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Abstract

Valiant has proposed a new theory of algorithmic com-
putation based on perfect matchings and Pfaffians. We
study the properties of matchgates—the basic building
blocks in this new theory. We give a set of algebraic iden-
tities which completely characterizes these objects for ar-
bitrary numbers of inputs and outputs. These identities
are derived from Grassmann-Plücker identities. The 4 by
4 matchgate character matrices are of particular interest.
These were used in Valiant’s classical simulation of a frag-
ment of quantum computations. For these 4 by 4 match-
gates, we use Jacobi’s theorem on compound matrices to
prove that the invertible matchgate matrices form a multi-
plicative group. Our results can also be expressed in the
theory of Holographic Algorithms in terms of realizable
standard signatures. These results are useful in establishing
limitations on the ultimate capabilities of Valiant’s theory of
matchgate computations and Holographic Algorithms.

1 Introduction

Recently Valiant [12] has introduced a new method of de-
signing algorithms based on perfect matchings and Pfaffi-
ans. The basic building blocks in this new theory are called
matchgates. Each matchgate defines a character matrix,
with entries defined in terms of the Pfaffian, which captures
the properties of the matchgate under the consideration of
(perfect) matchings when certain input and/or output nodes
are retained or removed. (Formal definitions will be given
in the next section.)

These matchgates can be combined to form matchcir-
cuits. Certain global properties of these matchcircuits can
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be interpreted as realizing computations which, prima facie,
take exponential time. However, due to the way the match-
circuits are constructed and the algebraic properties of the
Pfaffian, these properties can actually be computed in poly-
nomial time in the size of the matchcircuit. The crucial ob-
servation behind this is a compositional theorem, which is
algebraic in nature, and states that the product of the charac-
ters of two constituent matchgates is the character of a com-
posite matchgate. Matchcircuits represent a new algorith-
mic method to construct polynomial time algorithms per-
forming certain seemingly exponential time computations.
Valiant [12] used these matchcircuits to show that a non-
trivial, though restricted, fragment of quantum circuits can
be simulated classically in polynomial time. It is not clear
at the moment what is the class of all quantum circuits that
can be simulated classically in this framework. More gen-
erally it is not clear what are the ultimate capabilities and
limitations of this new class of algorithms.

Subsequently, Valiant [13] further introduced the notion
of Holographic Algorithms. This theory is also based on
matchgates, but with the additional ingredient of a choice of
a set of linear basis vectors, through which the computation
can be expressed and interpreted. In this theory the match-
gates used are restricted to be planar matchgates. Instead of
a character matrix, a planar matchgate is associated with a
signature. The computation is ultimately carried out by the
elegant FKT method [6, 7, 10]. Valiant obtained polynomial
time holographic algorithms for a number of problems, mi-
nor variations of which are NP-hard. The new algorithms
in this framework are quite exotic, e.g., in [16] a certain re-
stricted counting problem for SAT is shown be #P-hard and
its mod 2 version is ⊕P-hard, and yet its mod 7 version is
solvable in P by holographic algorithms. Again the ultimate
capabilities and limitations of holographic algorithms are
not clear at this time. It is precisely this uncertainty that is
most exciting to us.

Will this new algorithmic paradigm lead to a collapse
of complexity classes? The kinds of algorithms that are
produced by matchgate computations are quite unlike any-
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thing before (aside from quantum algorithms). Valiant sug-
gested [13], “any proof of P �= NP may need to explain, and
not only to imply, the unsolvability” of NP-hard problems
using this approach. Our paper is a systematic investiga-
tion of the capabilities and limitations of the basic building
blocks of this theory, namely the matchgates.

It turns out that there is a rich internal structure to the
matchgates as expressed by the algebraic properties of Pfaf-
fian. In [12, 11], Valiant has found 5 equations, called
matchgate identities, which are necessary conditions for all
4 by 4 matchgate characters. With a slight restriction, these
5 matchgate identities are also sufficient for the case of 4
by 4 characters. The paper [8] also discusses matchgates as
related to quantum computing. The 4 by 4 matchgate char-
acters are important because they are used in the simulation
of quantum circuits.

The main results of this paper are concerned with this
internal structure, and provide a fairly complete picture
of general matchgates. The aim of this paper is theory-
building, not problem solving. We believe a solid founda-
tion for the theory is needed to obtain further positive, and
more importantly, negative results.

We state our main findings. It turns out that matchgates
of every size form an algebraic variety. We first find a sym-
metry as realized by a group action on the rows and columns
of the 4 by 4 character matrices, and express matchgate
identities in terms of determinantal minors. Then we find
a total of 10 matchgate identities. We prove that they con-
stitute a complete set of matchgate identities for 4 by 4 char-
acters. Then we use Jacobi’s theorem on compound matri-
ces to prove that the invertible 4 by 4 matchgate matrices
form a multiplicative group. That it is closed under matrix
multiplication is used in [12] as the basis for the quantum
simulation. Here we prove that if the character matrix is
invertible, its inverse is also the character matrix of some
matchgate.

More importantly we give results for general matchgates.
We define matchgate identities for matchgates with arbi-
trary k-inputs and l-outputs. Then we show that a set of
useful Grassmann-Plücker identities [11] gives a complete
set of matchgate identities for any general matchgate.

Combined with results from [1], these characterizations
also apply to planar matchgates and their (standard) signa-
tures in the holographic algorithm framework. These have
been used as a foundation in the investigation of matchgrid
computations and holographic algorithms [4, 5]. In partic-
ular we include here a characterization of symmetric signa-
tures, which follows from these matchgate identities.

Our results have important implications for both upper
and lower bounds. By definition, even with a fixed number
of input and output nodes, a matchgate may consist of an ar-
bitrarily large number of internal nodes. Thus one can prove
the existence of a matchgate fulfilling certain computational

requirements by construction. But one cannot prove in this
way the non-existence of such a matchgate. An interesting
consequence of our proof is that when a required match-
gate exists, it can be realized by a weighted complete graph
consisting of essentially the external nodes plus at most one
omittable node. Thus the design of a required matchgate
boils down to the choice of

(
k+l
2

)
weights, where k and l are

the numbers of input and output nodes. This makes it fea-
sible both to search, and in case of non-existence to prove
that this is so. The first negative results (lower bounds) in
this area all rely on this result [1, 16] (a preliminary ver-
sion of this paper appeared as ECCC TR06-018.) In [1] we
used results here to give non-existence theorems for certain
holographic algorithms. In a paper titled “Accidental Al-
gorithms” [16] Valiant showed a surprising mod 7 counting
problem solvable in P, as well as some lower bounds for
certain Satisfiability problem using holographic algorithms.
The lower bound proof relies on the results proved here.
In [3] we show, using results developed here and in [1], that
mod 7 is the only modulus for which Valiant’s “Accidental
Algorithm” exists for that problem. In [4, 5], the charac-
terization theorems of general matchgates developed in this
paper, namely Matchgate Identities, are also used in an es-
sential way. The results presented here serve as a foundation
for an in-depth study of the rich theory of matchcircuit and
holographic algorithms.

2 Background

Before we can describe our results, we will require quite a
few definitions. Most of these definitions have been intro-
duced by Valiant in [12, 13, 11]. We will give a brief recap
here.

We will be dealing with weighted undirected graphs
G = (V, E, W ), which are represented by skew-symmetric
adjacency matrices M . The Pfaffian of an n × n skew-
symmetric matrix M is a polynomial function computable
in polynomial time, satisfying (Pf(M))2 = det(M). We
assume the reader is acquainted with Pfaffians and Pfaf-
fian Sums; otherwise please take a brief look at the first
section of Appendix. We omit the definitions of Pfaffians
and Pfaffian Sums here, and our recap of other definitions
is brief. We remark that the use of Pfaffian Sums is only
needed when one allows the so-called omittable nodes. For
the most part one can ignore this complication, and consider
only matchgates without omittable nodes and consequently
no Pfaffian Sums, but only Pfaffians.

