVD of P in the distributed setting2, and

2 Existing distributed SVD algorithms work for both the row
partition and column partition models. We exchange the roles of
n and d here due to column partition. So the basis now is a n× t
matrix where t depends on each individual method.
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Reference Approximation ratio Communication complexity
Johnson-Lindenstrauss (JL) transform∗ 1 + ε O(T logn

ε2
n) + kd

(Boutsidis et al., 2015)† 2 + ε O( k
ε
)(2Tn+ d)

(Boutsidis et al., 2015)‡ 3 + ε O( k log k
ε2

n+ k
ε
Tn+ k

ε
d)

(Boutsidis et al., 2015)∗ 2 + ε O(T k
ε2
n) + kd

(Liang et al., 2014; Cohen et al., 2015)† 1 + ε O( k
ε
)(2Tn+ d)

(Cohen et al., 2015)‡ 1 + ε O( k log k
ε2

n) + Tkn+ kd

(Cohen et al., 2015)∗ 1 + ε O(T k
ε2
n) + kd

(Cohen et al., 2015)∗ 9 + ε O(T log k
ε2

n) + kd
Our results I 9 + ε Tn+ kd

Our results II 5 + ε 2Tn+kT × d (or 3Tn+kd+kT ×O(T k
ε2
) if d� T k

ε2
).

Table 1. Existing and our new results for k-means clustering with distributed dimensions (∗: random projection, †: PCA, ‡: feature
selection), where ε > 0. The communication complexities for random projection and feature selection all contain an additive term kd.
In fact, this is because once the central server obtains the clustering result in the space with reduced dimensionality, in order to map the
k cluster centers back to the original space Rd, each party should send the coordinate of each cluster center in its reserved subspace to
the server, incurring an extra communication cost of

∑T
l=1 kdl = kd.

sends the basis to all the parties. Then each party com-
putes the (projected) coordinates of its own data in such a
basis, which is a t × dl matrix, and sends this matrix back
to the server. Finally, the server reconstructs a rank-t ap-
proximation of P , and runs any existing k-means cluster-
ing algorithm on it (similar to the random projection based
approaches). (2). The other way is called the feature se-
lection method (Boutsidis et al., 2015; Cohen et al., 2015).
The main difference from the first is that once obtaining the
approximate SVD of P , the server generates a probability
distribution over the d columns of P . Using the distribu-
tion, the servers selects t columns and inform all parties
of the indices of the selected columns. Finally, each party
sends the actual data of the selected columns to the server.

See Table 1 for the communication complexities of the
above approaches. By closely examining the analysis of the
previous dimension reduction approaches (including both
random projection and SVD), we can see the approxima-
tion ratios are the same as those in the row partition mod-
els, but the communication complexities are different. The
communication complexities listed in Table 1 can be eas-
ily obtained by adapting the previous algorithms to column
partitions (as we sketched above), and we omit the details
which are tedious and not particularly interesting.

Other Related Work. A number of results for cluster-
ing under centralized setting have been obtained in the
past (Aggarwal & Reddy, 2013; Awasthi & Balcan, 2014).
Particularly, k-means++ (Arthur & Vassilvitskii, 2007) and
some of its variants are very efficient in practice and
achieve the expected approximation ratio O(log k). Re-
cently, (Chawla & Gionis, 2013) develops an algorithm for
k-means with outliers. (Feldman et al., 2012; Zhang et al.,
2008) apply coresets (Feldman & Langberg, 2011) to han-
dle the problem of clustering with distributed data points
(row partition). Following their works, (Balcan et al.,
2013) develops the algorithm applicable to any connecting
topology of communication networks, and also improves

the communication cost. Several other algorithms for dis-
tributed data points are also proposed (Datta et al., 2006;
Forman & Zhang, 2000; Bahmani et al., 2012). Some clus-
tering results for distributed dimensions (Vaidya & Clifton,
2003; Jagannathan & Wright, 2005) mainly focus on pri-
vacy preserving rather than communication cost. Another
similar problem is called multi-view clustering (Bickel &
Scheffer, 2004) which focuses more on how to achieve a
consensus of the multiple views, and the computation is
usually executed in a single machine without concerning
communication cost. Besides distributed clustering, many
other machine learning problems are recently studied un-
der distributed setting, such as PCA (Liang et al., 2014;
Kannan et al., 2014), classification (Daumé III et al., 2012),
PAC (Balcan et al., 2012), and sparse learning (Bellet et al.,
2015).

