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Abstract—To tackle the challenges brought by the renewable’s
stochastic nature, activities have been picked up: FERC order 755
requires ISOs to introduce mileage payment to frequency regu-
lation providers for more reliable and high quality services. This
payment is currently being collected from the ISOs despite the
fact that it is not ISOs who cause this extra payment. Therefore,
we submit that it is time to reconsider a fair cost allocation. In
particular, we study the impact of introducing the corresponding
‘mileage cost’ to the renewables for causing fluctuations in
the system. We start by formulating the problem with perfect
forecasting for an infinite horizon. Then, we investigate the role
of information by restricting our knowledge within a window,
i.e., the Model Predictive Control (MPC) approach. We prove
that the MPC approach can achieve near optimal performance
and further characterize the performance guarantee. Finally, we
propose a hierarchical control approach to initiate the discussion
on sharing, coordination, and privacy.

Keywords—model predictive control, hierarchical control, fair-
ness, mileage payment

I. INTRODUCTION

Last decade witnessed the soar of renewable energy in-

stallation all over the world, as shown in Fig. 1. These

newly installed renewable energy sources are contributing

a remarkable share in the electricity sector. In Germany,

with its continuous efforts towards zero operating nuclear

plant by 2022, its renewable energy (in particular, wind and

solar power) produced about 52 TWh, 20% of the nation’s

electricity, during the first half of 2014 [1]. United States and

many other nations, though have not seen such remarkable

market share of renewable energy, have also built up their

own plans for utilizing renewables. Take United States as an

example. Among the 50 states and the District of Columbia, 33

of them have set up their own renewable portfolio standards.

The most ambitious one is set by California, which requires

33% of renewable energy penetration by the year of 2020 [2].

A. Reconsideration on Integrating Renewables

While the increasing penetration of renewables helps

achieve a sustainable future, its stunning advances conceal

deeper problems: its stochastic nature constantly stresses the

power system. The current practice to avoid the disruption

from renewables is to conduct curtailment. In China, the

annual curtail rate is already very high: in 2015, China has

curtailed 33.9 TWh wind power, with a curtailment rate of

15%; the solar curtail rate in Gansu Province, China is as

high as 31% in the same year.

In US, the negative locational marginal prices for wind

power appear very often. The reason why renewable energy
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owners accept the negative prices is because of the generous

tax credits and other subsidies. The net metering policy is

responsible for much of the dramatic growth of distributed

photovoltaic (PV) generation. Utilities have started complain-

ing about the concept of net metering because it poses an

existential threat to their business models. In particular, under

net metering, the prosumers do not need to bear the true costs

of infrastructure, reserves, and reliability. That is, it is the high

time for us to calm down and rethink what should be the right

and necessary incentives to achieve the sustainable future that

we dreamed of. Otherwise, the growing PV generation may

even jeopardize our sustainable energy future.

We start by analyzing the newly introduced mileage pay-

ment for frequency regulation providers (required by the FERC

Order 755 [5]). The milage payment is the total arc curve

length of the regulation trace (i.e., the imbalance in the system

over time). It is designed to compensate and reward those

regulation providers with reliable and high quality services.

While currently this extra payment is paid by the system

operators, it is the high penetration of renewables that warrants

such a payment. The highly stochastic nature of single PV

panel outputs is demonstrated in Fig. 2. One natural approach

to fairly collect the mileage payment would be to (partially)

collect it from renewables. This motivates us to define the

concept of mileage cost. We employ the classical Model Pre-

dictive Control (MPC) approach to understanding the impact

of introducing such a cost, and characterize the renewable

owners’ best response under this condition.
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Fig. 1. Global renewable energy installation: (a) PV installation [3] (b) Wind
power installation [4].
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Fig. 2. Sample PV panel generation with 1 minute resolution.

In this paper, we are interested in an aggregator, where,

besides the loads, a set of photovoltaic (PV) panels are dis-

tributed in the system. Apparently, before introducing any cost

to integrate renewables, net metering makes it most beneficial

to sell all the excess PV generation back to the grid. And this

will no longer be true with mileage cost.

B. Related Works

There are two major bodies of related literature. Firstly, the

control schemes to accommodate renewable energy integration

have been extensively studied previously. Just to name a few,

in [6], Moura et al. identified the important role of DSM

for large scale wind power integration based on field data.