2.1 Grassmann-Plücker Identities

Let M be a skew-symmetric matrix, and A = {i1, . . . , ir}
where i1 < . . . < ir. PfM (i1, . . . , ir), or when M is clear
from the context, simply Pf(i1, . . . , ir) or Pf(A), is defined
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as the Pfaffian of the matrix obtained by restricting M to
rows and columns present in A, namely i1, . . . , ir. When
the set notation A is used, we implicitly assume the indices
are in increasing order. If i1, . . . , ir are not in increasing
order, the sign will vary according to the parity of the per-

mutation

(
1 2 . . . r
i1 i2 . . . ir

)
, e.g., PfM (i2, i1, . . . , ir) =

−PfM (i1, i2, . . . , ir) and so on. If i1, i2, . . . , ir are not all
distinct, then PfM (i1, . . . , ir) is defined to be zero. The
notation PfM [i1, . . . , ir] will denote the Pfaffian after re-
moving the rows and columns of {i1, . . . , ir}. Note that
PfM [i1, . . . , ir] is the same as Pf(M [A]), where M [A] de-
notes the matrix M with rows and columns from A re-
moved. Also, in the index list, we denote by î, the omission
of index i. For example, Pf(1, 2, 3̂, 4, 5) = Pf(1, 2, 4, 5)
etc.

The following theorem states the Grassmann-Plücker
(GP) identities.

Theorem 2.1. [9] For any n × n skew-symmetric ma-
trix M , and for any I = {i1, . . . , iK} ⊆ [n] and J =
{j1, . . . , jL} ⊆ [n], the following is called the Grassmann-
Plücker identity (generated by I and J),

0 =
L∑

l=1

(−1)lPf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL)

+
K∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL). (1)

We will use the notation Pf(t ◦ I) to denote the Pfaffian
Pf(t, i1, . . . , iK), assuming I = {i1, . . . , iK} is listed in
increasing order.

2.2 Matchgates and Matchcircuits

A matchgate Γ is a quadruple (G, X, Y, T ) where G =
(V, E, W ) is a graph, X ⊆ V is a set of input nodes,
Y ⊆ V is a set of output nodes, and T ⊆ V is a set of
omittable nodes such that X, Y and T are pairwise disjoint,
and ∀i ∈ T , if j ∈ X then j < i and if j ∈ Y then j > i.
We call the set X ∪ Y the external nodes. Furthermore,
each external node is assumed to have exactly one incident
external edge. For nodes in X , the other end point of the
external edge is assumed to have index less than any node
in V and for nodes in Y , the other end point has index more
than any node in V . The allowed matchings will be those
that saturate all the unomittable nodes and also an arbitrary
(possibly empty) subset of T . Whenever we refer to the
Pfaffian Sum (denoted by PfS) of a matchgate fragment,
we assume that λi = 1, if i ∈ T , and 0 otherwise (See the
definition of Pfaffian Sum in the Appendix). We say that a
matchgate Γ has normal numbering if the numbers of nodes

in V are consecutive from 1 to |V | and X, Y have minimal
and maximal numbers, respectively.

For Z ⊆ X ∪ Y , the character χ(Γ, Z) of Γ with re-
spect to Z is defined to be the value µ(Γ, Z)PfS(G − Z),
where G − Z denotes the graph obtained after deleting the
vertices in Z together with their incident edges from G and
the modifier µ(Γ, Z) ∈ {−1, 1} counts the parity of the
number of overlaps between matched edges in G − Z and
matched external edges. Here, the nodes in Z are assumed
to be matched externally. Since the index numbers of input
nodes are always less than any omittable node and those of
output nodes always greater, it can be shown that the mod-
ifier is well-defined as it depends only on Z and not on the
actual matchings in G − Z .

The character matrix χ(Γ) is defined to be the 2|X|×2|Y |

matrix where rows are indexed by subsets X ′ ⊆ X and
columns by subsets Y ′ ⊆ Y and the entries are χ(Γ, Z) for
various Z = X ′ ∪ Y ′. To define the ordering of the rows
and columns of this matrix precisely, we need to define a
1-1 correspondence between subsets of X (and respectively
subsets of Y ) and the rows (and respectively columns) of
the matrix. Here, we assume that the character matrices
are normally ordered i.e. rows and columns are indexed by
binary bit strings of length |X | and |Y | respectively, and
they correspond to subsets in lexicographic order. Consider
an entry (i, j) of χ(Γ), where 0 ≤ i < 2|X| and 0 ≤ j <
2|Y |. The subset X ′ ⊆ X corresponding to i is obtained
as follows. If v ∈ X is the mth smallest input vertex, then
v ∈ X ′ iff the mth bit from the right in the binary expansion
of i is 1. Similarly, the mth largest output vertex is in Y ′

iff the mth bit from the right in j is 1. And Z = X ′ ∪
Y ′. E.g., if X = {1, 2} and Y = {n − 1, n}, where n =
|V | is the number of vertices in Γ. Then the ordering of
rows is ∅, {1}, {2}, {1, 2}, and the ordering of columns is
∅, {n}, {n− 1}, {n− 1, n}.

A matchcircuit is a way of combining matchgates us-
ing connecting edges. Informally, all inputs/outputs of con-
stituent matchgates have an external edge. The external
edges are connected to each other with an odd number of
connecting edges. The matchgates are arranged in a layered
fashion from left to right where the connecting edges sep-
arate these layers. The edges above or below a matchgate
are referred to as parallel edges. The attachment of mod-
ifiers to a character is to ensure that all “overlaps” in the
evaluation of the Pfaffian of the entire matchcircuit works
out properly. Figure 2 shows a typical matchcircuit. We do
not present the detailed definition here because we won’t be
dealing too much with matchcircuits. Note that the relative
ordering of all the vertices are carefully placed in a layered
matchcircuit, and is schematically depicted in Figure 2 as
well as in Figure 1. In Figure 1, one can verify that ev-
ery edge on the top line outside of the matchgates Γ1, Γ′

and Γ4 (there are 16 of them) always incurs collectively an
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even number of overlaps with all such edges from the bot-
tom line, except those 2 parallel edges above Γ2 and Γ3 (see
Theorem 3.2). We refer the reader to [12] for a more formal
definition. The character of a matchcircuit is defined in the
same way as the character of a matchgate except that there
is no modifier µ as we do not consider the matchcircuit it-
self to have any external edges. Another difference is that
1 and 0 have opposite meanings with respect to deletion of
external nodes in matchgates and matchcircuits.

In [13] Valiant also introduced planar matchgates in the
framework of holographic algorithms. A planar matchgate
Γ with m external nodes comes with a planar embedding,
where the external nodes are ordered counter-clockwise on
the external face. For a planar matchgate Γ with m external
nodes, we assign a standard signature which has 2m entries

Gi1i2...im = PerfMatch(G − Z),

where PerfMatch(G − Z) =
∑

M

∏
(i,j)∈M wij , is a sum

over all perfect matchings M in G − Z , and Z is the sub-
set of removed external nodes having the characteristic se-
quence χZ = i1i2 . . . im. (If there are omittable nodes in
Γ they must be on the external face, and then the sum over
M may range over matchings which saturate all the unomit-
table nodes.) PerfMatch is called the perfect matching poly-
nomial.

In many ways, the definitions for planar matchgates and
signatures are more intuitive than general matchgates and
characters. It is a remarkable fact proved in [1] that these
two categories of objects are essentially the same. Planar
matchgates and signatures have seen more research activi-
ties; but this does not render the character theory useless. In
fact the only way we know how to prove the fundamental
structural properties of signatures is through results of this
paper, in terms of the character theory with Pfaffians. Also
certain constructions of planar matchgates and signatures
are known to exist (by our general theory) and are explicitly
known only via the proof of the general realizability theo-
rem in this paper (followed by transformations from [1]). In
short, what we prove here for matchgates and characters ap-
ply to planar matchgates and standard signatures, and that
is the only known proof route for these theorems on signa-
tures.

