
J Comb Optim (2013) 25:255–264
DOI 10.1007/s10878-012-9499-2

Improved approximation for spanning star forest
in dense graphs

Jing He · Hongyu Liang

Published online: 24 May 2012
© Springer Science+Business Media, LLC 2012

Abstract A spanning subgraph of a graph G is called a spanning star forest of G if
it is a collection of node-disjoint trees of depth at most 1. The size of a spanning star
forest is the number of leaves in all its components. The goal of the spanning star
forest problem is to find the maximum-size spanning star forest of a given graph.

In this paper, we study the spanning star forest problem on c-dense graphs, where
for any fixed c ∈ (0,1), a graph of n vertices is called c-dense if it contains at least
cn2/2 edges. We design a (α + (1 − α)

√
c − ε)-approximation algorithm for span-

ning star forest in c-dense graphs for any ε > 0, where α = 193
240 is the best known

approximation ratio of the spanning star forest problem in general graphs. Thus, our
approximation ratio outperforms the best known bound for this problem when dealing
with c-dense graphs. We also prove that, for any constant c ∈ (0,1), approximating
spanning star forest in c-dense graphs is APX-hard. We then demonstrate that for
weighted versions (both node- and edge-weighted) of this problem, we cannot get
any approximation algorithm with strictly better performance guarantee on c-dense
graphs than on general graphs. Finally, we give strong inapproximability results for a
closely related problem, namely the minimum dominating set problem, restricted on
c-dense graphs.

Keywords Spanning star forest · Dense graph · Approximation algorithm ·
Hardness of approximation

This work was supported in part by the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China Grant
61033001, 61061130540, 61073174. Part of this work was done while the authors were visiting
Cornell University.

J. He · H. Liang (�)
Institute for Interdisciplinary Information Sciences, Tsinghua University, FIT 4-609, Beijing, China
e-mail: lianghy08@mails.tsinghua.edu.cn

J. He
e-mail: he-j08@mails.tsinghua.edu.cn

mailto:lianghy08@mails.tsinghua.edu.cn
mailto:he-j08@mails.tsinghua.edu.cn

256 J Comb Optim (2013) 25:255–264

1 Introduction

We consider the spanning star forest problem. A graph is called a star if it can be
regarded as a tree of depth at most 1, or equivalently, there is one vertex (called the
center) adjacent to all other vertices (called leaves) in the graph. A single node is by
definition also a star. A star forest is a forest whose connected components are all
stars. The size of a star forest is the number of its leaves. A spanning star forest of
a graph G is a spanning subgraph of G that is also a star forest. The spanning star
forest problem (SSF for short), introduced in Nguyen et al. (2008), is the problem of
finding a spanning star forest of maximum size in a given graph. This problem has
found applications in various areas. Nguyen et al. (2008) use it as a subroutine to
design an algorithm for aligning multiple genomic sequences, which is an important
bioinformatics problem in comparative genomics. This model has also been applied
to the comparison of phylogenetic trees (Berry et al. 2005) and the diversity problem
in the automobile industry (Agra et al. 2005).

It is easy to see that there is a one-one correspondence between spanning star
forests and dominating sets of a given graph. A dominating set of a graph G is a
subset of vertices D such that every vertex not in D is adjacent to at least one vertex
in D. The minimum dominating set problem is to find a smallest dominating set of a
given graph. Given a spanning star forest of G, it is easy to argue that the collection of
its all centers is a dominating set of G, and the size of the spanning star forest is equal
to the number of vertices in G minus the size of the corresponding dominating set. On
the other hand, given a dominating set of G, we can construct a spanning star forest
of G whose centers are exactly those vertices in the dominating set. Thus, the two
problems are equivalent in finding the optimum solution. We also call one problem
the complement of another, following the notion used before (Athanassopoulos et al.
2009; Chen et al. 2007).