1.3. Our Contributions
In this paper, we provide communication-efficient algo-
rithms for k-means in the distributed dimension setting,
improving upon the previous methods. In the random pro-
jection method, each party multiplies a sub-matrix Rl to
its own sub-matrix Pl (as Fig. 2). Rl is chosen in a data
oblivious way, without utilizing the property of each Pl.
However, our method examines the distribution of Pl in
each party, which allows us to spend less communication
in our setting. In a high level, our algorithm works as fol-
lows. First, the l-th party computes a k-means clustering
for Pl in the corresponding subspace Rdl , and sends to the
server the obtained k cluster centers, as well as the clus-
tering memberships of the n points.3 Based on such in-
formation, the central server can approximate the point-set
P by constructing a weighted grid in the whole space Rd.
Finally, one can apply any existing k-means clustering al-
gorithm to the grid. When k = O(1), we can achieve an
approximation ratio of 9+ε, for any constant ε > 0, match-

3 The clustering membership of a point p is the number in [k]
indexing the nearest neighbor of p among the k cluster centers.
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ing those obtained using the random projection technique
developed in (Cohen et al., 2015), but with a much lower
communication complexity (Section 2). Another advantage
of our algorithm is that it is very simple to implement and
the computation effort for each party is also quite low.

By a more careful analysis of the distribution of each Pl, we
show it is possible to achieve an improved 5+ε approxima-
tion ratio with a slightly larger communication complexity
(Section 3).

We show the comparison between the existing and our re-
sults for k-means clustering with distributed dimensions in
Table 1. Note that the communication complexities from
random projection and feature selection all have a hidden
constant (usually bigger than 1) which depends on the suc-
cess probability of the algorithms (due to their random-
ness). On the other hand, our communication protocol
is deterministic, except that the centralized k-means algo-
rithm (which is used as a black-box in each individual ma-
chine) may be randomized.

Furthermore, we point out another advantage of our method
here. We can readily extend the method to some other re-
lated problems, such as k-means with outliers (Chawla &
Gionis, 2013) and constrained k-means clustering (which
has the same objective function as k-means but has extra
combinatorial constraint) (Wagstaff et al., 2001; Ding &
Xu, 2015; Bhattacharya et al., 2016), in the distributed di-
mension setting. We can achieve similar approximation ra-
tios and communication complexities. The basic idea is
that the built grid can be easily modified to adapt these
problems, e.g., slightly increasing the size of the grid or
sending more information besides the clustering member-
ships to the server. However, it is not clear to us how to
adopt the existing approaches mentioned in Section 1.2 to
these problems.

2. (9 + ε)-Approximation
In this section, we present a simple algorithm yielding a
(9 + ε)-approximation for k-means clustering with dis-
tributed dimensions. The key idea is building a weighted
grid in the original space Rd to approximately reconstruct
the point-set P .4 The reason for using a grid is that it can
incur significant saving in communication complexity un-
der the problem setting, i.e., each party only needs to send a
small amount of information to the central server for build-
ing such a grid. Moreover, in order to have a more accurate
reconstruction, we assign a weight to each individual grid

4Our construction of the grid may seem to be similar to the
product quantization (Jegou et al., 2011) which is used for nearest
neighbor search in image retrieval. However, our approach is in
fact fundamentally different, in that product quantization aims to
find a partition on the d dimensions of the space such that the
distortion of the built grid to the original point-set is minimized,
while in our problem the partition is fixed as the input.

point. See Algorithm 1 for the details. In the algorithm,
we denote [k]× [k]× · · · × [k]︸ ︷︷ ︸

T

as [k]T . We also denote the

centralized algorithm for solving the k-means problem by
A, and assume that A can achieve an approximation ratio
of λ (> 1). For k = O(1), it is known that there is a PTAS
(i.e., polynomial-time approximation scheme) for k-means
(Kumar et al., 2010; Feldman & Langberg, 2011) which
indicates that the approximation ratio λ can be taken to be
1+ε for any constant ε > 0. A toy example of the grid con-
struction is shown in Fig. 3, and the theoretical guarantee
is presented in the following Theorem 1.