3 2-input 2-output Matchgates

3.1 Complete Set of Identities

In [11], Valiant presented a set of five equations on the en-
tries of the character matrix of 2-input, 2-output matchgates.
These were called matchgate identities. (In the explicit list-
ing of Valiant’s equations, we will retain Valiant’s notation
and number the rows and columns of the 4 by 4 character

matrix from 1 to 4, instead of 0 to 3 written in binary bits 00
to 11, as from Sec. 2.2.) It was shown that the character of
every 2-input, 2-output matchgate satisfies these equations.
Furthermore, if a matrix B satisfies all these identities and
an additional constraint, namely B44 �= 0, then there is a
matchgate having character B.

Let Γ be a 2-input, 2-output matchgate having charac-
ter B. Assume that the matchgate is normally numbered
and its character is normally ordered. Then Valiant’s five
matchgate identities are quoted as follows [11]:

B11B44 − B22B33 − B14B41 + B23B32 = 0
B21B44 − B22B43 − B41B24 + B23B42 = 0
B31B44 + B33B42 − B41B34 − B32B43 = 0
B13B44 + B33B24 − B14B43 − B23B34 = 0
B12B44 − B22B34 − B14B42 + B32B24 = 0

It turns out that there are interesting symmetries buried
in this set of identities. For example, B11B44 − B14B41

is the determinant of the submatrix of B obtained by re-
moving rows and columns 2 and 3. And the first matchgate
identity asserts that this is equal to the minor of B at rows
and columns 2 and 3.

We will express this in a more compact notation. De-
note by D(ij, kl) the determinant of the 2 × 2 submatrix
of B consisting of rows i and j, and columns k and l, i.e.,
D(ij, kl) is the following determinant, where i < j and
k < l, ∣∣∣∣ Bik Bil

Bjk Bjl

∣∣∣∣
We note that all five identities above can be written as the

determinant of a 2×2 matrix being equal to the determinant
of another 2×2 matrix. These matrices are (not necessarily
contiguous) sub-matrices of the character matrix. In this
notation, we can write the identities above as

D(14, 14) = D(23, 23) D(24, 14) = D(24, 23)
D(34, 14) = D(34, 23) D(14, 34) = D(23, 34)
D(14, 24) = D(23, 24)

The symmetry is as follows: We consider the set
of
(
4
2

)
unordered pairs of {1, 2, 3, 4}, denoted by S =

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. An involu-
tion ρ flips the pair {1, 4} and {2, 3}, and leaves everything
else fixed. Thus ρ is the permutation( {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}
)

In terms of this ρ, the above five identities can all be
written as

D(p, q) = D(ρ(p), ρ(q)),
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where the ordered pair (of unordered pairs) (p, q) =
(14, 14), (24, 14), (34, 14), (14, 34) and (14, 24), respec-
tively.

It turns out that we may apply the permutation ρ to
any ordered pair (p, q), where p, q ∈ S. In order that
(ρ(p), ρ(q)) is not identical to (p, q), (lest we get a trivial
statement,) we must have at least either p or q (or both)
equal to {1, 4} or {2, 3}. In terms of a permutation group,
we have an action by the involution ρ× ρ on the set S × S,
which has 10 non-trivial orbits of two elements each (and
16 fixed points).

This suggests that there are 10 matchgate identities. It
turns out that indeed one can prove these 10 matchgate iden-
tities are all valid for all 2-input 2-output matchgates. The
proof uses the Grassmann-Plücker identities and is omitted
here. Here are the 5 additional identities:

D(12, 14) = D(12, 23) D(13, 14) = D(13, 23)
D(14, 12) = D(23, 12) D(14, 13) = D(23, 13)
D(14, 23) = D(23, 14)

More succinctly,

D(p, q) = D(ρ(p), ρ(q)), (2)

for any (p, q) ∈ S × S.

Theorem 3.1. If B is the character matrix of a 2-input 2-
output matchgate over any field F , then B satisfies the 10
matchgate identities.

Now we show the completeness of these identities.
(From now on, it will be more convenient to use binary
bit strings to index rows and columns as stated in Sec. 2.2.
Thus, in the next Theorem, rows and columns are indexed
from 0 = 00 to 3 = 11.)

Theorem 3.2. Let B be a 4× 4 matrix over a field F satis-
fying the 10 matchgate identities. Then there exists a match-
gate Γ such that χ(Γ) = B.

Proof. The main idea of this proof is simple. If B is iden-
tically 0 then it is trivially realizable. If B11,11 �= 0, we
can use the proof from [12]. If B11,11 = 0 but some other
entry is not 0, then we try to transform B to B′ such that
B′

11,11 �= 0, while still satisfying all the 10 matchgate iden-
tities. The proof below is not the most efficient for this spe-
cial case of 4 by 4. But this method can be generalized to
prove Theorem 4.2.

Our general technique is to compose matchgates to form
a matchcircuit, which is then transformed into a matchgate
that realizes the given matrix.

We assume B is not the zero matrix, and suppose Brc �=
0. Let r be written as a binary bit string in {0, 1}2. Let r =
r⊕ 11 be the bit-wise XOR of r with 11. Define a bijection
αr : {0, 1}2 → {0, 1}2, which maps x �→ x ⊕ r. It is clear

that αr(r) = 11, and αr is an involution, i.e., αr = α−1
r .

Also its action on any bit of x is independent of other bits.
Let αc be similarly defined in terms of c ∈ {0, 1}2. Let B′

be the matrix obtained after applying the transformations αr

and αc, respectively, to the (indices of) rows and columns
of B. We now have, B′

11,11 �= 0. Since αr and αc are their
own inverses, applying them to B′ yields B.

It can be verified (essentially because the actions of ρ
and that of αr and of αc commute) that the above set (2)
of matchgate identities is invariant under any such trans-
formation. If B satisfies the matchgate identities, then so
does B′. From the construction in [12] there is a match-
gate Γ′ that realizes B′. Now to construct the matchgate Γ
to realize B, we first make a matchcircuit Γ′′ with charac-
ter matrix B as shown in Figure 1. Each of the matchgates
Γ1, Γ2, Γ3, Γ4 is either Γ(1) or Γ(2), defined below, depend-
ing on whether that bit of r (or c) is 1 or 0. All the par-
allel edges above any gate equal to Γ(2) are given weight
−1. (This factor of −1 is needed to compensate for an odd
number of overlaps.) Here, Γ(1), Γ(2) are 1-input, 1-output
matchgates where Γ(1) simply “transmits” its input and Γ(2)

“flips” its input. The character matrix of Γ(1) is the identity

matrix and the character matrix of Γ(2) is

(
0 1
1 0

)
. More

concretely, Γ(2) consists of a single edge of weight 1; Γ(1)

consists of a path of 2 edges each of weight 1.

The Main Theorem in [12] (the basis for the quantum
simulation) can be extended to prove the Extended Main
Theorem, given in the Appendix. It can be verified that the
construction here satisfies the conditions of the Extended
Main Theorem. Therefore, the character matrix of this
matchcircuit is the product of the character matrices of the
five constituent matchgates, each extended to two inputs,
two outputs. (Here “extending” a one-bit matchgate to two
bits means algebraically a tensor product with the 2 by 2
identity matrix.) This product is B. To see that, we look
at the matchcircuit in a slightly different way. The overall
action of the matchcircuit on its inputs is the composition of
the actions of the matchgates. The action of Γ′ is described
by B′. Therefore, the character matrix of Γ′′ is B.