However, the two problems appear totally different when the approximability is
considered. By Feige’s (1998) famous result, the dominating set problem cannot be
approximated within factor (1 − ε) lnn in polynomial time for any fixed ε > 0 un-
less NP ⊆ DTIME(nO(log logn)). In contrast, a fairly simple algorithm with the idea
of dividing a spanning tree into alternating levels gives a 0.5-approximation to the
spanning star forest problem. Nguyen et al. (2008) proposed a 0.6-approximation
algorithm using the fact that every graph of n vertices of minimum degree 2 has a
dominating set of size at most 2

5n except for very few special cases which can be
enumerated. In addition, they proved that it is NP-hard to approximate the problem
to any factor larger than 259

260 . They also introduced the edge-weighted version of this
problem, whose objective is to find a spanning star forest in which the total weight
of edges is maximized, and showed a 0.5-approximation algorithm for this variant.
Later on, the approximation ratio for unweighted SSF was improved to 0.71 by Chen
et al. (2007) based on solving a natural linear programming relaxation combined
with a randomized rounding stage. They also considered another generalization of
SSF where each node has a non-negative weight and the objective is to find a span-
ning star forest in which the total weight of all leaves is maximized. Note that node-
weighted SSF is just the complement of the weighted dominating set problem where
each vertex has a weight and the goal is to find a minimum-weight dominating set

J Comb Optim (2013) 25:255–264 257

of the given graph. For this version, they showed that a similar algorithm achieves
an approximation factor of 0.64. Athanassopoulos et al. (2009) realized that the un-
weighted spanning star forest problem is actually a special case of the complementary
set cover problem, and designed a 0.804-approximation for it (also for complemen-
tary set cover) using the idea of semi-local search for k-set cover (Duh and Furer
1997). Regarding the hardness results, it was proved by Chakrabarty and Goel (2008)
that edge-weighted SSF and node-weighted SSF cannot be approximated to 10

11 + ε

and 13
14 + ε respectively, unless P = NP.

1.1 Our contributions

We study variants of the spanning star forest problem in c-dense graphs. A graph of
n vertices is called c-dense, for some constant c ∈ (0,1), if it contains at least cn2/2
edges (Arora et al. 1999). One can show by a simple probabilistic argument that
almost all graphs are dense. Thus, it captures many real-world models. In fact, this
setting has received extensive studies for various combinatorial problems like vertex
cover, max-cut, Steiner tree, minimum maximal matching, etc. (see Arora et al. 1999;
Cardinal et al. 2009; Gaspers et al. 2009; Imamura and Iwama 2005; Schiermeyer
1995). To our knowledge, ours is the first study on the spanning star forest problem
in the class of c-dense graphs.

We first design an approximation algorithm for (unweighted) spanning star forest
in c-dense graphs with an approximation ratio better than the previously best known
ratio of this problem in general graphs, for any c ∈ (0,1). More precisely, denoting
by α = 193

240 (≈ 0.804) the best known approximation ratio for spanning star forest
(Athanassopoulos et al. 2009), our algorithm achieves an approximation factor of
α + (1 − α)

√
c − ε, for any ε > 0. Note that this factor is larger than 0.9 whenever

c ≥ 0.25, and is larger than 0.96 when c ≥ 0.64. Thus, it is a quite strong performance
guarantee. Our algorithm consists of two stages. The first stage is actually a greedy
procedure that chooses the vertex covering the largest number of uncovered vertices,
and adds it to a maintained dominating set of the input graph. It stops when the
number of uncovered vertices is smaller than some prespecified threshold, and goes
to the second stage. In this stage, we find a set of vertices dominating the uncovered
ones by reducing it to a problem called complementary partial dominating set, which
will be formally defined in Sect. 2.2. We will show in Sect. 2.2 that this problem
can be approximated as well as the complementary set cover problem considered in
Athanassopoulos et al. (2009). Combining the two stages, we find a dominating set
of the graph of relatively small size, and then construct a spanning star forest in the
standard way, which can be proved to be a good approximation to the problem.

We then prove that the spanning star forest problem in c-dense graphs is APX-
hard. Specifically, we prove that for any c ∈ (0,1), there exists ε = ε(c) > 0 such that
approximating SSF in c-dense graphs to within a factor of 1 − ε is NP-hard. Thus,
the technique developed by Arora et al. (1999) for designing PTAS for combinatorial
problems in dense instances cannot be applied to our problem.