Party 1

Party 2

Party 3

s1
1s
1
1

s1
2s
1
2

s2
1s
2
1

s2
2s
2
2

s3
1s
3
1 s3

2s
3
2

g(1,1,2)g(1,1,2)

Figure 3. Let n = 6, k = 2, and T = 3. Suppose the
clustering results Ml for l = 1, 2, 3 in the three parties are
{{p1, p2, p3}, {p4, p5, p6}}, {{p1, p3}, {p2, p4, p5, p6}}, and
{{p1, p2, p4, p5}, {p3, p6}} respectively. The cluster centers in
each party are {sl1, sl2}. Then the grid built by Algorithm GRID

is shown in the figure. For example, the grid point g(1,1,2) =
(s11, s

2
1, s

3
2). And sinceM1

1 ∩M2
1 ∩M3

2 = {p3}, the weight of
g(1,1,2) is 1.

Theorem 1. If we have a centralized algorithm A for k-
means clustering which can achieve an approximation ra-
tio λ, DISTDIM-K-MEANS (Algorithm 1) yields a (2λ2 +
3λ + 2λ

√
2(λ+ 1))-approximation with communication

cost Tn + kd. In particular, the approximation ratio is
9 + ε if A is a PTAS.

Proof. In DISTDIM-K-MEANS, only step 2 needs commu-
nication, and each party costs n+kdl. Thus, the total com-
munication cost is Tn+ k

∑
l dl = Tn+ kd.

pipi

gjgj

NG(gj)NG(gj)

N (pi)N (pi)

Figure 4. Illustration for the utilizations of triangle inequality in
(1) and (4).
Below, we focus on the proof of the approximation guaran-
tee. For simplicity, the grid G is rewritten as {g1, · · · , gm}
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Algorithm 1 DISTDIM-K-MEANS

1. For each l ∈ [T ], the l-th party does the following:
runs the centralized approximation algorithm A for
k-means on Pl, and obtains the clustering mem-
bershipsMl = {Ml

1, · · · ,Ml
k} on [n] (i.e., each

Ml
i ⊂ [n] andMl

i∩Ml
i′ = ∅ if i 6= i′) and a set of

corresponding cluster centers {sl1, · · · , slk} ⊂ Rdl .

2. For each l ∈ [T ], the l-th party sends the member-
shipsMl and the k cluster centers to the server.

3. The server builds a weighted grid G in Rd of size
kT , using Algorithm 2.

4. The server runs algorithm A on G, and obtains the
k cluster centers {cG1 , · · · , cGk } and the clustering
membershipsMG = {MG

1 , · · · ,MG
k } on [k]T .

5. The server obtains the final clustering memberships
M = {M1, · · · ,Mk} on [n], where eachMj =

∪{i ∈ ⋂T
l=1Ml

il
| (i1, · · · , iT ) ∈MG

j }.

6. Now, the server has the k cluster centers
{cG1 , · · · , cGk } and the clustering memberships
M = {M1, · · · ,Mk}.

Algorithm 2 GRID

1. For each index tuple (i1, · · · , iT ) ∈ [k]T , construct
a point g(i1,··· ,iT ) = (s1i1 , s

2
i2
, · · · , sTiT ) ∈ Rd.