Now the matchgate Γ is obtained by deleting the input
and output nodes of the matchcircuit and the edges incident
to them. The new leftmost/rightmost nodes are now consid-
ered as input/output nodes. The edges that we deleted have
no overlap among themselves, and they are now considered
as external edges of the matchgate Γ. Recall that 1 and 0
have opposite meanings with respect to deletion of external
nodes in matchgates and matchcircuits, and since match-
gates are assumed to have external edges while matchcir-
cuits don’t, the character of Γ is exactly the same as that of
Γ′′. Hence Γ realizes B.
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3.2 Group Property

We show that the subset of invertible character matrices
of two input, two output matchgates forms a multiplica-
tive group. It is relatively easy to see that the product of
two character matrices is itself a character matrix [12] by
composing two matchgates in sequence. The composed
matchgate has the product matrix as its character matrix,
because enumerating all (perfect) matchings in the com-
posed matchgate is precisely reflected by matrix multipli-
cation. This is an essential ingredient in Valiant’s classical
simulation of a fragment of quantum computation. Here we
prove a more surprising result that the inverse of a character
is also a character. We hope that this will provide a better
understanding of the scope of what is computable by these
matchgates, including the scope of quantum operations they
can simulate.

Let A be an m×n matrix. A minor of order k of A is the
determinant of a k by k submatrix of A. The kth compound
matrix of A is a matrix A[k] of order

(
m
k

) × (nk), where we
arrange all the minors of A of order k in lexicographic order.

The matchgate identities have an elegant expression in
terms of the compound.

Theorem 3.3. If B is a 4 × 4 character matrix of a match-
gate, then the matchgate identities state precisely that B[2]

is invariant under the following operation: simultaneously
interchange row 3 with row 4 and column 3 with column 4.

Proof. The relevant rows and columns are illustrated below.
The proof follows from the matchgate identities.

2
666664

D(12, 14) D(12, 23)
D(13, 14) D(13, 23)

D(14, 12) D(14, 13) D(14, 14) D(14, 23) D(14, 24) D(14, 34)
D(23, 12) D(23, 13) D(23, 14) D(23, 23) D(23, 24) D(23, 34)

D(24, 14) D(24, 23)
D(34, 14) D(34, 23)

3
777775

Theorem 3.4. Let B be a 4 × 4 matrix over a field F that
satisfies the matchgate identities. Suppose that B is invert-
ible. Then B−1 also satisfies the matchgate identities.

We omit the proof here, which uses Jacobi’s Theorem on
compound matrices. (It is also possible to give a brute force
verification by computer algebra, using the results from the
previous section that the 10 matchgate identities are neces-
sary and sufficient.)

In case when B is not an invertible matrix, we have the
following:

Corollary 3.1. Let B be a 4 × 4 matrix over a field F that
satisfies the matchgate identities. Then adj(B) also satisfies
the matchgate identities.

4 General Matchgates

We now move on to general k-input, l-output matchgates.
Specifically, our goal is to find out whether there is a set
of equations that completely characterizes the characters of
general matchgates, just like the 10 equations we obtained
for 2-input, 2-output matchgates.

Basically, what we aim to prove is that the GP identi-
ties characterize all the character matrices. But we have to
be careful. There are various kinds of Pfaffians that occur in
the GP identities. In particular, there are Pfaffians of subma-
trices obtained by deleting rows and columns corresponding
to some internal nodes of the matchgate. These Pfaffians do
not correspond to any entries of the character matrix. We
have to carefully choose the identities that we want to clas-
sify as matchgate identities for general matchgates.

Consider a normally numbered, normally ordered k-
input, l-output matchgate Γ having n ≥ k + l vertices. We
will only consider matchgates without omittable nodes; the
case with matchgates having omittable nodes will be dis-
cussed in the Appendix. Let M be its skew-symmetric ad-
jacency matrix. Its character matrix B is a 2k × 2l matrix
with rows and columns indexed from 0 through 2k − 1 and
2l − 1, respectively. Let U be the set of nodes which are
not inputs or outputs. Since there are no omittable node,
each entry of B is either 0 or the Pfaffian of a submatrix
multiplied with the modifier. Let i1 = 1, . . . , ik = k be the
inputs of Γ and let o1 = n, . . . , ol = n− l+1 be its outputs.

We need to introduce a little more compact notation.
Given a row index r where 0 ≤ r ≤ 2k − 1. Let X ′ be
the subset of inputs corresponding to the 1’s in the binary
expansion of r. We will use r to refer to the index r as well
as the set X ′ whenever the intended meaning is clear from
the context. For example, PfM [X ′] and PfM [r] denote the
same thing. Similar notation applies to the column indices.
Also, note that row indices and column indices refer to dis-
joint set of nodes in Γ. So we can combine these two to-
gether. For example, if r is a row index and c is a column
index, then PfM [rc] denotes the Pfaffian of M with all rows
and columns corresponding to the 1’s in r and c deleted. For
any entry of the character B, the modifier µ depends only
on the row index and the column index. Let µr denote the
contribution of row index r to the modifier value, and let µc

denote the contribution of the column index. The modifier
at entry Brc is µrc = µrµc. In this notation, we can write
Brc = µrcPfM [rc] or simply Brc = µrcPf[rc].

Now consider all the GP identities stated in (1) obtained
from subsets I and J of {1, . . . , n}. To be able to consider
this as a matchgate identity (i.e. in terms of the entries of the
character matrix instead of the Pfaffians), it needs to satisfy
the following two properties:

1. Every non-zero Pfaffian of (1) should be the Pfaffian
of a submatrix obtained by deleting only (rows and
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columns corresponding to) some inputs and outputs of
Γ.

2. The GP identity should be independent of n. (The
identity may depend on k and l, but not on the num-
ber of internal nodes.)

The first property can be satisfied if we restrict ourselves
to the GP identities obtained from I and J such that U ⊆
I ∩ J . Any such GP identity will be referred to as useful.

Lemma 4.1. If U ⊆ I∩J , then all non-zero Pfaffians in the
GP identity are Pfaffians with only some inputs or outputs
deleted.

Proof. All the summands in a GP identity are products of
two Pfaffians which are on subsets obtained by moving
some element from I to J or from J to I . If any element
of U is moved from I to J (or from J to I), then that will
appear twice in J (or I) and hence that term is zero. If any
other element is moved, both the Pfaffians contain all of U ,
having only some inputs or outputs deleted.

To prove that all the useful GP identities are independent
of n is slightly more difficult. First we have to state a lit-
tle more precisely what we mean by being independent of
n. For this purpose, first we represent all the Pfaffians in a
GP identity by the indices that are deleted, rather than us-
ing the indices that are retained as in (1). In other words,
we use the Pf[ ] notation instead of Pf( ). All the indices
that now appear are indices of inputs or outputs. We replace
these indices by the symbols i1, . . . ik, and o1, . . . , ol. We
claim that the GP identity is now independent of n. Ba-
sically this means that the coefficient of every term in the
sum (which is either +1 or −1) is independent of n. We
note that the number of terms clearly only depends on k and
l, being determined by the respective subsets of {i1, . . . ik}
and {o1, . . . , ol}.

Lemma 4.2. All the useful GP identities are independent of
n.

Proof. Let I and J be supersets of U . Suppose i′1 < . . . <
i′a are the inputs in I and o′1 > . . . > o′b are the outputs in
I . Similarly, let i′′1 < . . . < i′′c and o′′1 > . . . > o′′d be the
inputs and outputs in J . Consider the GP identity obtained
from I and J . Let’s look at a term where input i′e is moved
from I to J . The case of moving from J to I is symmetric.
This term can be written as

(−1)ePf(I − {i′e})Pf(i′e ◦ J).

(Recall that in this notation the elements in J , but not i′e, are
assumed to be listed in increasing order.) To write this term
in Pf[ ] notation, we have to first arrange the terms in the
second Pfaffian in increasing order. This requires moving i′e

to its appropriate position in J . This position depends on the
input i′e and the inputs i′′1 , . . . , i′′c in J which is independent
of n. The sign (−1)e only depends on the inputs in I which
is again independent of n. Therefore, the coefficient of this
term is independent of n.