Next we consider the weighted versions (both node- and edge-weighted) of
this problem. A little surprisingly, we show that any approximation algorithm for
weighted spanning star forest in c-dense graphs does not guarantee an approxima-
tion ratio strictly larger than that in general graphs. This is proved by an (almost)

258 J Comb Optim (2013) 25:255–264

approximation-preserving reduction from general instances of this problem to c-
dense instances.

Finally, we show that the dominating set problem in c-dense graphs shares the
same inapproximability result with that in general graphs. Thus, the (1 + lnn)-
approximation achieved by a greedy approach is nearly the best we can hope for.
This again shows that the spanning star forest problem and the dominating set prob-
lem are very different regarding the approximability, although they are equivalent in
exact optimization.

1.2 Notation used for approximation algorithms

For β ∈ (0,1) (resp. β > 1) and a maximization (resp. minimization) problem Π , an
algorithm is called a β-approximation algorithm for Π if given an instance I of Π , it
runs in polynomial time and produces a solution with objective value at least (resp. at
most) β · OPT(Π, I), where OPT(Π, I) denotes the objective value of the optimum
solution to the instance I of the problem Π . The value β is also called the approx-
imation ratio, approximation factor, or performance guarantee of the algorithm for
the problem Π . Moreover, β can be a function of the input size or some parameters
in the input. We say the problem Π has a polynomial time approximation scheme
(PTAS) if for every constant ε > 0, there is a (1 − ε) (resp. (1 + ε))-approximation
algorithm for Π . We say Π is APX-hard if it does not have a PTAS. For standard
definitions and notations not given here, we refer the readers to Vazirani (2001).

2 Complementary partial dominating set

In this section, we introduce the complementary partial dominating set problem,
which is useful for designing our algorithm for spanning star forest in dense graphs.
Before presenting its formal definition, we need to mention another related problem
called the complementary set cover problem.

2.1 Complementary set cover

We briefly review the complementary set cover problem (CSC for short) (Athanas-
sopoulos et al. 2009), since some results of it will be used later. The input of CSC
is a pair (S,U), which consists of a ground set U of elements and a set S contain-
ing some subsets of U . The set S is guaranteed to be close under subsets, that is,
for any S ∈ S and S′ ⊆ S, we have S′ ∈ S . The representation of S can be implicit,
e.g., only inclusion-wise maximal sets in it are specified. The goal is to find a col-
lection of pairwise-disjoint subsets S1, S2, . . . , Sk ∈ S whose union is U , such that
|U | − k is maximized. It is shown in Athanassopoulos et al. (2009) that CSC has a
193
240 -approximation algorithm, which only selects subsets of size at most 6.

2.2 Complementary partial dominating set

Let G = (V ,E) be a simple undirected graph. For any vertex v ∈ V , let N [v] = {u ∈
V : (u, v) ∈ E} ∪ {v} be the neighborhood of v when regarding v as a neighbor of

J Comb Optim (2013) 25:255–264 259

itself. Let N [U] = ⋃
v∈U N [v] for U ⊆ V . For two subsets U1,U2 ⊆ V , we say U1

dominates U2, or U1 is a dominating set of U2, if U2 ⊆ N [U1]. The complementary
partial dominating set problem (CPDS for short) is defined as follows.

Input: A graph G = (V ,E) and a subset of vertices V ′ ⊆ V .
Output: A set U ⊆ V that dominates V ′ such that |V ′| − |U | is maximized.
Although the objective we use seems to be equivalent to finding the minimum-size

dominating set of V ′, they are totally different when considering the approximability.
It is easy to see that the minimization version of CPDS generalizes the dominating
set problem and thus cannot be approximated to within γ logn for some constant γ

unless P = NP (Feige 1998; Raz and Safra 1997), while as is shown below, CPDS
allows a constant factor approximation algorithm.

Theorem 1 There is a 193
240 -approximation algorithm for CPDS.

