
Distributed Voltage Regulation in Distribution Power Grids:
Utilizing the Photovoltaics Inverters

Chenye Wu, Gabriela Hug, and Soummya Kar

Abstract— Millions of newly installed photovoltaic (PV) pan-
els are disrupting the conventional distribution power grid
operation. The lack of efficient coordination schemes between
the PV panels results in voltage stability issues. In this paper,
we exploit the reactive power control potential in the inverters
of the PV panels for voltage regulation. There are considerable
obstacles to design a coordination scheme that does not rely
on a central entity with theoretical performance guarantee. In
particular, the power flow equations define a highly non-convex
constraint set. To tackle this challenge, we first examine the
structure of the problem for a simplified linear network model,
which allows for the design of a distributed control scheme.
Then, we devise an analytical framework to show that our
proposed distributed scheme will converge to a local minimum
geometrically in the non-convex branch flow model. We fur-
ther characterize the systematic error during the convergence.
Finally, we use simulations to assess the performance of our
proposed scheme.

I. INTRODUCTION

Pressing environmental problems drive the world-wide
interest in renewable energy. In addition, nuclear power
safety concerns, such as in Germany where the goal is to have
no operational nuclear plants by 2020 [1], help accelerate
the adoption of renewables. Investment in renewables today
is mostly in utility-scale solar and wind plants, as well as
small-scale distributed rooftop photovoltaics (PV).

A. Opportunities and Challenges

The newly installed rooftop PV panels, however, have
posed several existential threats to the distribution system
operation, among which, the most critical one is the voltage
stability issue [3]. The challenge with respect to the volt-
age profiles is twofold. First, the conventional distribution
grid lacks voltage control and local measurement units.
This situation has been changed dramatically over the past
decades with the blossom of smart grid initiatives. Increasing
distributed generation units with voltage control potentials
and phasor measurement units (PMUs) are being deployed in
the distribution grids across the world. The second challenge,
which is more critical, is the lack of an efficient coordination
scheme to utilize the potential of the new components.
Our paper is targeting this second challenge. We utilize the
capability of the PV inverters to provide flexible reactive
power for voltage regulation. Our focus is on coordinating
all the PV panels to achieve the desired voltage profile in the
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distribution grid. To avoid the need for a centralized control
entity, a distributed control scheme is proposed.

B. Related Works

One major body of related literature on distributed voltage
regulation scheme investigates the resource coordination and
scheduling. The power flow equations in the distribution
network render the optimization or the control problem non-
convex. Most works rely on linearizing the power flow equa-
tions around the operating point and then conduct the voltage
regulation, including [4], [5], [6]. Other works convexify
the problem by semidefinite programming (SDP) relaxation
[7] or second-order cone programming (SOCP) relaxation
[8]. For example, in [9], Zhang et al. give the sufficient
conditions when the SDP relaxation is tight for conducting
voltage regulation in distribution grids.

Another research line focuses on the dynamics of volt-
age control (typically together with frequency control). For
example, in [10], Schiffer et al. prove that a consensus-
based distributed voltage control can uniquely determine the
equilibrium point of the closed-loop voltage and reactive
power dynamics. For more related works in this vein, see
[11] for an excellent review.

Our work falls into the first category. While we also start
with designing the distributed control scheme for a simplified
linear network model, our major contribution is to devise
an analytical framework to show that our scheme gives
convergence guarantee in the non-convex branch flow model.
To the best of our knowledge, our work is the first attempt
to analyze gradient type algorithms derived from linearized
branch flow model for AC model.

The remainder of this paper is organized as follows. In
Section II, we briefly review the branch flow model and
its simplifications (linearization). Then, we investigate the
distributed control schemes to conduct voltage regulation
using the linearized branch flow model in Section III. In
this section, we also highlight the role of communication
network on the design. To show the performance of our
proposed scheme for the branch flow model, we first analyze
the performance of the scheme for the linearized model
in Section IV. Based on this analysis, we then show the
convergence guarantee for the non-convex model in Section
V. We verify the performance of the scheme by simulation
in Section VI. Finally, the concluding remarks and future
directions are given in Section VII.
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II. NETWORK MODEL AND ITS SIMPLIFICATIONS

A. Branch Flow Model

We consider a radial distribution system, represented by
a graph G = {N , E}. N is the set of nodes, indexed by
i = 0, · · · , n, where node 0 is the substation. E stands for
the set of distribution lines in the system. The radial structure
allows us to conveniently define the direction of distribution
lines. For each (i, j) ∈ E , node j is the parent of node i.