Now let’s consider what happens when we move an out-
put o′f from I to J . The term in the GP identity is

(−1)a+|U|+b−f+1Pf(I − {o′f})Pf(o′f ◦ J).

The only part in (−1)a+|U|+b−f+1 which depends on n is
(−1)|U|. Again, we need to move o′f to its correct position
so that the indices in the second Pfaffian are in increasing
order. This involves moving o′f across all inputs in J , all
elements of U , and some of the outputs in J . Again, the
only part that depends on n is moving across elements of
U which contributes a sign (−1)|U|. The overall sign is,
therefore, independent of n.

Now we know that all the useful GP identities are truly
matchgate identities. We still need to replace the Pfaffians
by entries of the character B. To do that, we’ll need some
notation. Suppose I is a superset of U . We want to define
the sign µI . Let IR be the set of inputs not in I . Let IC

be the set of outputs not in I . Consider IR as binary bits,
µIR is defined earlier as a ± contribution to the modifier.
Similarly µIC is defined. Then we let µI = µIRµIC . Given
an input t, let αI

t be the number of inputs in I less than t
and βI

t be the number of inputs more than t which are not
in I .

Fix some I and J such that U ⊆ I ∩ J , As before, sup-
pose i′1 < . . . < i′a are the inputs and o′1 > . . . > o′b are
the outputs in I and i′′1 < . . . < i′′c and o′′1 > . . . > o′′d
are the inputs and outputs in J . The non-zero terms in the
GP identity generated by I and J will only involve moving
some t ∈ I∆J , the symmetric difference. Now consider an
input t ∈ I − J . The term corresponding to moving t from
I to J can be written as: (where we write B∗ = BIR∪{t},IC

and B∗∗ = BJR−{t},JC
, and for notational convenience, we

write the negation of (1) i.e., starting the sum with +)

(−1)αI
t Pf(I − {t})Pf(t ◦ J)

= (−1)αI
t (−1)αJ

t Pf(I − {t})Pf(J ∪ {t})
= (−1)αI

t (−1)αJ
t µI(−1)αI

t (−1)βI
t B∗Pf(J ∪ {t})

= (−1)αJ
t µI(−1)βI

t B∗Pf(J ∪ {t})
= (−1)αJ

t µI(−1)βI
t B∗µJ (−1)αJ

t (−1)βJ
t B∗∗

= (−1)βI
t (−1)βJ

t µIµJB∗B∗∗

Here in the first equality the factor (−1)αJ
t comes from

moving t in t◦J to its proper place in J∪{t}. In the second
equality we replace Pf(I − {t}) by µIB∗, but we need to
make an additional modification on the modifier µI by the
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factor (−1)αI
t (−1)βI

t . The two factors (−1)αI
t cancel in the

third equality. In the fourth equality we replace Pf(J ∪{t})
by µJB∗∗, but again we need to make an additional mod-
ification on the modifier µJ by the factor (−1)αJ

t (−1)βJ
t .

Finally the two factors (−1)αJ
t cancel in the fifth equality.

Since µI and µJ appear in all terms of this GP identity,
we can drop this term. So, the term obtained by moving
input t from I to J can be written as

(−1)βI
t (−1)βJ

t BIR∪{t},IC
BJR−{t},JC

. (3)

We can write a similar expression when t is an output.
The above form will allow us to prove an important prop-

erty of the GP identities. Let b be an input bit position be-
tween 1 and k. Consider a permutation σb on the rows of
the character matrix B which, given a row r, maps it to
row r′ such that r and r′ differ only in the bth bit. I.e. σb

flips the bth bit. This induces a transformation ρb on the GP
identities. We have the following lemma.

Lemma 4.3. Given any b, 1 ≤ b ≤ k, ρb is a permutation
on the GP identities. Similarly ρb is a permutation for any
output node b.

Proof. Given a set I . Define the set I ′ = I∆{b} to be the
symmetric difference. We claim the following: If G1 is the
GP identity generated by I and J , then G2 = ρb(G1) is the
GP identity generated by I ′ and J ′.

First, let’s forget about the signs of the terms appearing
in G1 and G2. Then G1 maps to G2 term-for-term. Con-
sider the case when b ∈ I ∩ J . Then, any non-zero term in
G1 involves moving an element t �= b, from I to J (or from
J to I). This term maps to the term in G2 that is obtained
by moving t from I ′ to J ′ (or from J ′ to I ′). This also holds
when b ∈ I − J and t �= b. The term obtained by moving
b ∈ I −J from I to J maps to the term obtained by moving
b ∈ J ′ − I ′ from J ′ to I ′. The other cases when b /∈ I ∪ J
or b ∈ J − I are similar.

Now we need to show that the signs are also the same.
For now, let’s consider a term in G1 obtained by moving an
input t from I to J . As we saw above, the sign of this term
in G1 is (−1)βI

t +βJ
t and of the corresponding term in G2

is (−1)βI′
t +βJ′

t . Our analysis depends on b. First, if b is an
output vertex, or an input such that b ≤ t, then βI

t = βI′
t and

βJ
t = βJ′

t because these only depend on the inputs more
than t. And if b > t is an input vertex, then b is counted
exactly once in βI

t together with βI′
t , and also exactly once

in βJ
t together with βJ′

t . Thus, it is counted exactly twice
among βI

t , βJ
t , βI′

t , βJ′
t . It follows that in any case, the sum

βI
t + βJ

t + βI′
t + βJ′

t is always even. Therefore, the signs
are also the same.

The case when t is an output node is similar and is omit-
ted here. This completes the proof.

Observe that now we can allow a permutation of the ma-
trix entries which is a composition of several input/output
bit-flips because all these are independent of each other.
The final induced transformation on the GP identities is still
a permutation on the set of GP identities. This gives the
following theorem.

Theorem 4.1. If B is a 2k × 2l matrix that satisfies all the
matchgate identities. Let B′ be the matrix obtained from B
by applying, possibly more than one, bit-flips on the rows
and columns. Then B′ also satisfies the matchgate identi-
ties.

Now we are ready to prove the completeness theorem.
We say that a 2k × 2l matrix B is realizable if there is a
matchgate Γ such that χ(Γ) = B. We say that a matrix is
even (odd) if Bij = 0 whenever H(i) + H(j) is odd (even)
where H(i) denotes Hamming weight, i.e., the number of
1’s in the binary expansion of i. The character matrix of
a matchgate without omittable nodes is either even or odd
depending on whether n is even or odd.

Theorem 4.2. Let k, l be non-negative integers. Let B be a
2k × 2l matrix which is either even or odd. Then B is the
character matrix of a k-input, l-output matchgate Γ if and
only if B satisfies all the useful GP identities.

Proof. We only need to prove the “if” part. If the matrix
B is identically zero, it is realizable by a matchgate. So we
can assume that B is not identically zero.

First assume that B2k−1,2l−1 = 1. If B2k−1,2l−1 = α is
non-zero but not 1, then we can simply divide all the entries
in B by α. Once we obtain a matchgate for that, we add
two new internal vertices with an edge of weight α between
them. The two new vertices have consecutive indices so
that there are no overlaps with anything else. This will have
character B.

For B2k−1,2l−1 = 1, the matchgate Γ is a complete
graph on k + l vertices. It has k inputs and l outputs
(and no internal nodes). Suppose i and j are two ver-
tices. Consider the row r and column c such that rc =
{1, . . . , k + l} − {i, j}, i.e. the entry Brc of the matrix
corresponds to all nodes except i and j being deleted. The
weight of the edge (i, j) is simply µrcBrc. Let the skew-
symmetric adjacency matrix of Γ be M .