Stochastic control was introduced to optimize the management

of distributed renewable generators and storage units within

the smart grid paradigm in [7] and [8]. Huang et al. furthered

this research line by incorporating quality of service into the

paradigm in [9]. Interesting distributed control schemes to

tackle renewable energy penetration were discussed in [10]

and [11]. Different from previous works, we propose to take

the mileage cost into account, which fundamentally changes

the nature of the problem.

To solve the new problem, we employ the MPC (also

known as receding horizon control) approach, which has been

widely adopted in the power system control. In this paper, we

only review few of them that were proposed to smooth out

the fluctuations in the system. In [12], Palma-Behnke et al.
proposed a rolling horizon strategy-based energy management

system for microgrid. Atic et al. presented a decentralized

MPC approach to performing regulation in [13]. Camponogara

et al. introduced the communication-based distributed MPC

approach in [14]. Venkat et al. extensively compared various

MPC frameworks, and proposed a cooperation-based MPC for

the current AGC system in [15]. In [16], Roshany-Yamchi

et al. employed a distributed Kalman filter algorithm along

with the MPC scheme for frequency regulation. With the

popularity of plug-in electric vehicles, interesting MPC based

frequency regulation frameworks with time-varying resources

(the PHEVs) were discussed in [17], [18]. In contrast, the

mileage cost introduces more temporal coupling and makes

the theoretical analysis more challenging.

C. Our Contributions

In seek of demonstrating the impact of ‘mileage cost’, our

principle contributions are summarized as follows:

• Fair Cost Allocation: The introduction of mileage cost

allows us to understand the fair cost allocation of mileage

payment. We hope this will serve as the foundation to

inform regulators, policy makers, as well as renewable

generation owners cautiously develop renewables.

• Performance Analysis for MPC: We first connect MPC

with the aggregator’s decision making problem in an

infinite horizon. Then, we establish the performance

guarantee for MPC with limited window size.

• Hierarchical Control Framework: The MPC approach can

be easily implemented in a centralized fashion. However,

the hierarchical control framework enjoys the advantages

that centralized one lacks. With the awareness of privacy

and the success of sharing economy, a hierarchical control

framework will potentially enable the privacy-preserved

coordination, and the sharing economy for the electricity

sector.

The rest of the paper is organized as follows: Section II

introduces the problem formulation in the infinite horizon

and its MPC simplifications. Then, in Section III, we ana-

lyze the MPC performance guarantee by connecting the two

formulations. Section IV verifies the performance of MPC

approach with simulation. We generalize the MPC approach to

the hierarchical control framework in Section V. Concluding

remarks and future directions are given in Section VI.

II. PROBLEM FORMULATION

A. System Model

As shown in Fig. 3, the aggregator is supported by both

the PV panels and the utility company. Denote the set of all

end users by N . We assume each of them is equipped with

several PV panels. We denote the output of user n’s PV panels

by s̄n,t.

Conventionally, the aggregator will seek to solve the fol-

lowing optimization problem:

minimize
sn,t

∞∑
t=1

δt−1Co

(∑
n∈N

sn,t

)

subject to 0 ≤ sn,t ≤ s̄n,t,

(1)

where the conventional generation cost Co(·) can be defined
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Fig. 3. System model: Role of model predictive control.
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as a quadratic function:

Co

(∑
n∈N

sn,t

)

=a

(
dt −

∑
n∈N

sn,t

)2

+ b

(
dt −

∑
n∈N

sn,t

)
+ c

(2)

Here, a, b, c are the cost parameters; dt denotes the total

demand within the aggregator at time t; sn,t is the actual

dispatched solar energy from user n at time t. We use the

quadratic cost function to capture the case when the aggregator

acts as a microgrid operator. Net metering is just a special case

by setting a and c to be zero. Obviously, when dt is always

greater than the total solar power (which is often true for solar

power), the optimal solution to (1) is to fully utilize the solar

energy.

Notice mileage payment is calculated based on the total

arc curve length of compensating the load generation im-

balance. Since the generators can track the traditional load

very accurately, the renewables should now be responsible for

major imbalance. Therefore, we introduce the mileage cost in

response to mileage payment, which is proportional to the arc

curve length of renewable generations.

In the subsequent analysis, we first formulate our problem

in an infinite horizon under an idealized assumption, which

serves as the benchmark for optimality. Then, we relax this

assumption, and turn to a more realistic scenario by employing

a model predictive control (MPC) framework. In particular, we

show that the employed MPC approach is in fact ε-close to

the performance of the benchmark.

