
Dynamic Edge Coloring with Improved Approximation

Ran Duan ∗ Haoqing He † Tianyi Zhang ‡

Abstract

Given an undirected simple graphG = (V,E) that undergoes

edge insertions and deletions, we wish to efficiently maintain

an edge coloring with only a few colors. The previous best

dynamic algorithm by [3] could deterministically maintain a

valid edge coloring using 2∆−1 colors with O(log ∆) update

time, where ∆ stands for the current maximum vertex degree

of graph G. In this paper, we first propose a new static

(1 + ε)∆ edge coloring algorithm that runs in near-linear

time. Based on this static algorithm, we show that there is

a randomized dynamic algorithm for this problem that only

uses (1+ε)∆ colors with O(log8 n/ε4) amortized update time

when ∆ ≥ Ω(log2 n/ε2), where ε > 0 is an arbitrarily small

constant.

1 Introduction

Graph edge-coloring is a basic problem in computer
science. A valid edge coloring of a simple undirected
graph is an assignment of all edges to colors such that no
two different edges with the same color share a common
endpoint. Clearly, any valid edge coloring must use at
least ∆ different colors, where ∆ denotes the maximum
vertex degree in the graph. On the one hand, a cubic
time algorithm from [16] could compute a ∆+1 coloring
for any graphs; on the other hand, it was proved in [11]
that deciding whether the minimum number of colors
used by any edge coloring is ∆ or ∆+1 is NP-complete.

In this paper we study the edge coloring problem
in a dynamic setting; namely the underlying graph
undergoes a sequence of edge insertions and deletions,
and we wish to efficiently maintain a valid edge coloring
using a small number of different colors. This problem
was first studied in [2] which gave a dynamic algorithm
with Õ(

√
∆) worst-case update time using O(∆) colors.

This result was significantly improved by [3] which
proposed a simple deterministic dynamic algorithm
using 2∆ − 1 colors with O(log ∆) worst-case update
time. As we can see from the literature, so far there is
no dynamic algorithm that could efficiently maintain a

∗Institute for Interdisciplinary Information Sciences, Tsinghua
University, duanran@mail.tsinghua.edu.cn
†Institute for Interdisciplinary Information Sciences, Tsinghua

University, hehq13@mails.tsinghua.edu.cn
‡Institute for Interdisciplinary Information Sciences, Tsinghua

University, tianyi-z16@mails.tsinghua.edu.cn

valid edge coloring using 2∆ − 2 colors. The essential
difference between 2∆− 1 coloring and 2∆− 2 coloring
is that the former problem is locally-fixable [3] while the
latter is not. Local fixability usually makes a dynamic
problem easier because one can always recover the
output without changing much of the current structure.

So what do we know about edge coloring with
less than 2∆ − 1 colors? A negative result from [4]
shows that, for any c ≤ ∆/3, there exists a (∆ + c)
partially colored graph with a unique uncolored edge,
such that in order to obtain a full (∆ + c) edge coloring
of the entire graph, one always needs to change the
colors of Ω(∆

c log n) many different edges. Therefore, it
seems rather hard to look for dynamic algorithms with
poly(log n, 1/ε) update time using, say, ∆ +

√
∆ colors,

because of a lower bound of Ω(
√

∆ log n) which is large
when ∆ is polynomially large. Given this, it would be
natural to consider edge coloring using at most (1+ε)∆
colors, where ε ∈ (0, 1) is a constant value.

Problem 1. Is there a dynamic algorithm that effi-
ciently maintains a (1 + ε)∆ edge coloring?

Our results We have made a partial progress to
answer Problem 1 by proposing a dynamic algorithm
that maintains a (1 + ε)∆ edge coloring with poly-
logarithmic amortized update time but only for ∆ ≥
Ω(log2 n/ε2). The main idea of our dynamic algorithm
originates from a new near-linear time algorithm for
the static version of (1 + ε)∆ edge coloring, which is
a byproduct of this paper.

Theorem 1.1. For any constant ε > 0, there exists a
randomized algorithm that finds a (1+ε)∆ edge coloring
for a simple undirected graph G (in the static setting)
in O(m log6 n/ε2) time, where ∆ = Ω(log n/ε) is the
maximum vertex degree.