2. Output G = {g(i1,··· ,iT ) | (i1, · · · , iT ) ∈ [k]T },
and each g(i1,··· ,iT ) is associated with the weight
|⋂T

l=1Ml
il
|.

where m = kT , and for each gj , its corresponding inter-
section

⋂T
l=1Ml

il
is rewritten as Sj . Suppose the k clus-

ter centers in an optimal solution are {c?1, · · · , c?k} , and
for each pi ∈ P , we denote its nearest neighbor from
{c?1, · · · , c?k} as N (pi). Similarly, we denote the nearest
neighbor of each gj ∈ G from {cG1 , · · · , cGk } as NG(gj).
Then, for each index i ∈ Sj ,
‖pi −NG(gj)‖2 = ‖pi − gj + gj −NG(gj)‖2

≤ ‖pi − gj‖2 + ‖gj −NG(gj)‖2
+2‖pi − gj‖ · ‖gj −NG(gj)‖. (1)

See Fig. 4. For ease of analysis, we denote the cost
of our solution from Algorithm 1,

∑kT

j=1

∑
i∈Sj
‖pi −

NG(gj)‖2, by Γ, and the cost of the optimal solution,∑
pi
‖pi − N (pi)‖2, by Γopt, respectively. Furthermore,∑kT

j=1

∑
i∈Sj
‖pi − gj‖2 and

∑kT

j=1 |Sj |‖gj − NG(gj)‖2
are denoted by Γa and Γb, respectively. Summing both
sides of (1), we have

Γ =

kT∑
j=1

∑
i∈Sj

‖pi −NG(gj)‖2

≤Γa + Γb + 2

kT∑
j=1

∑
i∈Sj

‖pi − gj‖ · ‖gj −NG(gj)‖

≤Γa + Γb + 2
√

ΓaΓb, (2)

where the last inequality follows from Cauchy-Schwarz in-
equality. Note that {cG1 , · · · , cGk } is a λ-approximation for
the weighted point-set G, and each gj has weight |Sj |. Ac-
tually each gj can be viewed as |Sj | unweighted points col-
located at the same place. Then G can be viewed as a set
of

∑
j |Sj | = n unweighted points. Thus, we have

Γb =

kT∑
j=1

|Sj |‖gj −NG(gj)‖2

≤ λ

kT∑
j=1

∑
i∈Sj

‖gj −N (pi)‖2, (3)

where the left hand term Γb and the right hand term∑kT

j=1

∑
i∈Sj
‖gj − N (pi)‖2 indicate the costs of as-

signing the n points locating in G to the k clustering
centers {cG1 , · · · , cGk } and {c?1, · · · , c?k} respectively (note
NG(gj) ∈ {cG1 , · · · , cGk } and N (pi) ∈ {c?1, · · · , c?k}).
Also, each
‖gj −N (pi)‖2 ≤ 2‖gj − pi‖2 + 2‖pi −N (pi)‖2 (4)

by the relaxed triangle inequality (see Fig. 4). (3) and (4)
together imply that

Γb ≤ 2λ(Γa + Γopt). (5)

Combining (2) and (5), we have
Γ ≤ (2λ+ 1)Γa + 2λΓopt + 2

√
2λΓa(Γa + Γopt). (6)

Meanwhile, since the T subspaces among different parties
are mutually orthogonal and disjoint (except the origin), the
cost Γopt is the sum of the costs of their projections in the
T subspaces. Also, in each subspace we run algorithm A
which can achieve a factor of λ. Consequently, we have
that

Γa =

kT∑
j=1

∑
i∈Sj

‖pi − gj‖2

≤ λ
∑
pi

‖pi −N (pi)‖2 = λΓopt. (7)

Plugging (7) into (6), we have

Γ ≤ (2λ2 + 3λ+ 2λ
√

2(λ+ 1))Γopt. (8)

Since there is a PTAS for k-means when k = O(1), we can
take λ = 1 +O(ε2), and obtain the approximation ratio of
9 + ε for our problem.
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3. (5 + ε)-Approximation
Here, we follow the idea of DISTDIM-K-MEANS but mod-
ify the construction of G in GRID (Algorithm 2), to im-
prove the approximation ratio from 9 + ε to 5 + ε. We also
show how to reduce the following increased communica-
tion complexity via the idea of random projection by (Co-
hen et al., 2015) in Section 3.1.