For each line (i, j), denote its impedance by zi = ri+ixi;
let Ii and Si = Pi + iQi be the complex current and the
complex power flowing from node i to j, respectively. At
each node i ∈ N , we denote its complex voltage by Vi, its
complex power consumption and generation by sdi = pdi +
iqdi , and sgi = pgi + iqgi , respectively.

The branch flow model [12] assumes a given and fixed
voltage V0 at the substation. For notational simplicity, we
define li := |Ii|2, vi := |Vi|2. We also denote the child set
of node i by δ(i). These yield [12]:

Si = sgi − s
d
i +

∑
k∈δ(i)(Sk − (rk + ixk)lk),∀i ∈ N , (1)

vi = vj + 2(riPi + xiQi)− (r2
i + x2

i )li,∀(i, j) ∈ E , (2)

livi = P 2
i +Q2

i ,∀i ∈ N\{0}. (3)

Setting S0 = 0 + i0 enforces the power balance constraint
at the substation: sg0−sd0 is the total net power injection into
the distribution network from the main grid.

B. Simplified Branch Flow Model

In this paper, we first study the voltage regulation problem
in a simplified network model to highlight the structure of
the problem. In Section V, we will show the performance of
the proposed control scheme for the non-convex branch flow
model. We follow [13] and assume that the real and reactive
power losses are much smaller than the power flows. This
simplifies the branch flow model:

Si = sgi − s
d
i +

∑
k∈δ(i) Sk,∀i ∈ N , (4)

vi = vj + 2(riPi + xiQi),∀(i, j) ∈ E . (5)

In order to give a better intuition behind the proposed
control scheme, we further analyze the structure of the
simplified branch flow model. Let us consider a simple
line network, as shown in Fig. 1. Suppose all the voltage
amplitudes are 1 p.u. at time t:

vti = 1 p.u. , and riP ti + xiQ
t
i = 0,∀i.

Suppose there is a disturbance at bus 3, at time t+ 1:

sd,t+1
3 = sd,t3 + ∆P3 + i∆Q3.

Note that, since the generation and consumption at bus 4
and bus 5 remain the same, S4 and S5 remain the same. This
is why in Fig. 2, vt+1

3 = vt+1
4 = vt+1

5 using this model.

𝑟𝑟1 + 𝑖𝑖𝑥𝑥1 𝑟𝑟2 + 𝑖𝑖𝑥𝑥2 𝑟𝑟3 + 𝑖𝑖𝑥𝑥3 𝑟𝑟4 + 𝑖𝑖𝑥𝑥4 𝑟𝑟5 + 𝑖𝑖𝑥𝑥5

node 0          1               2              3               4               5 

Fig. 1: Illustrative example: line network.
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Fig. 2: Voltage profile at time t + 1; all the initial voltage
amplitudes are 1 p.u.

The sudden disturbance at bus 3 will change the power
flows S1, S2, and S3. This will in turn change the relationship
between the three voltage amplitudes:

vt+1
i = vt+1

i−1 − 2(ri∆P3 + xi∆Q3), i = 1, 2, 3. (6)

Remark: This simplified model highlights the structure
of the problem: when there is a disturbance at a certain
node, the power flow in successors of the disturbed node
remains unchanged. Thus, the disturbance will have the same
effect on the voltage amplitude for the successors while the
disturbance will have an ‘escalator’ effect on its ancestors.
Fig. 2 visualizes these effects. These effects will later help
us explain the required communication topology in designing
the distributed control scheme.