We claim that the character matrix of Γ, χ(Γ), is equal to
B. By construction, all the entries of B with total Hamming
weight (i.e. Brc where the total number of 1’s in rc is) at
least k + l − 2 are equal to those in χ(Γ). (By convention,
the Pfaffian of a 0 by 0 matrix is 1.) Now we proceed by
downward induction on the total Hamming weight H(r) +
H(c). Consider any entry Brc such that m = H(r) + H(c)
is less than k + l − 2, and assume that the claim holds for
all entries of weight > m. Let a1 < . . . < am be the
bits that are 1 in rc. Let 1 ≤ a′ ≤ k + l be an index
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not equal to any of these. Consider the GP identity with
I = {1, . . . , k + l} − {a1, . . . , am, a′} and J = {a′}. This
identity is of the form:

PfM [a1, . . . , am]PfM ()

=
∑

b�=a′,a1,...,am

(±)PfM [b, a′, a1, . . . , am]PfM (b, a′)

Note that PfM () = 1 = χ(Γ)2k−1,2l−1 = B2k−1,2l−1. The
right hand side is a sum of products of two terms. Each term
is the Pfaffian of M with a superset of a1, . . . , am removed.
These correspond to entries of χ(Γ) and B in positions with
total Hamming weight strictly more than m. (Note that k +
l − 2 > m.) Since B is equal to χ(Γ) on all such entries
and since B and χ(Γ) both satisfy the GP identities, we see
that Brc = χ(Γ)rc. This completes the proof for the case
B2k−1,2l−1 �= 0.

Now suppose B is not identically zero but B2k−1,2l−1 =
0. Let Bij be a non-zero entry in B. We use bit-flips to map
i and j to 2k − 1 and 2l − 1 respectively to get a matrix B′

such that B′
2k−1,2l−1 �= 0. By Theorem 4.1, B′ also sat-

isfies the GP identities. Let Γ′ be a matchgate that realizes
B′. Then we can construct Γ that realizes B by using a con-
struction similar to what we used in the 2-input, 2-output
case, as shown in Figure 1.

Actually, the proof of the above theorem also works in
the case when we allow omittable nodes too i.e. the ma-
trix is neither even nor odd. First note that any matchgate
is equivalent to a matchgate with an even number of nodes
and exactly one omittable node which has a number less
than the output nodes but more than all other nodes ([12]).
We need to change the definition of useful GP identity to
mean that every Pfaffian has only some inputs/outputs and
possibly, the omittable node deleted. In that case, we can in-
terpret any such Pfaffian as a Pfaffian sum of the matchgate
with some inputs/outputs deleted which then corresponds
to the character entries. By using similar arguments, we can
prove that all useful GP identities are independent of n and
the analog of theorem 4.1 that input/output bit-flips induce
a permutation on the GP identities. The completeness theo-
rem is proved in the Appendix.

From the proofs of theorem 4.2 and theorem 7.1 (in the
appendix), we see that we need only O(k + l) vertices to
realize B. This is interesting because in the definition of
matchgates, we allow a k-input, l-output matchgate to have
an arbitrary number of internal nodes. We now know that
any such matchgate is equivalent to another with only O(k+
l) nodes. This makes it possible to prove the non-existence
of certain matchgates.

Corollary 4.1. Let Γ be any k-input, l-output matchgate.
Then there is another matchgate Γ′ having only O(k + l)
vertices such that χ(Γ) = χ(Γ′).

5 Realizability of Signatures

In [13] Valiant introduced the theory of Holographic Al-
gorithms. Here the basic objects are planar matchgates and
their signatures. (In this paper we do not consider signatures
of a planar matchgate under a basis transformation. Without
this transformation, we only consider the standard signa-
tures as defined in Sec. 2. Also for simplicity in the follow-
ing discussion we will not consider omittable nodes.) These
planar matchgates are connected to form matchgrids which
are the counter parts to matchcircuits. As mentioned ear-
lier in Section 2, we have accomplished a unification of the
matchcircuit/character theory and the matchgrid/signature
theory in [1].

Roughly speaking, this unification is accomplished as
follows. Given a planar matchgate with a signature G, de-
fined by the perfect matching polynomial PerfMatch, one
uses the FKT algorithm to show that each entry of G is
equal to a corresponding Pfaffian of the submatrix of a sin-
gle skew-symmetric matrix M , where the submatrix is ob-
tained by removing the appropriate rows and columns of M .
The skew-symmetric matrix M is obtained from the given
skew-symmetric adjacency matrix of the planar matchgate
graph, by running the FKT algorithm. The FKT algorithm
is applied once to the planar matchgate graph with no ver-
tex removed; but conceptually one can think of it being
applied simultaneously to the exponentially many induced
subgraphs of the matchgate with various external nodes re-
moved. By the property of the FKT algorithm, which only
assigns a ±1 factor to each edge, this gives a single consis-
tent weighted altered graph. To each entry of the signature
G, the corresponding Pfaffian of the submatrix becomes an
entry of the character of a matchgate, without the modifier.
This is called the naked character in [1].

In many ways, it is simpler to discuss the structural prop-
erties of a naked character [1] than a character with the mod-
ifiers, in particular with the Matchgate Identities. The mod-
ifiers µ are defined in order to account for additional cross-
overs when matchgates are connected within a matchcircuit.
But in terms of the character matrix, the modifiers amount
to a multiplication of a ±1 factor along every row and ev-
ery column, where the value of each row (column) factor is
determined by the row (column) index. Thus the set of all
Matchgate Identities is transformed to the set of Matchgate
Identities for naked characters, in a one-to-one fashion.

Now we discuss the technically more interesting reverse
direction from (naked) characters to signatures. We take a
general (not necessarily planar) matchgate Γ with a naked
character χ(Γ), and realize it as the signature of a planar
matchgate. This is done by a specific embedding of all the
vertices of Γ on a semi-circle [1], and then replacing each
physical crossing of a pair of edges by a crossover gadget
from [13]. This produces a planar matchgate Γ′. One then
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argues that the PerfMatch value for each signature entry of
Γ′ is the same as the corresponding Pfaffian value of the
naked character of Γ.

It follows that Theorem 4.2 also applies to planar match-
gates and their signatures. More specifically, a set of val-
ues can be the standard signature of a planar matchgate
(without omittable nodes) iff they satisfy all the parity re-
quirements and all the useful Grassmann-Plücker identities.
Thus, we have the following three categories of objects all
equivalent to each other: Signatures of planar matchgates,
naked characters of planar matchgates, and naked charac-
ters of general (not necessarily planar) matchgates. And of
course, characters and naked characters are related to each
other by the modifiers (which are, in some sense, external
to the matchgates). The character theory can be viewed as
primarily algebraic, while signatures of planar matchgates
can be viewed as its geometric realization. Another useful
observation derived from this dual perspective is that one
can really unify the notions of input and output nodes of a
general matchgate; the salient feature is its circular ordering
as external nodes of a planar matchgate represented by its
signature.

However, there is a subtle point concerning the equiv-
alence of signatures and (naked) characters expressed as
Pfaffians. To a signature tensor G satisfying all the Match-
gate Identities (and the parity requirements), Theorem 4.2
gives a realization via the character of a complete graph
without internal nodes. (Technically this is the case with
G11...1 = 1. In general, we need to “flip” some external
nodes, thus introduce a linear number of internal nodes.)
However, the realization as a planar matchgate for the sig-
nature G may have some internal nodes, necessitated by the
introduction of the cross-over gadgets (see below). Thus it
is not the case that we can realize G as a signature without
internal nodes. If G has arity m, this process may introduce
O(m2) internal nodes.