DISTDIM-K-MEANS-IMPROVED: In step 2 of
DISTDIM-K-MEANS, we do not need to send the
coordinates of the k centers from each party to the server;
instead, in the GRID algorithm, we update each g(i1,··· ,iT )

by the mean point of {pi | i ∈
⋂T
l=1Ml

il
}. To achieve

that, the server broadcasts the index-set Sj =
⋂T
l=1Ml

il

to each party, and then each party sends 1
|Sj |

∑
i∈Sj

pli,
i.e., the projection of the mean point on its subspace back
to the server. Finally, through simple concatenating the
server can obtain 1

|Sj |
∑
i∈Sj

pi, i.e., the mean point.

We consider the extra communication cost caused by this
modification. Since each index from [n] belongs one and
only one of the kT index-sets, broadcasting all these index-
sets to the T parties cost a total communication complexity
of Tn. Secondly, it costs d for constructing each individual
mean point of {pi | i ∈

⋂T
l=1Ml

il
}, and thus kT d for all

the kT mean points. Note that our method only benefits the
case of n > kT , otherwise, we just simply send all the data
to the server which costs a communication complexity of
nd. Overall, the modification needs an extra communica-
tion cost of Tn+ kT d.

Theorem 2. If we have a centralized algorithm A for k-
means clustering which can achieve an approximation ra-
tio λ, DISTDIM-K-MEANS-IMPROVED yields a (2λ2 +
3λ)-approximation with communication cost 2Tn + kT d.
The approximation ratio can be 5 + ε if A is a PTAS.
Proof. From the above analysis, we can easily obtain the
communication complexity of 2Tn+kT d. For the approx-
imation ratio, we recall the proof of Theorem 1. At first,
we need the well known fact below.

Fact 1. Let q∗ be the mean of a point-set Q ⊂ Rd, then for
any arbitrary point q ∈ Rd, we have∑
qi∈Q

‖q − qi‖2 =

n∑
qi∈Q

‖q∗ − qi‖2 + |Q|‖q − q∗‖2. (9)

Based on the above (9) and the fact that gj is the mean of
{pi | i ∈ Sj}, we rewrite the cost of our solution

Γ =

kT∑
j=1

∑
i∈Sj

‖pi −NG(gj)‖2

=

kT∑
j=1

(
∑
i∈Sj

‖pi − gj‖2 + |Sj |‖gj −NG(gj)‖2)

= Γa + Γb (10)

Also, with respect to the value of Γa, since we change the
position of each gj to the mean point of {pi | j ∈ Sj}, the
value of Γa cannot increase. Furthermore, following the
same manner of (3)-(7), we have that Γ ≤ (2λ2 + 3λ)Γopt.
Finally, the approximation ratio can reach 5 + ε if λ =
1 +O(ε).

3.1. Improvement via Random Projection
(Cohen et al., 2015) shows that given an instance of
k-means clustering, one can project all the points to a
randomly selected O(k/ε2)-dimensional space, such that
when recovering the solution in the original space, the
approximation ratio increases by a factor at most (1 +
ε). In this section, we show how to apply this result to
improve the communication complexity of the (5 + ε)-
approximation.

One expensive step of DISTDIM-K-MEANS-IMPROVED
is computing the exact coordinates of the grid points
{g1, · · · , gkT } in Rd, which costs a communication com-
plexity of kT d. From (Cohen et al., 2015), we know that
it is not necessary to do that. Actually, it is sufficient to
only know their coordinates in RO(k/ε2) after random pro-
jection. To realize that, we can use exactly the same idea
showed in Fig. 2. As a consequence, each party sends a
kT ×O(k/ε2) matrix to the server, and the communication
complexity of this step is reduced from kT d to O(T kT+1

ε2 )
(suppose d � Tk/ε2). In addition, after finding the clus-
tering memberships of P in RO(k/ε2), we still need to com-
pute the coordinates of the k cluster centers in Rd, which
costs an extra Tn+ kd in communication complexity.

For the final approximation ratio, we can slightly reduce
the value of ε used in the random projection and PTAS of
centralized k-means clustering by a constant factor, such
that the ratio of 5 + ε in Theorem 2 can still be guaranteed.

Theorem 3. Through random projection, the communica-
tion complexity of DISTDIM-K-MEANS-IMPROVED is re-
duced to 3Tn+ kd+O(T kT+1

ε2 ) and the same approxima-
tion ratio is preserved.