III. DISTRIBUTED SCHEME DESIGN

A. Problem Formulation

We conduct the voltage regulation by adjusting the reactive
power through the PV inverters. One natural objective func-
tion is to minimize the total deviations of voltages from their
reference values. Another objective function minimizes the
adjusted reactive power to reflect the inverter operation cost.
Thus, the optimization problem can be casted as follows:

min
qgi

n∑
i=1

(
vi − vrefi

)2

+ β

n∑
i=1

|qgi − q
g,ref
i |

s.t., qg
i
≤ qgi ≤ q̄

g
i ,∀i ∈ N\{0},

Si = sgi − s
d
i +

∑
k∈δ(i) Sk,∀i ∈ N ,

vi = vj + 2(riPi + xiQi),∀(i, j) ∈ E ,

(7)

where β is the trade-off parameter; vrefi and qg,refi are the
reference voltage and the reference (or the initial) reactive
power injection at bus i, respectively.

Instead of having the hard box constraints on qgi , we
introduce the following soft constraint:

fi(q
g
i )

=


2(q̄gi−q

g,ref
i )

π tan
(
qgi−q

g,ref
i

q̄gi−q
g,ref
i

· π2
)
, if qgi ∈ [qg,refi , q̄gi ),

2(qg
i
−qg,refi )

π tan

(
qg,refi −qgi
qg,refi −qgi

· π2

)
, if qgi ∈ (qg,refi , qg

i
),

+∞, otherwise.

As shown in Fig. 3, when qgi − q
g,ref
i is reasonably small,
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Fig. 3: Visualization of fi(qgi ).

f(qgi ) ≈ |qgi − q
g,ref
i |.

Thus, we can directly replace the second term in the objective
function and ignore the box constraints on qgi :

min
qgi

n∑
i=1

(
vi − vrefi

)2

+ β

n∑
i=1

fi(q
g
i )

s.t., Si = sgi − s
d
i +

∑
k∈δ(i) Sk,∀i ∈ N ,

vi = vj + 2(riPi + xiQi),∀(i, j) ∈ E .

(8)

B. Design with Tree Communication Network

Denote the unique path from node 0 to node i by Pi.
Let 0 6∈ Pi, and i ∈ Pi. Denote the Lagrangian multiplier
associated with the ith voltage constraint in (8) by wi. The
Karush-Kuhn-Tucker (KKT) conditions are given by all the
constraints in (8), together with for i = 1, · · · , n:

2(vi − vrefi )− (wi −
∑
j∈δ(i) wj) = 0, (9)

βf ′i(q
g
i )− 2(wixi +

∑
j∈Pi

wjxj) = 0. (10)

These conditions allow us to design the following natural
distributed voltage regulation scheme (the primal dual de-
composition [14]):

Scheme with Tree Communication Network
At each round t, t = 1, 2, · · · , do the following:
Phase 1: from leaves to the root, sequentially compute the
Lagrangian multipliers:

For node i, after receiving all its child(ren) information, it
can compute its own multiplier

wti = 2(vti − v
ref
i ) +

∑
j∈δ(i) w

t
j .

It will send its parent its own multiplier as well as all
information about its child(ren).
Phase 2: from root to leaves, sequentially exchange the mul-
tipliers and conduct the control: for node i, after receiving
all its ancestor information, it can conduct the reactive power
control for the next round

q̂g,t+1
i = f ′−1

i

(
2(wtixi +

∑
j∈Pi

wtjxj)

β

)
, (11)

qg,t+1
i = qg,ti + α

(
q̂g,t+1
i − qg,ti

)
, (12)

where α is the step size. Then, it passes its Lagrangian
multiplier to all the nodes in its child set.
Stopping criteria: given tolerance η > 0,

|qg,t+1
i − qg,ti | < η, ∀i ∈ N .

Remark: Note that after the first phase, no nodes (except the
root) know its parent’s information (multiplier). This is why
we require two sequential processes in the distributed control.
Since the optimization problem is strictly convex, this simple
iterative distributed scheme is guaranteed to converge as long
as a suitable α is selected [14].