This is the first near-linear time algorithm for edge
coloring in general graphs using (1 + ε)∆ colors with
ε < 0.5. Previously we only know about two near-
linear time algorithms for bipartite graphs [1, 5] using
exactly ∆ colors, and by a reduction from edge coloring
in general graphs to bipartite graphs, these algorithms
yield a 3d∆/2e1 edge coloring algorithm for general

1We thank an anonymous reviewer for pointing out this result.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1937

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

graphs in near-linear time [12]. For general graphs with
∆ + 1 colors, the well-known Vizing’s algorithm [16]
gives an O(mn) time upper bound, which was improved
to Õ(∆m) and Õ(mn1/2) in [9], still far from being near-
linear when ∆ is polynomially large.

Next we state our main results for dynamic edge
coloring with an improved approximation for large
values of ∆ with poly-logarithmic update time.

Theorem 1.2. For any constant ε > 0, there is a
randomized fully dynamic algorithm that maintains a
(1 + ε)∆ edge coloring of an undirected simple graph
in worst-case O(log7 n/ε2) update time, where ∆ =
Ω(log2 n/ε2) denotes an upper bound on the maximum
vertex degree and is a fixed value throughout edge
insertions and deletions.

Theorem 1.3. For any constant ε > 0, there is a
randomized fully dynamic algorithm that maintains a
(1 + ε)∆ edge coloring of an undirected simple graph
in amortized O(log8 n/ε4) update time, where ∆ =
Ω(log2 n/ε2) denotes the maximum vertex degree and
could possibly change over time.

As we will see, Theorem 1.3 is achieved by applying
Theorem 1.2 as a black box to deal with a changing
parameter ∆, but with a cost of turning a worst-case
update time into an amortized update time.

Related work Dynamic edge coloring is a relatively
new problem in the field of dynamic graph algorithms.
Other than the two papers [3, 2] we have mentioned,
there are only a few experimental results [7, 13, 15, 10].

Another line of work focuses on edge coloring in the
LOCAL model. Here is a brief overview of distributed
algorithms on edge coloring using less than 2∆ − 1
colors. All known LOCAL algorithms are randomized,
expect for the (∆ + 1) coloring from [16] which takes
time proportional to the graph diameter. When one
is allowed to use 1.6∆ colors, there is a randomized
algorithm by [14] with O(log n) running time that works

for all ∆ > log1+o(1) n. As for (1 + ε)∆ edge coloring,
the earliest result from [6] uses O(ε−1 log ε−1 + log n)

time under the condition that ∆ > log1+o(1) n. The
range of ∆ was extended to ∆ > ∆ε in [8] along
with an algorithm with running time O((ε−2 log ε−1 +
log∗ n)d logn

ε2∆1−o(1) e), where ∆ε is a constant that only
depends on ε. The running time was significantly
improved by [4] to O(log ε−1d logn

ε2∆1−o(1) e + log∗ n) and

O(log ε−1d logn
ε2∆1−o(1) e + (log log n)3+o(1)) that works for

all ∆ > (log n)1+o(1)/ε and ∆ > ∆ε respectively. To go
beyond (1 + ε)∆ colors, [4] also proposed an algorithm
with O(log ∆d logn

ε2∆1−o(1) e + (log log n)3+o(1)) time using

∆ + Õ(
√

∆) colors, which works for any value of ∆.

2 Preliminaries

Let G = (V,E) be the undirected simple graph of
interest, with n = |V | and m = |E|. Denote by ∆
an upper bound on the maximum vertex degree of G.
Let S = [(1 + ε)∆] be the set of all available colors,
where 0 < ε < 1 is a constant. Throughout the
execution of our algorithms (static and dynamic), let
EdgeColor : E → S ∪ {⊥} be the current coloring of
edges by our algorithms. For any edge e ∈ E, when
EdgeColor[e] = i ∈ [(1 + ε)∆], it means e is colored with
the i-th color; when EdgeColor[e] =⊥, it means e is not
colored yet, and thus EdgeColor would be a partial edge
coloring of graph G. For any vertex v ∈ V , define set
UsedColor[v] = {EdgeColor[e] | e = (v, u), u ∈ V } be the
set of colors (including ⊥) around v. Finally, for any
partially colored graph G and any subset U ⊆ V , let
G[U] be the induced subgraph of G on vertex subset U
with the same partial coloring.

Next we discuss some basic tools which will be
utilized in our static and dynamic algorithms. Consider
any partially colored graph G. First we introduce a
new notion of “palette” which refers to a proper subset
of colors.