B. Infinite Horizon Problem Formulation

To cast our problem in an infinite horizon, we make the

following idealized assumption:

Assumption 1: All the predicted demand profiles dt’s for

all t = 1, · · · ,∞, and all the predicted solar panel outputs

sn,t for all n ∈ N and t = 1, · · · ,∞ are available to the

aggregator.

To indicate that the aggregator may not have the perfect

predictions, when taking the future information into account,

we always use a discount factor δ, where 0 ≤ δ < 1.

Therefore, in this case, the aggregator may seek to minimize

the following cost:

minimize
sn,t

∞∑
t=1

δt−1C

(∑
n∈N

sn,t

)

subject to 0 ≤ sn,t ≤ s̄n,t,

(3)

where

C

(∑
n∈N

sn,t

)
= Co + β

∣∣∣∣∣
∑
n∈N

sn,t −
∑
n∈N

sn,t−1

∣∣∣∣∣ . (4)

The first term is the conventional generation cost, the

second term stands for the mileage cost, and β is the design

parameter (price) for mileage cost. With mileage cost, it is

self-evident that it may not always be beneficial to inject the

maximal available renewable energy into the power system.

For example, when β → ∞, one optimal solution could be to

curtail all the renewable energies.

C. MPC Formulation

In practice, the prediction in an infinite horizon is im-

possible and most importantly, very inaccurate. Therefore,

intuitively, there is no need to consider the problem in an

infinite horizon in particular for time slots in the far future.

The MPC approach is a widely accepted approach to tackling

this kind of problem. At each time slot h, we only consider

the information within a window size of T , and conduct the

scheduling. In particular, only the schedule of the current time

slot is implemented, i.e., the schedule for time slot h. And this

process keeps going as h increases. Thus, the MPC approach

motivates us to relax Assumption 1:

Assumption 2: At time slot h, the predicted demand profiles

dt’s for all t = h, · · · , h+T −1, and the predicted solar panel

outputs sn,t for all n ∈ N and t = h, · · · , h + T − 1 are

available to the aggregator.

Under this assumption, at time h, the aggregator seeks to

solve the following problem:

minimize
sn,t

h+T−1∑
t=h

δt−hC

(∑
n∈N

sn,t

)

subject to 0 ≤ sn,t ≤ s̄n,t,

(5)

Unlike the infinite horizon version, problem (5) can be

easily solved using convex optimization techniques (e.g., using

CVX solver [19]).

III. MPC PERFORMANCE GUARANTEE

In this section, we try to understand the performance

guarantee of the MPC approach. The analysis largely relies

on the fact that the generation of each PV is bounded.

Denote the maximal capacity of solar panel n by s̄mn,t. Then,

for any two feasible solutions to problem (5), denoted by

(s1n,t, ∀n, ∀t) and (s2n,t, ∀n, ∀t), respectively, we know that for

all t = h, · · · , h+ T − 1,

C

(∑
n∈N

s1n,t

)
− C

(∑
n∈N

s2n,t

)

= a

(∑
n∈N

s1n,t −
∑
n∈N

s2n,t

)2

+ b

(∑
n∈N

s1n,t −
∑
n∈N

s2n,t

)

+ β

∣∣∣∣∣
∑
n∈N

s1n,t −
∑
n∈N

s1n,t−1

∣∣∣∣∣− β

∣∣∣∣∣
∑
n∈N

s2n,t −
∑
n∈N

s2n,t−1

∣∣∣∣∣
≤ a

(∑
n∈N

s̄mn,t

)2

+ b

(∑
n∈N

s̄mn,t

)
+ β

∑
n∈N

s̄mn,t

.
= A.

(6)

By further analysis, we can prove that

2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)



Theorem 1: The proposed MPC approach is ε-close to the

original problem (3), where

ε =
δTA

1− δ
. (7)

Proof: We prove this theorem by induction. For each time

slot h, the MPC approach provides the solution for time

slots h, · · · , h + T − 1. The energy dispatch outcomes at

time slots 1, · · · , h have already been determined by previous

optimizations. For the rest energy dispatch outcomes, we

simply use the energy dispatch outcomes given by a greedy

approach, which uses all the renewable energy. Thus, we can

denote (sh,∗n,t , ∀t) the energy dispatch outcomes given by the

MPC optimization at time slot h. We prove that this series

of energy dispatch outcomes is ε-close to the energy dispatch

outcomes (s∗n,t, ∀t) given by problem (3).