Proof Given an instance I = (G,V ′) of CPDS, we regard it as an instance I ′ =
(S,U) of CSC in the following way. The ground set U is just V ′, and S contains
all subsets of V ′ each of which is dominated by some vertex in V , i.e. S = {W ⊆
V ′ : ∃v ∈ V s.t. W ⊆ N [v]}. It is easy to see that S is close under subsets. (Note that
S may have exponential size; we will come back to this point later.) Now, given a
solution to the instance I of CPDS with objective value s, we can easily construct a
solution to the instance I ′ of CSC with no smaller objective value, and vice versa.
Therefore, the two instances have a same optimal objective value, and we can ap-
ply the 193

240 -approximation algorithm for CSC on I ′ to obtain a solution to I with
the same approximation ratio. However, the instance I ′ may have exponential size
since it may contain all subsets of V ′. To overcome this, we just note that the 193

240 -
approximation algorithm for CSC only deals with sets in S of size at most 6, and all
subsets of V ′ of size at most 6 can surely be enumerated in polynomial time. �

3 Algorithm description and analysis

In this section, we give an approximation algorithm for the spanning star forest prob-
lem in dense graphs. Fix c ∈ (0,1). Let α = 193

240 be the best known approximation ra-
tio for CPDS. Let ε be any constant such that 0 < ε <

√
c. Let δ = 1 − √

c + ε,M =
2/(c − (

√
c − ε)2), and N0 = M/(ε(1 − δ)). Note that δ,M and N0 are all positive

constants only depending on c and ε.
We present our algorithm for SSF in c-dense graphs as Algorithm 1. Note that

at the beginning (and the end) of every execution of the WHILE loop, A, B and C

form a partition of V . To show that the obtained star forest is large, we bound the
cardinality of A and S respectively.

Lemma 1 At the end of Stage 1, it holds that |A| ≤ M .

Proof Consider the moment right before some vertex v is added to A. Due to the
loop condition, we have |C| ≥ δn, and |A ∪ B| = n − |C| ≤ (1 − δ)n. Thus, the
number of edges in E with both endpoints in A ∪ B is at most ((1 − δ)n)2/2. Since

260 J Comb Optim (2013) 25:255–264

Algorithm 1 Approximate SSF in c-dense graphs
Input: A c-dense graph G = (V ,E).
Output: A spanning star forest of G.

If n ≤ N0 we perform the exhaustive search to get the optimal solution. In the
following we assume n > N0.
A ← ∅, B ← ∅, C ← V .
Stage 1:
while |C| ≥ δn do

Find the vertex v ∈ B ∪ C that dominates the largest number of vertices in C.
Set A ← A ∪ {v}, B ← N [A] \ A, and C ← V \ N [A].

end while
Stage 2:
Construct an instance I = (G′,V ′) of CPDS, where G′ is the subgraph of G in-
duced on the vertex set B ∪ C, and V ′ = C. Run the α-approximation algorithm
for CPDS on I to get a dominating set of C, denoted by S.
return a spanning star forest rooted on A ∪ S.

|E| ≥ cn2/2, the number of edges in E with at least one endpoint in C is at least
cn2/2 − ((1 − δ)n)2/2 = n2/M . Let E1 be the set of edges with one endpoint in B

and another in C, and E2 be the set of edges with both endpoints in C. Note that the
previous statement is equivalent to |E1| + |E2| ≥ n2/M , since by definition there are
no edges between A and C.

For any vertex v ∈ B ∪ C, let D(v) = N [v] ∩ C be the set of vertices in C

dominated by v. Consider D = ∑
v∈B∪C |D(v)|. It is easy to see that every edge

in E1 contributes 1 to this sum, while each edge in E2 contributes 2. Hence,
D = |E1|+2|E2| ≥ n2/M , from which we know that there exists a vertex v∗ ∈ B ∪C

such that |D(v∗)| ≥ n/M . Note that the greedy step in the algorithm is just to pick the
vertex v with the largest |D(v)|. Therefore, after adding v to A and updating B and
C correspondingly, the size of A ∪ B increases by at least n/M . Since there are only
n vertices, we can add at most M of them to A, completing the proof of Lemma 1. �

Lemma 2 |S| ≤ δ(1−α)n+αk, where k is the size of the smallest subset U ⊆ B ∪C

that dominates C.

Proof By the definition of CPDS, we know that the value of the optimum solution
to its instance I defined in Algorithm 1 is precisely |C| − k. As the solution S is
obtained by applying the α-approximation algorithm for CPDS, we have |C| − |S| ≥
α(|C|− k). Rearranging terms gives |S| ≤ (1 −α)|C|+αk ≤ δ(1 −α)n+αk, where
the second inequality follows from the fact that |C| ≤ δn at the end of Stage 1. �

We are ready to prove our main theorem.