Definition 2.1. (palette) For a partially colored G,
a color subset C ⊆ S is a palette, if for every vertex
v ∈ V , C ∩ (S \ UsedColor[v]) 6= ∅; in words, there is a
color from C which is not present around v.

The following lemma shows an easy construction of
palettes using randomization.

Lemma 2.2. Let G be a partially colored graph, and
let B be a positive constant integer. Then, as long as
∆ ≥ Ω(B log n/ε) a random subset of colors C ⊂ S of
size dB log n/εe makes a valid palette with respect to the
partial coloring, with probability 1− n−B/2+1.

Proof. Because of a uniform upper bound of ∆ on vertex
degrees, for each vertex v, at least a proportion of
ε/(1 + ε) colors are missing from its incident edges.
Hence a random color c ∈ S comes from S\UsedColor[v]
with probability at least ε/(1 + ε). Therefore, the
probability that C ∩ (S \ UsedColor[v]) = ∅ is smaller
than (1− ε/(1+ ε))B logn/ε < (1− ε/2)B logn/ε ≤ n−B/2.
By the union bound, with probability ≥ 1 − n−B/2+1,
we have C ∩ (S \ UsedColor[v]) 6= ∅ for all v ∈ V .

Another notion we heavily rely on is called “alter-
nating path” which is defined below.

Definition 2.3. (alternating path) Let G be a
partially colored graph. Let c1, c2 ∈ S be a pair of
different colors. An (c1, c2)-alternating path in G is
a simple path u1 → u2 → · · · → ul, such that: (1)

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1938

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

c2 /∈ UsedColor[u1], {c1, c2} \ UsedColor[ul] 6= ∅; (2)
EdgeColor[(u2i−1, u2i)] = c1, EdgeColor[(u2i, u2i+1)] =
c2,∀i.

These lemmas below should be folklore regarding
alternating paths.

Lemma 2.4. (vertex-disjointness) In any partially
colored graph G, for any pair of different colors c1, c2,
all different (c1, c2)-alternating paths are vertex-disjoint
or refer to the same simple path but in reverse order.

Lemma 2.5. Consider a flip operation: given any
(c1, c2)-alternating path denoted by u1 → u2 → · · · →
ul, we change the coloring EdgeColor[(u2i−1, u2i)] ←
c2,EdgeColor[(u2i, u2i+1)] ← c1,∀i. Then af-
ter this operation, this path becomes a (c2, c1)-
alternating path, and the partial coloring stays valid;
plus, UsedColor[u1] ← UsedColor[u1] ⊕ {c1, c2}2 and
UsedColor[ul] ← UsedColor[ul] ⊕ {c1, c2}, and all other
sets UsedColor[v], v /∈ {u1, ul} stay unchanged.

3 Static edge coloring in near-linear time

In this section we introduce a randomized near-linear
time algorithm for approximate edge coloring; that is,
we prove Theorem 1.1.

In the following lemma, we review an algorithm
that, given a palette, one can color any currently
uncolored edge by running Vizing’s algorithm only using
colors from this palette.

Lemma 3.1. (a slight revision of [16]) Let (u, v)
be an uncolored edge in G, and let C be a palette of
size O(log n/ε) with respect to the current partial color-
ing of G. Then we can adjust the part of G with colors
only from C so that (u, v) can be colored using a color
from C.

Proof. We compute a chain of vertices around u in
the following manner. Start from v0 = v, and k =
0. By Definition 2.1, there exists a color c0 ∈ C ∩
(S \ UsedColor[v0]). Suppose we already have two
sequences of different neighbors of u and colors which
are v0, v1, v2, · · · , vk and c0, c1, · · · , ck, such that: (1)
EdgeColor[(u, vi)] = ci−1,∀1 ≤ i ≤ k; (2) ci ∈ C ∩ (S \
UsedColor[vi]),∀0 ≤ i ≤ k. Then consider two cases
below.

• If ck is also not present around u, namely
ck /∈ UsedColor[u], then we simply rotate the col-
ors: EdgeColor[(u, v0)] ← c0,EdgeColor[(u, v1)] ←
c1, · · · ,EdgeColor[(u, vk)] ← ck. This opera-
tion would obtain a new partially coloring where
EdgeColor[(u, v)] 6=⊥.

2⊕ denotes symmetric difference between two sets.

• Else, there exists a unique neighbor w of u such that
(u,w) has color ck. If w has not appeared before
among v0, v1, v2, · · · , vk, then we set vk+1 = w and
increment k ← k+1; otherwise we do the following
things.