4. Other Results
We extend our DISTDIM-K-MEANS algorithm to some
other related clustering problems with distributed dimen-
sions. In general, we consider two problems motivated by
the particular real-world applications, k-means clustering
with outliers and constrained k-means clustering. To the
best of our knowledge, there is no obvious way to extend
the previous mentioned approaches, such as random pro-
jection or SVD, to these problems.

4.1. k-Means Clustering with Outliers
Comparing to the ordinary k-means clustering, its variant
of that considering outliers is more general and robust in
practice. Using the same notations defined before and an
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additional integer parameter z < n, the object is to kick out
z points from P such that the objective value of k-means
clustering for the remaining points is as small as possible.
For this problem, we still follow the idea and main structure
of DISTDIM-K-MEANS. Below is our modification.

DISTDIM-K-MEANS-OUTLIERS. We only need to mod-
ify a few places in DISTDIM-K-MEANS. At first, simi-
lar to k-means clustering, we assume that B is the central-
ized algorithm solving k-means with outliers and achiev-
ing an approximation of λ > 1. In step 1, we run B.
Moreover, the corresponding memberships Ml become
{Ml

1, · · · ,Ml
k+z} where the last z items indicates the in-

dices of the z outliers. Also, in step 2 each party sends the
corresponding memberships and coordinates of not only
the k centers but also the z outliers. Consequently, the
weighted grid G has a size of (k + z)T . Similarly, we run
B and compute the memberships in step 4 & 5. Note that
when running B in step 4, we view each g(i1,··· ,iT ) as a
multi-set of |⋂T

l=1Ml
il
| individual unweighted points. Fi-

nally, in step 5 we obtain the clustering memberships M
on the n points except z outliers.

The theoretical guarantee is presented in the following The-
orem 4. The proof is similar to that of Theorem 1, and due
to space limit we put it in our supplement.

Theorem 4. If we have a centralized algorithm B for
k-means clustering with outliers which can achieve an
approximation ratio λ, DISTDIM-K-MEANS-OUTLIERS
yields a (2λ2 + 3λ + 2λ

√
2(λ+ 1))-approximation with

communication cost Tn + (k + z)d. In particular, the ap-
proximation ratio is 9 + ε if B is a PTAS.

Remark 1. Different from k-means, the only known PTAS
for k-means with outliers (for the centralized setting) (Feld-
man & Schulman, 2012) requires the number of outliers to
be a constant. For those applications where we need to
exclude more outliers, we can instead run some heuristic
algorithms such as (Chawla & Gionis, 2013).

4.2. Constrained k-Means Clustering
Given an instance of k-means clustering, many real-world
applications do not allow the set of points to be arbitrarily
assigned to the clusters. The constraints, such as upper or
lower bound on the size of each cluster and chromatic con-
flict (e.g., the points sharing the same color cannot be clus-
tered into the same cluster), are motivated from data min-
ing (Wagstaff et al., 2001), resource assignment (Khuller &
Sussmann, 1996), and privacy preserving (Sweeney, 2002;
Aggarwal et al., 2010; Li et al., 2010). Recently, (Ding
& Xu, 2015; Bhattacharya et al., 2016) provide PTAS
for a large class of constrained k-means clustering when
k = O(1).

Actually, some of the constrained k-means clustering prob-
lems under the setting of distributed dimensions can be eas-

ily solved by the framework of our DISTDIM-K-MEANS in
Section 2 (just replace the algorithm A by the correspond-
ing algorithms handling the constraints, such as the PTAS
by (Ding & Xu, 2015; Bhattacharya et al., 2016), in the
server and each party). To shed some light on this, consider
k-means clustering with a lower bound r > 0 on the size of
each cluster. Once building the grid G, we can still bound
the distortion betweenG and the original point-set P by the
similar way of (7), because the cost of the objective func-
tion (even after adding lower bound constraint) is always
equal to the sum of the costs in the mutually orthogonal
and disjoint subspaces due to the nature of k-means. Then
through the manner of (2)-(6), we can obtain the same ap-
proximation ratio and communication complexity. More-
over, for item-level constraints such as chromatic conflict,
we can view each grid point of G as a set of individual col-
ored points locating at the same location, and consequently
G is in fact a new instance of k-means clustering with chro-
matic conflict but having a bounded distortion to the orig-
inal instance P ; finally the theoretical results can be simi-
larly guaranteed as well.