Theorem 2 Algorithm 1 is a (α + (1 −α)
√

c − 2ε)-approximation algorithm for the
spanning star forest problem in c-dense graphs.

J Comb Optim (2013) 25:255–264 261

Proof Clearly Algorithm 1 runs in polynomial time. Furthermore, it finds the optimal
spanning star forest of G when n ≤ N0, and produces a solution of size n−|A|−|S| ≥
(1− δ(1−α))n−αk −M when n > N0, by Lemmas 1 and 2. The size of the optimal
solution is n − k∗, where k∗ is the size of the smallest dominating set of G. It is easy
to see that k∗ is not smaller than the size of the smallest subset of V that dominates C.
Since no edges exist between A and C, the latter quantity is equal to k, the size of
the smallest subset of B ∪ C that dominates C. Therefore, we have n − k∗ ≤ n − k.
We also note that k ≤ |C| ≤ δn since C dominates itself. The approximation ratio of
Algorithm 1 can thus be bounded from below by

(1 − δ(1 − α))n − αk − M

n − k∗

≥ (1 − δ(1 − α))n − αk − M

n − k

= α + (1 − α)(1 − δ)n

n − k
− M

n − k

≥ α + (1 − α)(1 − δ) − M

n − δn

≥ α + (1 − α)(
√

c − ε) − M

(1 − δ)N0

≥ α + (1 − α)
√

c − 2ε,

which concludes the proof of Theorem 2. �

4 Hardness results

We now show that for every 0 < c < 1, SSF in c-dense graphs does not admit a
polynomial-time approximation scheme, unless P = NP. Thus, the technique devel-
oped by Arora et al. (1999) for designing PTAS for combinatorial problems in dense
instances cannot be applied to this problem.

Theorem 3 For any constant c ∈ (0,1), there exists a constant ε = ε(c) > 0, such
that it is NP-hard to approximate the spanning star forest problem in c-dense graphs
to a factor of 1 − ε.

Proof We reduce the general SSF problem to SSF in c-dense graphs. Let G = (V ,E)

be an input to general SSF. Let n = |V |, k = �2
√

c/(1−√
c)�, and let OPT denote the

size of the largest spanning star forest of G. It is easy to verify that k >
√

c(k + 1).
We assume w.l.o.g. that n ≥ k/(k2 − c(k + 1)2) > 0, since otherwise we can just
do a brute-force search for the constant-size (note that k and c are both constants)
input graph. We also assume that G is connected, since connected and disconnected
versions of general SSF share the same hardness-of-approximation result. We thus
have OPT ≥ n/2, since any connected graph on n vertices has a dominating set of
size at most n/2. Let H be a complete graph on a vertex set of size kn which is
disjoint from V , and let G′ = G ∪ H .

262 J Comb Optim (2013) 25:255–264

We verify that G′ is c-dense. As G′ has n′ = (k +1)n vertices and at least kn(kn−
1)/2 edges, it suffices to show that kn(kn − 1)/2 ≥ c(k + 1)2n2/2, or n ≥ k/(k2 −
c(k + 1)2), which is exactly our assumption on n. Since G′ consists of two disjoint
components, it is clear that OPT ′ = OPT + kn − 1, OPT ′ denoting the size of the
largest spanning star forest of G′. Moreover, given a spanning star forest of G′ of
size s′, we can easily construct a spanning star forest of G of size at least s′ − (kn −
1). Thus, given any β-approximation algorithm for SSF in c-dense graphs, we can
obtain a spanning star forest of G of size β(OPT + kn − 1) − (kn − 1). On the other
hand, we know that there is a constant γ > 0 such that approximating general SSF
within 1 − γ is NP-hard (Nguyen et al. 2008). Therefore, there exists G such that
β(OPT + kn − 1) − (kn − 1) ≤ (1 − γ)OPT , from which we derive that

β ≤ (1 − γ)OPT + kn − 1

OPT + kn − 1

= 1 − γ + γ (kn − 1)

OPT + kn − 1

≤ 1 − γ + γ (kn − 1)

n/2 + kn − 1

< 1 − γ + γ k

k + 1/2
.