Base Case: When h = 1, if we implement (s1,∗n,t, ∀t), then we

know

∞∑
t=1

δt−1

(
C

(∑
n∈N

s1,∗n,t

)
− C

(∑
n∈N

s∗n,t

))

=

T∑
t=1

δt−1

(
C

(∑
n∈N

s1,∗n,t

)
−C

(∑
n∈N

s∗n,t

))

+

∞∑
t=T+1

δt−1

(
C

(∑
n∈N

s1,∗n,t

)
−C

(∑
n∈N

s∗n,t

))

≤
∞∑

t=T+1

δt−1

(
C

(∑
n∈N

s1,∗n,t

)
− C

(∑
n∈N

s∗n,t

))

≤ δTA

1− δ
.

(8)

The first inequality comes from the fact that (s1,∗n,t, t =
1, · · · , T ) is the optimal solution to problem (5), and the

second inequality is a direct result from (6).

Inductive Step: Suppose at time slot h = k, the energy dispatch

outcome (sk,∗n,t , ∀t) is ε-close to the optimal energy dispatch

outcomes. Then, at time slot h = k + 1,

∞∑
t=1

δt−1

(
C

(∑
n∈N

sk+1,∗
n,t

)
− C

(∑
n∈N

s∗n,t

))

=
k+T∑

t=k+1

δt−1

(
C

(∑
n∈N

sk+1,∗
n,t

)
−C

(∑
n∈N

sk,∗n,t

))

+

∞∑
t=1

δt−1

(
C

(∑
n∈N

sk,∗n,t

)
−C

(∑
n∈N

s∗n,t

))

≤
∞∑
t=1

δt−1

(
C

(∑
n∈N

sk,∗n,t

)
− C

(∑
n∈N

s∗n,t

))

≤ δTA

1− δ
.

(9)

Again, the first inequality comes from the fact that (s1,∗n,t, t =
k+1, · · · , k+T ) is the optimal solution to problem (5) at time
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Fig. 5. Impact of window size W .

slot h = k + 1, and the second inequality uses the inductive

assumption. Thus, we complete the proof. �

IV. SIMULATION RESULTS

In this section, we conduct the simulation to verify the

performance of our proposed approach. The total load profile

within the aggregator is shown in Fig. 4, with 1-minute

resolution. Suppose the aggregator controls 50 PV panels. For

simplicity, the conventional generation cost parameters are set

as follows: a = 5 $/MW2, b = c = 0. The mileage cost

parameter β is set to be 100 $/MW. We set the discount factor

to be 1 in the simulation.

Fig. 5(a) demonstrates the MPC performance (dashed blue

line) with T = 10 min. It largely follows the optimal control

schedule (solid green line), but still fluctuates from time to

time. Fig. 5(b) shows the results when the window size is

15 minutes. Surprisingly, in this case, there is already almost

no difference between the MPC performance and the optimal

control schedule. This means that if we can obtain the reliable

solar energy forecasting in 15 minutes, the aggregator can

already conduct the optimal control.
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V. GENERALIZATION

We have avoided discussing the fact that there could be

infinitely many solutions to problem (5). Though every solu-

tion performs the same curtailment to the aggregator, different

solution means significantly different to each PV panel. Hence,

in this section, we will first discuss the coordination of PVs

within the aggregator.

A. Coordination within the Aggregator

Note that, in problem (5), the variables sn,t’s appear in the

objective function only in its aggregate form, i.e.,
∑

n∈N sn,t.
This motivates us to define

lt =
∑
n∈N

sn,t, (10)

and thus, problem (5) can be simplified to

minimize
sn,t

h+T−1∑
t=h

δt−hC (lt)

subject to 0 ≤ lt ≤ l̄t.

(11)

In fact, this formulation is more desired, since l̄t’s are often

more predictable to the aggregator.

With such a simplification, we can show that problem (11)

has a unique solution:

Theorem 2: Problem (11) has a unique solution when the

cost parameter a > 0.

Proof: The proof directly follows from the facts that the

objective function is strictly convex and the constraint set is

convex.

It is not hard to observe that problem (5) may have infinitely

many optimal solutions. Therefore, it is natural to ask, is the

unique minimizer to problem (11) corresponds to the set of

solutions to problem (5) in their aggregate form? Since the

constraints in both (5) and (11) are not coupled in time, we can

design a round-robin fashion greedy algorithm to efficiently

construct a feasible solution to problem (5) using the unique

minimizer to problem (11). Then, apparently, this feasible

solution is one of the solutions to problem (5). We can formally

state this argument in the following theorem.