C. Design with Complete Communication Network

The distributed control scheme discussed above requires a
tree communication network, which has exactly the same
structure as the radial distribution network. If we have a
different communication network, we may be able to devise
a more efficient distributed control scheme.

For example, suppose we have a complete communication
network. We can combine the two constraints in (8):

vk = v0 +

n∑
i=1

Rki(p
g
i − p

d
i ) +

n∑
i=1

Xki(q
g
i − q

d
i ), (13)

where

Rki := 2
∑
h∈Pk∩Pi

rh, and Xki := 2
∑
h∈Pk∩Pi

xh.

Optimization problem (8) then becomes

min
qgi

n∑
i=1

(
vi − vrefi

)2

+ β

n∑
i=1

fi(q
g
i )

s.t., vk=v0+
∑n
i=1Rki(p

g
i − pdi ) +

∑n
i=1Xki(q

g
i − qdi ).

(14)
Note that problem (14) is not really a constrained opti-

mization problem The constraints simply define how vk’s are
functions of qg = (qg1 , · · · , qgn)T , i.e., vi(qg). In essence,
problem (14) is a unconstrained optimization problem1.
Denote

h(qg) =

n∑
i=1

(vi(q
g)− vrefi )2 + β

n∑
i=1

fi(q
g
i ). (15)

As long as h(qg) is convex (which is straightforward to
verify), the original optimization problem can be solved by
the gradient descent algorithm. The standard gradient descent
algorithm will conduct the following update: at round t, for
each entity i:

qg,t+1
i = qg,ti − αg

t
i , (16)

where

gti =
∂h

∂qgi

∣∣∣∣
qgi =qg,ti

= 2

n∑
k=1

(vtk − v
ref
k )Xki + βf ′i(q

g,t
i ). (17)

This leads to our distributed control scheme with the
complete communication network:

Scheme with Complete Communication Network
At each round t, t = 1, 2, · · · , do the following:

1For comparison, Hauswirth et al. investigate the convergence of gra-
dient descent algorithm for the constrained optimization problem with the
application on solving the optimal AC power flow in an online fashion in
[15].
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Phase 1: each node i measures the local voltage and com-
putes

wti = 2(vti − v
ref
i ).

Then, each node broadcasts the signal to all the other nodes.
Phase 2: each node will update its own reactive power
control signal in a gradient descent way:

qg,t+1
i = qg,ti − α

(
n∑
k=1

wtkXki + βf ′i(q
g,t
i )

)
,

where α is the step size.

Stopping criteria: given tolerance η > 0,

|qg,t+1
i − qg,ti | < η, ∀i ∈ N .

Remark: This is a more efficient distributed control scheme
compared to the scheme with the tree structure communi-
cation network. In this case, we do not need two rounds
of sequential updates. All the nodes can compute the value
they need to communicate (local Lagrangian multiplier) by
local voltage measurements. By exchanging the Lagrangian
multipliers, all the nodes can perform the reactive power
control, which will iteratively solve the problem.

Note that the definitions of Rki and Xki highlight the fact
that when conducting the distributed control, we need to put
more weights on all the ancestors. This is also aligned with
the intuition from Section II-B.

IV. PERFORMANCE IN LINEARIZED MODEL

It is not hard to see that optimization problem (14) is
convex due to the convex objective function and the linear
constraint set. This implies the convergence of the gradient
descent algorithm. However, convexity is not enough for us
to show the convergence of the proposed algorithm in the
non-convex branch flow model. For the subsequent analysis,
we will focus the analysis on the complete communication
network case. And, we prove that the optimization problem
(14) is strongly convex, which implies the geometrically
convergence of the gradient descent algorithm. This serves
as the basis of the analysis for the general network model.

A. Strong Convexity

Definition 1. A differentiable function f is called strongly
convex with parameter m > 0 if the following inequality
holds for all points x, y in its domain:

(∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22, (18)

where ‖x‖2 is the 2−norm of vector x.