The proof is completed by choosing ε = γ /(2k + 1). �

We have designed an algorithm for SSF in c-dense graphs whose approximation
ratio outperforms the best known bound for general SSF, for every 0 < c < 1. A natu-
ral question is whether we can generalize our technique to weighted versions of SSF.
A little surprisingly, we show in the following that this is not the case: We cannot
design any approximation algorithm for node- (resp. edge-)weighted SSF in c-dense
graphs with a strictly larger performance guarantee than that of general node- (resp.
edge-)weighted SSF.

Theorem 4 For any constants c ∈ (0,1) and β, ε > 0, the existence of a β-
approximation algorithm for node- (resp. edge-)weighted SSF in c-dense graphs im-
plies that of a (β − ε)- (resp. β-)approximation algorithm for node- (resp. edge-)
weighted SSF in general graphs.

Proof The edge-weighted case is easy since we can regard every edge-weighted
graph as a complete graph (which is c-dense for any c < 1 and large enough n)
with some edges having weight 0. Thus, in the following we consider the node-
weighted version of SSF. Fix c, ε and β . Let G = (V ,E) be an input graph to
node-weighted SSF, and w : V → Q+ ∪ {0} be the weight function on its nodes.
Let n = |V | and OPT denote the maximum weight of a spanning star forest of G.
We assume that OPT > 0 since the case of OPT = 0 is easily detectable. Let
w∗ = min{w(v) : v ∈ V and w(v) > 0}. Clearly OPT ≥ w∗. We apply a reduction
similar to that used in the proof of Theorem 3 to get a c-dense graph G′ = G ∪ H ,
with the only difference that we set the weights of all vertices in H to 1, and mul-
tiply the weights of all vertices in G by a factor of Δ = (1 − β)(kn − 1)/(εw∗)

J Comb Optim (2013) 25:255–264 263

(recall that k is the constant defined in the proof of Theorem 3). Now we have
OPT ′ = Δ · OPT + kn − 1 where OPT ′ denotes the maximum weight of a span-
ning star forest of G′, and a spanning star forest of G′ of weight s′ can be easily
transformed to a spanning star forest of G of weight at least (s′ − (kn− 1))/Δ. Thus,
given a β-approximation to node-weighted SSF in c-dense graphs, we can design an
approximation algorithm for node-weighted SSF in general graphs with an approxi-
mation ratio of

β ′ ≥ (β(Δ · OPT + kn − 1) − (kn − 1))/Δ

OPT

= β − (1 − β)(kn − 1)

Δ · OPT

≥ β − (1 − β)(kn − 1)

Δ · w∗ = β − ε,

concluding the proof of Theorem 4. �

Finally, we show that the dominating set problem, as the complement of SSF,
remains hard to approximate even in dense graphs.

Theorem 5 For any constants c ∈ (0,1) and ε > 0, there is no (1 − ε) lnn-
approximation algorithm for dominating set in c-dense graphs, where n is the number
of vertices in the input graph, unless NP ⊆ DTIME(nO(log logn)).

Proof We show how to use a (1 − ε) lnn-approximation for dominating set in c-
dense graphs to design a (1 − ε′) lnn-approximation for dominating set in gen-
eral graphs, thus proving the theorem since by Feige (1998) this implies NP ⊆
DTIME(nO(log logn)). Given a graph G = (V ,E), we first exhaustively check if the
optimal dominating set has size at most �1/ε�. If so, we can find it in polynomial time.
Otherwise, we apply a reduction similar to that used in the proof of Theorem 3 to ob-
tain a c-dense graph G′. Denoting by OPT and OPT ′ the size of the minimum domi-
nating set of G and G′ respectively, it is clear that OPT ′ = OPT +1, and a dominating
set of G′ of size s can be easily converted to one of G of size at most s − 1. There-
fore, given a (1−ε) lnn-approximation for dominating set on c-dense graphs, we can
obtain an approximation algorithm for it on general graphs with approximation ratio
at most ((1 − ε) lnn(OPT + 1)− 1)/OPT < (1 − ε) lnn(1 + 1/OPT) ≤ (1 − ε2) lnn,
since OPT ≥ �1/ε�. This finishes the proof of Theorem 5. �

5 Conclusion

In this paper, we explored the spanning star forest problem in c-dense graphs, and
devised an algorithm with approximation ratio better than the previously best known
ratio for this problem in general graphs. We also showed that this problem does not
admit a PTAS unless P = NP, thus ruling out the possibility of applying the general
technique developed by Arora et al. to this problem. We then showed hardness results
for its weighted versions as well as its complementary problem, the dominating set
problem in dense graphs.