5. Lower Bound
In this section, we provide a lower bound of the commu-
nication cost for k-means problem with distributed dimen-
sions. In fact, the lower bound even holds for the special
case where the l-th party holds the l-th column. We de-
note by k-Meansn,T the problem where there are T par-
ties and n points in RT , and we want to compute k-means
in the server. We prove a lower bound of Ω(n · T ) for
k-Meansn,T (for achieving any finite approximation ra-
tio) by a reduction from the set disjointness problem (Chat-
topadhyay & Pitassi, 2010). Due to space limit, we put the
details in our supplement.

6. Experiments
We compare our algorithms of DISTDIM-K-MEANS and
DISTDIM-K-MEANS-OUTLIERS to the following three
types of methods as mentioned in Section 1.2: (1) the ran-
dom projection based approach RP-t where t is the dimen-
sionality of the random subspace, and the two SVD based
approaches (2) PCA-t where t is the rank of the recon-
structed matrix approximating P and (3) FS-t where t is
the number of selected features (dimensions).

Data-sets & Experimental methodology. We first choose
a real-world data-set from (Bache & Lichman, 2013),
YearPredictionMSD which contains 105 points in R90. We
randomly divide the data-set into 3 parties with each hav-
ing 30 attributes (i.e., T = 3), and set k = 5-100. Also, for
k-means clustering with outliers we set the number of out-
liers z = 500. In the server and each party, we use the algo-
rithms from (Arthur & Vassilvitskii, 2007) and (Chawla &
Gionis, 2013) as the centralized algorithms A and B, i.e.,
the subroutines in DISTDIM-K-MEANS and DISTDIM-K-
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(a) (b) (c)

Figure 5. The normalized costs of k-means clustering on (a) YearPredicitonMSD, (b)YearPredicitonMSD considering outliers, and (c)
Bag of Words(NYTimes).

Our Alg RP PCA FS
1 5 10 1 5 10 1 5 10

KMeans 6.02 8.87 32.30 61.59 14.74 61.62 120.20 3.99 7.89 12.78
Outlier 7.32 9.76 33.19 62.48 15.63 62.51 121.09 4.88 8.78 13.67

Table 2. Average communication costs for YearPredictionMSD data-set (in100KB) over the values of k.

MEANS-OUTLIERS, respectively. Furthermore, in order
to show the advantage of our approach in high dimension,
we also implement our algorithm DISTDIM-K-MEANS on
another data-set Bag of Words(NYTimes) from (Bache &
Lichman, 2013) which contains 105 points in R102660. We
randomly divide it into 100 parties with each having about
1000 attributes (i.e., T = 100), set k = 20-100, and com-
pare the results to the random projection based approach.5

Results & Analysis. Firstly, comparing to the clustering
costs obtained by the centralized algorithms A and B (di-
rectly run on the whole data-sets without considering the
distributed setting) for different values of k, our results ob-
tained in the distributed setting are over within a factor of
no more than 1.5 for most of the cases, which is much bet-
ter than the theoretical ratio 9 + ε by Theorem 1&4.

Secondly, we show the comparison on clustering cost be-
tween our and other algorithms in Fig. 5, where we nor-
malized all the costs by the corresponding costs obtained
by our approach (hence the ratios of our results are always
1). We also list the corresponding communication costs
for the two data-sets in Table 2&3 separately (due to space
limit, we only show the average costs over k in Table 2).
For the first data-set YearPredictionMSD without consid-
ering outliers (Fig. 5(a)), the clustering costs are roughly
the same when k is small, but our approach outperforms
most of them when k increases to 50 and 100 (the only one
beats ours is RP-10 which has about 10 times communi-
cation cost of ours as shown in Table 2). Further, for the
same data-set but considering outliers (Fig. 5(b)), the ad-
vantage of our approach is much more significant which
indicates that our algorithm is more efficient for handling
outliers. For the second data-set Bag of Words(NYTimes)

5Considering the size of Bag of Words(NYTimes), the SVD
based approaches are much more impractical than the random
projection based approach via current techniques in reality.