It is straightforward to see that the second term in h(qg)
is convex due to the convexity of tangent functions. To show
the strong convexity of h(qg), it suffices to show its first
term (for notational simplicity, denoted by u(qg)) is strongly
convex. Let us start with

∂u

∂qgi
=

n∑
k=1

2(vk − vrefk )
∂vk
∂qgi

= 2

n∑
k=1

(vk − vrefk )Xki. (19)

Thus,

(∇u(qg,1)−∇u(qg,2))T (qg,1 − qg,2)

=

n∑
i=1

2

n∑
k=1

(vk(qg,1)− vk(qg,2))Xki(q
g,1
i − q

g,2
i )

=

n∑
i=1

2

n∑
k=1

n∑
j=1

XkjXki(q
g,1
j − q

g,2
j )(qg,1i − q

g,2
i )

=2

n∑
k=1

 n∑
i=1

n∑
j=1

XkiXkj(q
g,1
j − q

g,2
j )(qg,1i − q

g,2
i )


=2

n∑
k=1

(
n∑
i=1

Xki(q
g,1
i − q

g,2
i )

)2

≥ γ‖qg,1 − qg,2‖22,

where

γ := 2

(
n∑
k=1

min
i
Xki

)
. (20)

Note that, in the branch flow model, we assume the voltage
level at the substation is given and fixed. Therefore, if the
root 0 has multiple children, they are naturally decoupled by
this assumption. This allows us to focus on the case where
root 0 has only one child. In this case, for all k, miniXki ≥
x1 > 0. Thus, γ ≥ 2nx1 > 0. This yields

(∇u(qg,1)−∇u(qg,2))T (qg,1 − qg,2) ≥ γ‖qg,1 − qg,2‖22
Note that the derivative of fi is not well-defined at qg,refi .
Thus, we define

∂fi
∂qgi

∣∣∣∣
qgi =qg,refi

= 0

to make fi is differentiable everywhere.
Together with the convexity of the second term in h(qg),

we have the strong convexity of problem (14):

(∇h(qg,1)−∇h(qg,2))T (qg,1 − qg,2) ≥ γ‖qg,1 − qg,2‖22
B. Convergence Speed

Theorem 2. The update rule xt+1 = xt−αgt in the gradient
descent algorithm (with step size α) to find the optimum x∗

of strongly convex function f(x) with parameter m, satisfies
for any t = 1, · · · , T ,

‖xt−x∗‖22 ≤ (1− 2αm)t−1‖x1−x∗‖22 +
α

2m
max

1≤k≤t
‖gk‖22.

In particular, xt converges to x∗ geometrically with system-
atic error α

2m max1≤k≤t ‖gk‖22.

The proof is given in the Appendix. The geometrical con-
vergence speed allows us to show the performance guarantee
in the non-convex branch flow model.

V. PERFORMANCE IN BRANCH FLOW MODEL

In this section, we will prove the convergence guarantee of
our proposed distributed control scheme for the non-convex
branch flow model. The proof is inspired by [16], and is
based on the analysis in the previous section. Again, we
focus on the complete communication network case.
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Fig. 4: Distributed control on real system.

As shown in Fig. 4, we will directly employ the gradient
descent distributed control. However, note that, after each
entity has applied its control action qgi , the voltage levels
will change according to the physical laws, instead of the
branch flow model or the linearized model. Between these
two models, the branch flow model is a more accurate
representation of the flows and the voltages. However, it
defines a non-convex constraint set, which may lead to
many local optima. It is a common assumption that the
performance of any local optimum and that of the global
optimum are very close. Bearing this assumption in mind,
in this section, we show that our distributed scheme will
converge to some local optimum with bounded error. We
will also verify this assumption with simulation.

A. Convergence Guarantee

The most critical challenge in the convergence analysis is
that in the branch flow model, the gradient is more complex
than that in (17). More importantly, in practice, even the
branch flow model is an approximation. That is, if we use
the measured voltage to compute the gradient, it is not the
gradient for the optimization problem (14).