264 J Comb Optim (2013) 25:255–264

An interesting open question is whether we can generalize the notion of c-dense
graphs to allow c = o(1) and still get better approximation than in general graphs.
Such graphs have recently been considered by Cardinal et al. (2010), on which they
obtain tight approximation bounds for several combinatorial problems, including ver-
tex cover, connected vertex cover and the Steiner tree problem. It is also of interests
to bridge the gap between algorithmic and hardness results for spanning star forest
in c-dense graphs, since the inapproximability factor derived by our reduction is very
close to 1.

References

Agra A, Cardoso D, Cerfeira O, Rocha E (2005) A spanning star forest model for the diversity problem in
automobile industry. In: Proceedings of the 17th European conference on combinatorial optimization
(ECCO), p XVII

Arora S, Karger D, Karpinski M (1999) Polynomial time approximation schemes for dense instances of
NP-hard problems. J Comput Syst Sci 58(1):193–210

Athanassopoulos S, Caragiannis I, Kaklamanis C, Kuropoulou M (2009) An improved approximation
bound for spanning star forest and color saving. In: 34th international symposium on mathematical
foundations of computer science (MFCS). LNCS, vol 5734, pp 90–101

Berry V, Guillemot S, Nicholas F, Paul C (2005) On the approximation of computing evolutionary trees. In:
11th international computing and combinatorics conference (COCOON). LNCS, vol 3595, pp 115–
125

Cardinal J, Langerman S, Levy E (2009) Improved approximation bounds for edge dominating set in dense
graphs. Theor Comput Sci 410:949–957

Cardinal J, Karpinski M, Schmied R, Viehmann C (2010) Approximating subdense instances of covering
problems. arXiv:1011.0078v2

Chakrabarty D, Goel G (2008) On the approximability of budgeted allocations and improved lower bounds
for submodular welfare maximization and gap. In: Proceedings of 49th annual IEEE symposium on
foundations of computer science (FOCS), pp 687–696

Chen N, Engelberg R, Nguyen CT, Raghavendra P, Rudra A, Singh G (2007) Improved approximation
algorithms for the spanning star forest problem. In: 10th intl workshop on approximation algorithms
for combinatorial optimization problems (APPROX). LNCS, vol 4627, pp 44–58

Duh R, Furer M (1997) Approximation of k-set cover by semi local optimization. In: Proceedings of the
29th annual ACM symposium on the theory of computing (STOC), pp 256–264

Feige U (1998) A threshold of lnn for approximating set cover. J ACM 45(4):634–652
Gaspers S, Kratsch D, Liedloff M, Todinca I (2009) Exponential time algorithms for the minimum domi-

nating set problem on some graph classes. ACM Trans Algorithms 6(1)
Imamura T, Iwama K (2005) Approximating vertex cover on dense graphs. In: Proceedings of the 16th

annual ACM-SIAM symposium on discrete algorithms (SODA), pp 582–589
Nguyen CT, Shen J, Hou M, Sheng L, Miller W, Zhang L (2008) Approximating the spanning star forest

problem and its applications to genomic sequence alignment. SIAM J Comput 38(3):946–962
Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and sub-constant error-probability

PCP characterization of NP. In: Proceedings of the 29th annual ACM symposium on the theory of
computing (STOC), pp 475–484

Schiermeyer I (1995) Problems remaining NP-complete for sparse or dense graphs. Discuss Math Graph
Theory 15:33–41

Vazirani V (2001) Approximation algorithms. Springer, Berlin

http://arxiv.org/abs/1011.0078v2

	Improved approximation for spanning star forest in dense graphs
	Abstract
	Introduction
	Our contributions
	Notation used for approximation algorithms

	Complementary partial dominating set
	Complementary set cover
	Complementary partial dominating set

	Algorithm description and analysis
	Hardness results
	Conclusion
	References