Assume w = vj for a j ∈ (0, k), and then cj−1 = ck.
Choose an arbitrary c ∈ C∩(S\UsedColor[u]). Find
the (ck, c)-alternating path starting at u. Consider
two possible cases of this alternating path.

(1) The path does not end at vj−1.
Then we change the coloring:
EdgeColor[(u, v0)] ← c0,EdgeColor[(u, v1)] ←
c1, · · · ,EdgeColor[(u, vj−1)] ← cj−1, and then
flip the coloring of the alternating path.

By Lemma 2.5, only endpoints of the alternat-
ing path change their UsedColor sets. Since
vj−1 is not one of the endpoints, assigning
UsedColor[(u, vj−1)]← cj−1 is legal. Also note
that this ends up with a valid partial coloring
with one more edge being colored, which is
(u, v0).

(2) The path ends at vj−1. Then we first flip
the coloring of the alternating path, and
modify the coloring: EdgeColor[(u, vi)] ←
EdgeColor[(u, vi+1)],∀0 ≤ i < k, and also
EdgeColor[(u, vk)]← ck.

Since before the modifications cj−1 /∈
UsedColor[vj−1], the alternating path must
end at vj−1 with a c-color edge. By
Lemma 2.5, after such modifications, we know
c /∈ UsedColor[vj−1], ck /∈ UsedColor[u], and
hence the final coloring is valid.

Pseudocode 1 below summarizes the algorithm de-
scribed in Lemma 3.1.

Corollary 3.1. Define L to be the length of the
(c1, c2)-alternating path described in the proof of
Lemma 3.1. Then Algorithm 1 can be implemented in
O(L log n+ log3 n/ε2) time.

Proof. Finding each ck can be done in time O(log2 n/ε)
by going over all choices in ck ∈ C and checking if ck ∈
S \UsedColor[vk] using a binary search tree. Also, using
binary search trees to index neighbors of vertices by
colors, the algorithm runs in timeO(L log n+k log2 n/ε),
if the algorithm ends up with a sequence of neighbors
v0, v1, · · · , vk. Now by the way the algorithm is defined,
all colors c0, c1, · · · , ck−1 are different and are from the
palette C, and therefore k ≤ |C| = O(log n/ε).

Now we turn to describe our main algorithm for the
static edge coloring problem. To efficiently color one

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1939

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 1: Vizing(u, v, C)

1 v0 ← v, k = 0;
2 while true do
3 select ck ∈ C ∩ (S \ UsedColor[vk]);
4 if ck /∈ UsedColor[u] then
5 EdgeColor[(u, vi)]←

EdgeColor[(u, vi+1)],∀0 ≤ i < k;
6 EdgeColor[(u, vk)]← ck;
7 return;

8 else
9 find w such that EdgeColor[(u,w)] = ck;

10 if w /∈ v1, · · · , vk−1 then
11 k ← k + 1;
12 vk ← w;

13 else
14 assume w = vj , j ∈ (0, k);
15 select c ∈ C ∩ (S \ UsedColor[u]);
16 find (ck, c)-alternating path ρ starting

at u;
17 if ρ does not end at vj−1 then
18 EdgeColor[(u, vi)]←

EdgeColor[(u, vi+1)],∀0 ≤ i < j;
19 flip the coloring of ρ;

20 else
21 flip the coloring of ρ;
22 EdgeColor[(u, vi)]←

EdgeColor[(u, vi+1)],∀0 ≤ i < k;
23 EdgeColor[(u, vk)]← ck;

24 return;

more edge in a partially colored graph, we might not
want to pick an arbitrary edge and apply Algorithm 1,
since the length of the alternating path could be as large
as Ω(n). The following lemma says that one can always
select an easy edge (u, v) so that L becomes small.

Lemma 3.2. Let G be a partially colored graph, and
let U be a vertex cover of all uncolored edge. Suppose
we can uniform-randomly take samples from U . Then
there is a randomized algorithm with running time

O(n log4 n
ε2|U |) that colors one more uncolored edge in G

with probability ≥ 1− n−9.