Denote the true gradient for problem (14) by gt, and the
actually implemented gradient by ĝti , we have

ĝt = gt + εt, (21)

where εt takes into account all the disturbances and can be
either positive or negative. With these, we can prove the
following theorem (proof is given in the Appendix):

Theorem 3. The update rule qt+1 = qt − αĝt satisfies for
any t = 1, · · · , T,

‖qt − q∗‖22

≤(1− 2αγ)t−1‖q1 − q∗‖22 +
1

γ
max

1≤k≤t
‖εk‖‖qk − q∗‖

+
α

2γ
max

1≤k≤t
‖gk + εk‖22.

In particular, qt converges to q∗ (any local optimum) geo-
metrically with systematic error 1

γ maxk ‖εk‖‖qk − q∗‖ +
α
2γ maxk ‖gk + εk‖22.

Remark: The systematic error can be very small. Note that
γ ≥ 2nx1, which grows linearly in the number of nodes.
Another important factor in deciding this error is ‖εt‖2. We
use simulations to test its magnitude in the next section. It
is worth noting that because we choose to use the tangent
barrier function, the magnitude of gradient g might be very
large if the optimum is near the boundary. One way to solve
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Fig. 5: Test feeder: all parameters are given in p.u.
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Fig. 6: Impact of step size on convergence speed.

this issue could be to use a vanishing step size sequence
{αt}∞t=1, which satisfies the following two conditions:∑∞

t=1 α
t =∞, (22)∑∞

t=1(αt)2 <∞. (23)

VI. SIMULATION RESULTS

To verify the performance of our scheme, we conduct
simulations on the prototype IEEE 34-node feeder system,
as shown in Fig. 5 (simplified to 11-node system in [4],
original system proposed in [17]). We assume that six nodes
have the capability of conducting voltage regulation. The
capability may come from a large PV farm, or a collection of
rooftop PV panels (possibly controlled by a local aggregator).
The communication is between all the nodes, since we
want to ensure the desired voltage profile across the system.
The line characteristics are given in Table I. The reference
reactive power generations (qg,refi in the formulation, or the
initial reactive power generation in practice) at all the six
controllable nodes are set to be zero. The box constraints on
the qgi ’s are set to be within [-3.6, 3.6] p.u. We choose 0.001
for parameter β.

In the simulation, we choose the stopping tolerance η to
be 0.0001. Figure 6 shows the number of iterations required
to converge for different step sizes. It is straightforward to
see that a too small step size will inevitably require more
iterations to converge. A too large step size, on the other

TABLE I: Line Characteristics (×10−3 p.u.)

Line 1 2 3 4 5 6 7 8 9 10
r 3.5 4.5 1.5 1 1 3 2.5 2 1.5 1.5
x 7.5 8 2.5 2.5 2 7.5 6 4 3.5 2

TABLE II: Optimal Points Comparison

α
voltage (node) control action (node)

1 5 9 2 5 9
0.05 1.0065 1.0159 0.9817 0.4677 0.6858 1.1956
0.3 1.0068 1.0170 0.9848 0.4401 0.6690 1.2497
0.8 1.0030 1.0103 0.9920 0.0116 0.3406 1.6662
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model.

hand, may cause oscillations around the optimum and hence
also require more iterations. In our setting, a step size of
0.3 achieves the minimal iteration number of 145. Figure 7
further verifies that our distributed voltage regulation scheme
convergences geographically in the stopping tolerance η.

We exemplify the optimal points achieved by different step
sizes in Table II. It is interesting to note that although the
final voltage profiles are almost identical, the reactive power
control profiles (i.e., qgi ’s) can be quite different. On the
one hand, this highlights the non-convexity of the problem
when using the branch flow model. On the other hand, this is
largely because we choose a very small trade-off parameter
β, which means that even with very diverse reactive control
profiles, the objective values at different local optima can
be very close. We visualize the contour of the optimization
problem with branch flow model in Fig. 8 (with only two
controllable PV farms, at node 2 and node 6 respectively).
The global minimum lies within the dark blue circle in the
lower right corner. However, all the points within this circle
have very similar objective values. With a sampling rate of
0.01, the difference is at most on the order of 10−5. This is
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Fig. 9: Voltage profile: initial v.s. after control.

20 40 60 80 100 120 140

Iteration

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

V
ol

ta
ge

 P
ro

fil
e 

p.
u.