Theorem 3: There exists at least one solution (s∗n,t, ∀n, t =
h, · · · , h+T − 1) to problem (5) in response to the aggregate

form solution (l∗t , t = h, · · · , h+T − 1) provided by problem

(11).

In fact, we can show that all the optimal solutions to (5)

correspond to (l∗t , t = h, · · · , h + T − 1), which achieve the

same goal of minimizing the cost. However, not all solutions

are equally desired by the end users (the owners of the

PV panels). For example, injecting more solar power to the

system may help the end user obtain more profits through net

metering. Therefore, certain fairness metric should be pursued

to avoid the bias in the curtailment. One possible example

could be

Main
Grid

Aggregator

Aggregator

MPC

MPC

Aggregator MPC
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Aggregator
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γ =
h+T−1∑
t=h

∑
n∈N

(
sn,t − l∗t

N

)2

. (12)

Note that, we do not consider the discount factor here because

the solution (l∗t , t = h, · · · , h + T − 1) has already taken

the discounting effect into account. To pursue this kind of

fairness metric while maintaining the goal of minimizing cost,

the following optimization problem needs to be solved:

minimize
sn,t

h+T−1∑
t=h

∑
n∈N

(
sn,t − l∗t

N

)2

subject to
∑
n∈N

sn,t = l∗t ,

0 ≤ sn,t ≤ s̄n,t.

(13)

Problem (13) can be efficiently solved in a centralized

fashion. If privacy is a concern, (e.g., s̄n,t could be confidential

information), the problem can also be solved in a privacy

preserving distributed way. A detailed discussion, however, is

beyond the scope of this paper.

B. Coordination between Aggregators

We have discussed how to conduct the MPC within each

aggregagtor. From the system operator’s point of view, how-

ever, without coordination (as shown in Fig. 6(a)), this cannot

achieve the most effective curtailment. Instead, the global

most effective curtailment can be conducted in a centralized

fashion, as suggested by Fig. 6(b). This motivates us to
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discuss the coordination between aggregators in this section.

In particular, we propose a hierarchical control framework

which will further enable the privacy preserve and peer-to-

peer coordination.

In the first hierarchy, the system operator makes fore-

casting on the total PV generation (or more generally, the

total renewable generation) within its control. Note that, in

our Assumption 2, we assume the aggregator has perfect

information about the total PV generation within the window,

which is not very practical. However, the total solar power

generation forecasting can be rather accurate to the system

operator. It will compute the global control signal based on

this information, in a fully centralized way, as suggested by

Fig. 7. In the second hierarchy, the coordination between

aggregators can be achieved in many ways. For example, the

system operator could assign the participation factors to the

each aggregator, just as the case for frequency regulation.

The more interesting alternatives will ask the aggregators to

communicate with each other, and make the decisions on their

own. We imagine there are at least two very distinct ways to

enable the communication:

• One approach requires the system operator’s own es-

timation on the mileage cost parameter β, then the

system operator could employ the distributed control and

enable the communication between aggregators. There is

a very rich body of research on distributed control for

networked systems, see [20] for a detailed survey. The

system operator can also enforce the privacy preserving

techniques when gathering the information [21].

• The other approach reveals the mileage cost parameter

from the market. For example, the system operator could

employ an auction for the curtailment. Each aggregator

will simply submit the supply bids to sell its solar energy.

We note that, auction is only one possible way to achieve

such a market. A detailed discussion, however, is beyond

the scope of this paper.

VI. CONCLUSION

In this paper, we target the fair cost allocation issue.

Particularly, we introduce the ‘mileage cost’ in response to

the mileage payment. Based on this cost, we cast the problem

in the MPC approach and analyze its performance guarantee

rigorously. With simulation, we surprisingly observe that after

the introduction of mileage cost, it is possible to conduct the

optimal control with the reliable forecasting only for the next

15 minutes.

We believe that our analysis will initiate many interesting

subsequent discussions. For example, mileage cost is a natural

counterpart to mileage payment. This, however, does not mean

mileage cost is the best way to incentivize the renewables

to help the system operation. In fact, FERC Order 755 only

requires the system operators to design performance payment

to compensate for the high quality frequency regulation. The

only reason for introducing such a cost is because PJM

and several other ISOs have already implemented mileage

payment, but it remains unclear if mileage payment is among

the best choices to optimally utilize the frequency regulation

providers. On the other hand, Section V shows a general

hierarchical control framework to enable the coordination and

sharing between different aggregators. It will be interesting to

further rigorously understand this dynamic process and storage

system’s impact on the process.
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