K Our Alg RP
1 10 50 100

20 27.54 33.30 209.08 990.33 1966.89
40 35.55 37.30 213.09 994.34 1970.90
60 43.55 41.31 217.09 998.34 1974.90
80 51.56 45.31 221.09 1002.35 1978.91

100 59.57 49.32 225.10 1006.36 1982.91

Table 3. Communication costs for NYTimes data-set (in MB).

with a much higher dimension (Fig. 5(c)), our algorithm
also outperforms the random projection based approach on
both clustering cost and communication cost in most cases.

7. The bit complexity
As mentioned in Section 1.1, we assume that sending one
single number costs a communication complexity of 1. In
terms of the bit complexity, encoding the membership for
each point needs log k bits. Thus, the bit communication
complexities of the two (9 + ε)-approximation algorithms
by (Cohen et al., 2015) and us should be O(T log k

ε2 )nL +
kdL and Tn log k+kdL, respectively, where L is the word
length in the machine. We note that even in this case, our
improvement is significant.

8. Future Work
Following our approach, several interesting problems de-
serve to be explored. For example, how to achieve a simi-
lar approximation ratio and communication complexity for
k-median/center clustering problems. To generalize our
method to the setting of arbitrary partition (such as (Kan-
nan et al., 2014) for PCA) is also challenging but useful in
some scenarios.



K-Means Clustering with Distributed Dimensions

Acknowledgements
Ding was supported by a start-up fund from Michigan
State University. Part of the work was done when Ding
was in IIIS, Tsinghua University and Simons Institute,
UC Berkeley. Liu, Huang, and Li were supported in
part by the National Basic Research Program of China
grants 2015CB358700, 2011CBA00300, 2011CBA00301,
and the National NSFC grants 61033001, 61361136003.

References
Abadi, Daniel, Boncz, Peter, and Harizopoulos, Stavros.

The design and implementation of modern column-
oriented database systems. 2013.

Abadi, Daniel J, Boncz, Peter A, and Harizopoulos,
Stavros. Column-oriented database systems. Proceed-
ings of the VLDB Endowment, 2(2):1664–1665, 2009.

Aggarwal, Charu C and Reddy, Chandan K. Data cluster-
ing: algorithms and applications. CRC Press, 2013.

Aggarwal, Gagan, Panigrahy, Rina, Feder, Tomás, Thomas,
Dilys, Kenthapadi, Krishnaram, Khuller, Samir, and
Zhu, An. Achieving anonymity via clustering. ACM
Transactions on Algorithms (TALG), 6(3):49, 2010.

Arthur, David and Vassilvitskii, Sergei. k-means++: the
advantages of careful seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007, pp. 1027–1035, 2007.

Awasthi, Pranjal and Balcan, Maria-Florina. Center based
clustering: A foundational perspective. 2014.

Bache, K. and Lichman, M. Uci machine learning reposi-
tory. 2013.

Bahmani, Bahman, Moseley, Benjamin, Vattani, Andrea,
Kumar, Ravi, and Vassilvitskii, Sergei. Scalable k-
means++. Proceedings of the VLDB Endowment, 5(7):
622–633, 2012.

Balcan, Maria-Florina, Blum, Avrim, Fine, Shai, and Man-
sour, Yishay. Distributed learning, communication com-
plexity and privacy. In COLT 2012 - The 25th Annual
Conference on Learning Theory, 2012, Edinburgh, Scot-
land, pp. 26.1–26.22, 2012.

Balcan, Maria-Florina F, Ehrlich, Steven, and Liang,
Yingyu. Distributed k-means and k-median clustering
on general topologies. In Advances in Neural Informa-
tion Processing Systems 26, pp. 1995–2003. Curran As-
sociates, Inc., 2013.
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