Node 1
Node 4
Node 6
Node 10

Fig. 10: Voltage profile evolution during iteration.
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also true for the points within the other sparsely distributed
dark blue circles. In other words, the function is very flat
around the global optimum. This implies that many points
in these areas can be regarded as the local minimum in our
approach. This explains why it is possible that two local
minima can have very diverse control actions. It is worth
noting that for better visualization, Fig. 8 only shows the
contour of the optimization problem with two controllable
PV farms. With more PV farms, the optimization problem
will become more non-convex, and will not have such a nice
structure.

Figure 9 shows the initial voltage profile with no reactive
power control by the PV generators and the voltage profile
after the application of the distributed control. Obviously,
the distributed control scheme pushes the voltage profile to
within the limits. Figure 10 further illustrates the voltage
profile evolution at selected nodes. There is no obvious
oscillations and all the voltages are moving towards their
reference values (1 p.u. in our simulation).

We also examine the error between the gradient for
problem (14) and the actually implemented gradient, i.e.,
‖εt‖2’s. Figure 11 illustrates that this error approaches a
small constant (0.08) after several initial iterations.

VII. CONCLUSIONS

In this paper, we devise a distributed framework to con-
duct voltage regulation in the distribution network. In the
framework, we exploit the reactive power control potential
offered by the inverters of the PV panels. We further prove
the convergence guarantee of our scheme for the branch flow
model and characterize the systematic error (in particular, the
gradient error ‖εt‖2) brought by the non-convexity.
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Though promising, much remains unclear. For example, it
is not straightforward to extend our scheme to conduct volt-
age regulation with joint active and reactive power control.
Technically, this is more challenging due to the coupling
constraints of the real and reactive power. Practically, this
is more challenging because we want to exploit the most
reasonable cost function for adjusting real power. We plan
to include net metering, profits by participating demand
response, and the operational cost in the cost function.

Another interesting aspect of the research is the incentive
issue. We have focused on the problem from a social plan-
ner’s perspective and ignore the market design in this paper.
A number of recent works (including [18], [19]) illuminate
the major opportunities and challenges in designing the
market for joint frequency and voltage regulation in the
distribution network.

VIII. APPENDIX

A. Proof for Theorem 2

‖xt+1 − x∗‖22 = ‖xt − αgt − x∗‖22
=‖xt − x∗‖22 − 2α(gt)T (xt − x∗) + α2‖xt‖22
≤‖xt − x∗‖22 − 2αm‖xt − x∗‖22 + α2‖gt‖22
≤(1− 2αm)t‖x1 − x∗‖22

+ α(1− (1− 2αm)t)/2m max
1≤k≤t

‖gk‖22

≤(1− 2αm)t‖x1 − x∗‖22 + α/2m max
1≤k≤t

‖gk‖22.

(24)

The first inequality utilizes the fact that f(x) is strictly
convex, with parameter m. The last two inequalities are
standard manipulations.

B. Proof for Theorem 3

This proof aligns with that of Theorem 2.

‖qt+1 − q∗‖22 = ‖qt − αĝt − q∗‖22
=‖qt − α(gt + εt)− q∗‖22
=‖qt − q∗‖22 − 2α(gt + εt)T (qt − q∗) + α2‖gt + εt‖22
≤‖qt − q∗‖22 − 2αγ‖qt − q∗‖22
− 2α(εt)T (qt − α− q∗) + α2‖gt + εt‖22

≤(1− 2γα)t‖q1 − q∗‖22
+ (1− (1− 2γα)t)/γ max

1≤k≤t
|(εk)T (qk − q∗)|

+ α(1− (1− 2γα)t)/2γ max
1≤k≤t

‖gk + εk‖22

≤(1− 2γα)t‖q1 − q∗‖22 + 1/γ max
1≤k≤t

‖εk‖‖qk − q∗‖

+ α/2γ max
1≤k≤t

‖gk + εk‖22.
(25)

Again, the first inequality utilizes the fact that h(q) is
strictly convex. The last inequality uses the Cauchy-Schwarz
inequality.
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