Let’s consider exactly how Matchgate Identities are ex-
pressed for the signatures. Let G be the signature of a pla-
nar matchgate with m external nodes. Since each signature
entry can be viewed as a Pfaffian (via the FKT) we have
one useful Grassmann-Plücker identity for each pair of sub-
sets I and J both containing all the internal nodes. It is
clear that the only non-zero terms in the Grassmann-Plücker
identity involve moving elements in the symmetric differ-
ence I∆J , which is a subset of the external nodes. We now
ignore the internal nodes and consider I and J as subsets
of the external nodes, (under a circular shift) identified with
[m] = {1, 2, . . . , m}. Suppose

I∆J = {i1, . . . , ik1 , ik1+1, . . . , ik2 , ik2+1, . . . , ik3 , . . .},

where i1 < · · · < ik1 < ik1+1 < · · · < ik2 < ik2+1 <
· · · < ik3 < . . . in the order of the index set {1, 2, . . . , m},

and where i1, . . . , ik1 ∈ I − J , ik1+1, . . . , ik2 ∈ J − I ,
ik2+1, . . . , ik3 ∈ I − J , and so on.

Every non-zero term in (1) involves moving either an el-
ement from I − J to J or from J − I to I . For ij , j =
1, . . . , k1, the term in (1) is (−1)jPf(I − {ij})Pf(ij ◦ J).
Note that ij is already in its right place with respect to J
within ij ◦ J . For ij , j = k1 + 1, . . . , k2, the term in (1)
is (−1)j−k1Pf(ij ◦ I)Pf(J − {ij}). When we move ij to
its right place with respect to I within ij ◦ I , namely k1

places to the right, this incurs (−1)k1 . Thus the term be-
comes (−1)jPf(I ∪ {ij})Pf(J − {ij}), where I ∪ {ij} is
assumed to be in increasing order.

In this way it is easy to see that all the useful matchgate
identities on a realizable standard signature G of arity m
can be expressed as follows:
Matchgate Identities for Signatures: A pattern α is an
m-bit string, i.e., α ∈ {0, 1}m. A position vector P =
{pi}, i ∈ [l], is a subsequence of {1, 2, . . . , m}, i.e., pi ∈
[m] and p1 < p2 < · · · < pl. We also use p to denote the m-
bit string, whose (p1, p2, . . . , pl)-th bits are 1 and others are
0. Let ei ∈ {0, 1}m be the pattern with 1 in the i-th bit and
0 elsewhere. Let α + β denote the pattern obtained from
bitwise XOR the patterns α and β. Then for any pattern
α ∈ {0, 1}m and any position vector P = {pi}, i ∈ [l], we
have the following identity:

l∑
i=1

(−1)iGα+epi Gα+p+epi = 0. (4)

More symmetrically, let α, β ∈ {0, 1}m be any patterns,
and let P = {pi} = α + β, i ∈ [l], be their bitwise XOR as
a position vector. Then

l∑
i=1

(−1)iGα+epi Gβ+epi = 0. (5)

Theorem 4.2 says that a tensor G = (Gi1,...,im) is realiz-
able as the standard signature of some planar matchgate iff
it satisfies all the parity requirements and (4) for all α and
P (or equivalently (5) for all α and β).

A signature is called a symmetric signature if its entries
only depend on the cardinality of the subset of removed ex-
ternal vertices. Let zi be the value with a subset of cardi-
nality i removed. Then a symmetric signature can be de-
noted more succinctly as [z0, . . . , zm]. In the framework
of holographic algorithms, symmetric signatures are partic-
ularly important, because they have a clear combinatorial
meaning. For standard symmetric signatures we have

Lemma 5.1. Suppose Γ is an even matchgate with sym-
metric standard signature [z0, . . . , zm]. Then for all odd i,
zi = 0, and there exist r1 and r2 not both zero, such that for
every even 2 ≤ k ≤ m,

r1zk−2 = r2zk.
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Proof. The parity condition is obvious.
For m ≤ 3 the condition r1zk−2 = r2zk is always satis-

fiable for some r1 and r2 not both zero.
Let m ≥ 4, we use matchgate identities (4). Consider

the pattern 1000α where α has Hamming weight 2i, and
0 ≤ 2i ≤ m − 4. Let the position vector be 11110 . . .0.
Then (4) gives

0 = G0000αG1111α − G1100αG0011α

+G1010αG0101α − G1001αG0110α.

It follows from symmetry that the last two terms cancel and
we get z2iz2i+4 = (z2i+2)2.

Also, if m is even then consider the pattern 1000α and
the position vector 1111β, where α = 0m−4 and β =
1m−4. Then we have

0 = G0000αG1111β − G1100αG0011β

+G1010αG0101β − G1001αG0110β ± . . . .

The terms cancel except the first two, from which we get
z0zm = z2zm−2.

Similarly if m is odd, we consider the pattern 1000 . . .0
and the position vector 1111 . . .10 and we can get
z0zm−1 = z2zm−3.

The lemma follows from this.

Similarly one can prove

Lemma 5.2. Suppose Γ is an odd matchgate, with sym-
metric standard signature [z0, . . . , zm]. Then for all even i,
zi = 0, and there exist r1 and r2 not both zero, such that for
every odd 3 ≤ k ≤ m,

r1zk−2 = r2zk

Using the fact that the signatures are symmetric, it can be
proved that the set of useful Grassmann-Plücker Identities
considered here already constitutes a complete set. It fol-
lows from the characterization theorem for matchgates, that
the requirements of Lemma 5.1, and Lemma 5.2 are both
necessary and sufficient.

Another way to express this is

Theorem 5.1. A symmetric signature [z0, . . . , zm] of a pla-
nar matchgate with even cardinality is realizable iff for all
odd i, zi = 0, and there exist constants r1, r2 and λ, such
that z2i = λ · (r1)�m/2�−i · (r2)i, for 0 ≤ i ≤ �m

2 �.
A symmetric signature [z0, . . . , zm] of a planar match-

gate with odd cardinality is realizable iff for all even i,
zi = 0, and there exist constants r1, r2 and λ, such that
z2i−1 = λ · (r1)�m/2	−i · (r2)i−1, for 1 ≤ i ≤ �m

2 �.

Given an array of values forming a kind of geometric
progression as above, the general theory guarantees that
there exists a planar matchgate whose signature is the given

array. It is a curious fact that the only construction realiz-
ing this planar matchgate is via the general proof, and thus
via Pfaffian, as follows: We first construct a complete graph
with every edge having the same weight. This is given by
the proof of Theorem 4.2. For that graph it can be checked
that the Pfaffian values are the correct values, as in a (naked)
character. Then the planar embedding and the crossover
gadget from [1, 13] are used to produce a planar match-
gate with the given signature. In particular there will be
some O(m2) extra internal nodes if m is the number of ex-
ternal nodes (arity) of the matchgate. We do not know of
any direct construction of a planar matchgate with the given
signature, even for this simple case.

6 Conclusions

Valiant’s new theory of matchgate computations is an ex-
traordinarily fresh attempt at exploring and devising new
algorithmic approaches to problems. It has already yielded
highly non-trivial results, such as his classical simulation
of a fragment of quantum circuits, and his holographic al-
gorithms. But a full account of the capabilities of match-
gate computations is far from being clear. We presented in
this paper some fundamental results concerning the building
blocks of his theory, namely the matchgates. Our goal here
is theory-building, not so much as problem-solving. We be-
lieve that it is essential to gain a better understanding of
these matchgates before one can get a full picture of match-
gate computations [1, 16]. It is hoped that results in this pa-
per will pave the way for some in-depth study of Valiant’s
new theory. In [1], we applied our results on matchgates
to obtain some negative results of holographic algorithms.
In [16] Valiant has obtained some important lower bound
for holographic algorithms using results of this paper.
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Appendix

Graphs and Pfaffians

Let G = (V, E, W ) be a weighted undirected graph, where
V is the set of vertices represented by integers, E is the
set of edges and W are the weights of the edges. In gen-
eral, V = {k1, . . . , kn} where k1 < . . . < kn. We repre-
sent the graph by a skew-symmetric matrix M , called the
(skew-symmetric adjacency) matrix of G, where M(i, j) =
w(ki, kj) if i < j, M(i, j) = −w(ki, kj) if i > j, and
M(i, i) = 0. From here on, we will use G to represent
both the graph and its matrix, whenever the meaning is clear
from the context.

The Pfaffian of an n × n skew-symmetric matrix M is
defined to be 0 if n is odd, 1 if n is 0, and if n = 2k where
k > 0 then it is defined as

Pf(M) =
∑

π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where

• π =
(

1 2 . . . n
i1 i2 . . . in

)
, is a permutation.

• summation is over all permutations π where i1 <
i2, i3 < i4, . . . , i2k−1 < i2k and i1 < i3 < . . . <
i2k−1, and

• επ ∈ {−1, 1} is the sign of the permutation π. An-
other equivalent definition of επ is that it is the sign
or parity of the number of overlapping pairs where a
pair of edges (i2r−1, i2r), (i2s−1, i2s) is overlapping
iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 <
i2s < i2r.

The Pfaffian is computable in polynomial time. In particular
(Pf(M))2 = det(M).

A matching is a subset of edges such that no two edges
share a common vertex. A vertex is said to be saturated if
there is a matching edge incident to it. A perfect matching
is a matching which saturates all vertices.

There is a graph-theoretic interpretation of the Pfaf-
fian. If M is the matrix of a graph G, then there is
a one-to-one correspondence between monomials in the
Pfaffian and perfect matchings in G. The monomial
w(i1, i2) . . . w(i2k−1, i2k) in Pf(M) corresponds to the
perfect matching {(i1, i2), . . . , (i2k−1, i2k)} in G. The con-
dition on the permutation implies that every perfect match-
ing corresponds to exactly one monomial. The coefficient
επ of this monomial is the parity of the number of overlap-
ping pairs of edges, in the sense defined earlier.

If M is an n × n matrix and A = {i1, . . . , ir} ⊆
{1, . . . , n}, then M [A] denotes the matrix obtained after
deleting from M , the rows and columns indexed by ele-
ments of A. We also denote by M(A) = M [A], where A is
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the complement of A. The Pfaffian Sum of M is a polyno-
mial over indeterminates λ1, λ2, . . . , λn defined as

PfS(M) =
∑
A

(∏
i∈A

λi

)
Pf(M [A])

where the summation is over the 2n submatrices obtained
from M by deleting some subset A of indices. The Pfaffian
Sum of M is also computable in polynomial time for any
values of λi. We will only need instances where each λi is
fixed to be 0 or 1.

Extended Main Theorem

In this Appendix, we give an extension of the Main Theo-
rem proved by Valiant in [12]. It is a minor extension which
was needed in Section 3.

Let Γ = (G, X, Y, T ) be a matchgate. Let us call Γ, an
even matchgate if PfS(G\Z) is zero whenever Z ⊆ X ∪ Y
has odd size and call it odd if PfS(G\Z) is zero whenever
|Z| is even. Let us modify the definition of a matchcircuit to
allow parallel edges to have weight −1. Then we can prove
the following Extended Main Theorem.

Theorem 7.1. [Extended Main Theorem] Consider a
matchcircuit Γ composed of gates as in [12]. Suppose that
every gate is:

1. a gate with diagonal character matrix,

2. an even gate applied to consecutive bits
xi, xi+1, . . . , xi+j for some j ≥ 0,

3. an odd gate applied to consecutive bits
xi, xi+1, . . . , xi+j for some j ≥ 0, or

4. an arbitrary gate on bits x1, . . . , xj for some j ≥ 1.

Suppose also that every parallel edge above any odd match-
gate, if any, has weight −1 and all other parallel edges have
weight 1. Then the character matrix of Γ is the product of
the character matrices of the constituent matchgates, each
extended to as many inputs/outputs as those of Γ.

Proof. The only kind of overlap that we need to worry
about in the proof of the Main Theorem in [12] is that be-
tween parallel and external edges of a matchgate. By the
definition of an odd gate, the only non-zero in its charac-
ter matrix can be in positions which correspond to an odd
number of inputs/outputs being matched externally. Any
parallel edge above a matchgate has an overlap with any of
its external edges that are present. Since only those match-
ings make a non-zero contribution when there are an odd
number nodes matched externally, any such parallel edge
overlaps with an odd number of external edges; thus con-
tributing a − sign which cancels with its own weight of −1.
The rest of the proof is exactly as in [12]

Identities for Matchgates with Omittable
Nodes

Lemma 7.1. Consider any GP identity such that all the
Pfaffians appearing in it are Pfaffians of sub-matrices with
some input/output nodes and/or the omittable node deleted.
Remove any terms which have an odd number of indices
deleted. Write each remaining term as a Pfaffian sum of a
matrix with a subset of inputs/outputs deleted. Then it is a
useful identity and is independent of n. Therefore, it is a
matchgate identity.

Theorem 7.2. Let k, l be non-negative integers. Let B be a
2k ×2l matrix. Then B is the character matrix of a k-input,
l-output matchgate Γ if and only if B satisfies all the GP
identities.

Proof. The proof is almost the same as for the case with-
out omittable nodes. As earlier, let’s assume, WLOG, that
B2k−1,2l−1 = 1. The matchgate Γ is a complete graph
k + l + 1 vertices. It has k inputs and l outputs and one
omittable node. The weight of the edge joining nodes i and
j is the appropriate modifier times the entry of the matrix
B which corresponds to i, j being deleted. Note that now,
this entry might have total Hamming weight (as far as in-
puts/outputs are concerned) either k + l − 1 or k + l − 2,
depending on whether either i or j is the omittable node or
not. Let the skew-symmetric adjacency matrix of Γ be M .
We claim that the character matrix of Γ, say A, is equal to
B. By definition, all the entries of B with total Hamming
weight at least k + l − 2 are equal to those in A. Now
we proceed by downward induction on the total Hamming
weight H(i) + H(j). Consider any other entry Bij such
that H(i) + H(j) is less than k + l − 2.

Let a1 ≤ . . . ≤ ar be the bits that are 1 in i and j.
Depending on the parity of r, we either need to delete the
omittable node, say a, or keep it. Let S be the set of nodes
that we need to delete to get this entry of B. Let 1 ≤ a′ ≤
k + l be an index not in S. Consider the GP identity with
I = Γ − S ∪ {a′} which we’ll denote by I = {Ŝ, â′} and
let J = {a′}. This identity looks like the following:

PfM [S]PfM () =
∑
b∈I

(±)PfM [{b, a′} ∪ S]PfM (b, a′)

Note that PfM () = 1 = A2k−1,2l−1 = B2k−1,2l−1. The
right hand side is a sum of products of two terms. Each
term is the Pfaffian sum of M with a superset of a1, . . . ar

removed. These correspond to entries of A and B in po-
sitions with total Hamming weight more than r. Since B
is equal to A on all such entries and since B satisfies the
GP identities, we see that Bij = Aij . This completes the
proof.
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Γ′

Γ3

Γ4Γ1

Γ2

-1 +1

Figure 1. The figure shows the matchcircuit Γ′′ used in the proof of theorem 3.2. Suppose αr flips
the second bit only and αc flips the first bit only. Then Γ2 and Γ4 are equal to Γ(2) i.e. they flip their
input; and Γ1 and Γ3 simply transmit their input. Therefore, the parallel edge above Γ2 has weight −1
and all other parallel edges, in particular the one above Γ3 have weight 1. In the general case when
there are k-inputs and l-outputs, if any matchgate flips its input, all the parallel edges above it have
a weight −1.

A

B

C

Figure 2. An example of a matchcircuit composed of matchgates A, B and C. A is a 3-input, 3-output
matchgate while B and C are 2-input, 2-output matchgates. The boldest line represent parallel edges,
the lightest represent connecting edges and the rest are external edges. The nodes in the matchcircuit
are numbered in increasing order from left to right. The five leftmost nodes are its inputs and the five
rightmost ones are its outputs.
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