Proof. We are only interested in the case where |U | ≥
Ω(log3 n/ε2), since otherwise we directly run Algo-
rithm 1 on an arbitrary uncolored edge. Let u ∈ U
be any vertex. By definition there exists v ∈ V such
that (u, v) currently has no color (break ties in an arbi-
trary way). Then define (c1[u], c2[u]) to be the ordered
pair of colors from C of the alternating path if we choose
to run Algorithm 1 for the uncolored edge (u, v) with
palette C, and let ρ[u] be the corresponding alternating
path itself; if the algorithm does not take any alter-
nating path during its execution, then we simply define
(c1[u], c2[u]) = (⊥,⊥), and ρ[u] refers to an empty path.

Claim 3.3. All ρ[u],∀u ∈ U exist simultaneously in the
current graph G.

Proof of claim. This is because Algorithm 1 does not
change any color before it tries to find the alternating
path.

Our algorithm is fairly simple. We first take a
random palette of size 20 log n/ε, and then uniform-
randomly take a vertex u ∈ U , as well as a neighbor
v such that EdgeColor[(u, v)] =⊥. After that we run Al-
gorithm 1 on the uncolored edge (u, v); if the alternating

path ρ[u] has length ≥ 3200n log2 n
ε2|U | , then we abort and

start over. The following pseudo-code OneMore summa-
rizes this procedure.

By Corollary 3.1, the running time of OneMore is

O(n log4 n
ε2|U |). Next we analyze its correctness.

The total number of possible pair (c1[u], c2[u]) is
|C|(|C| − 1) + 1 < 400 log2 n/ε2. Define D ⊆ C2 ∪ {(⊥
,⊥)} such that for any (c1, c2) ∈ D, there exists at least
ε2|U |

800 log2 n
different u ∈ U with (c1[u], c2[u]) = (c1, c2).

We call u “good” if (c1[u], c2[u]) ∈ D.

Claim 3.4. At least half of vertices from U are good.

Proof of claim. By definition, for any (c1, c2) /∈ D,

there are at most ε2|U |
800 log2 n

many u ∈ U such that

(c1[u], c2[u]) = (c1, c2). Ranging over all different

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1940

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 2: OneMore(G,U)

1 for t = 1, 2, · · · , 30 log n do
2 sample a palette C ⊆ S of size 20 log n/ε;
3 uniform-randomly sample a vertex u ∈ U ,

and let v be its neighbor such that
EdgeColor[(u, v)] =⊥;

4 run Vizing(u, v, C) until it discovers

|ρ[u]| > 3200n log2 n
ε2|U | ;

5 if length of ρ[u] exceeds 3200n log2 n
ε2|U | then

6 abort the execution of Vizing(u, v, C),
and rollback all changes in the coloring;

7 else
8 (u, v) is guaranteed to get a color from C

and break;

choices of such (c1, c2) /∈ D, the total number of u ∈
U with (c1[u], c2[u]) = (c1, c2) is at most ε2|U |

800 log2 n
·

400 log2 n/ε2 = |U |/2.

Claim 3.5. Let A ⊆ U be a set of all good vertices with
an equal value of (c1[·], c2[·]). Then, for at least half of

u ∈ A, |ρ[u]| ≤ 3200n log2 n
ε2|U | .

Proof of claim. Suppose otherwise; that is, for more

than half of u ∈ A, |ρ[u]| > 3200n log2 n
ε2|U | . Since at

most two different u, v ∈ A can share the same (c1, c2)-
alternating path (that is, ρ[u] and ρ[v] refer to the
same simple path in reverse order), by Lemma 2.4
the union of all ρ[u], u ∈ A would have more than
1
2 ·
|A|
2 ·

3200n log2 n
ε2|U | ≥ n vertices, contradiction.

By the above two claims, with probability ≥ 1/2,
line-3 of OneMore takes a good u ∈ U ; conditioned
on that, with probability ≥ 1/2, line-4 is running on

an instance with |ρ[u]| ≤ 3200n log2 n
ε2|U | . Therefore, the

failure rate of every iteration over t is less than 3
4 +n−9,

and thus the overall success rate would be at least
1− (3

4 + n−9)30 logn > 1− n−9

Finally we show how to repeatedly apply Lemma 3.2
to prove Theorem 1.1.
Proof of Theorem 1.1. For every i ≤ log ∆, let
Vi = {u | deg(u) ∈ [2i, 2i+1)}. Consider the following
algorithm Color. Correctness of coloring is guaranteed
by Lemma 3.2. Next we focus on the running time.

Fix one iteration of the outer loop. Let ni = |Vi|,
and then by definition ni+ni+1 + · · ·+nlog ∆ ≤ m/2i−1.
By Lemma 3.2, each invocation of OneMore takes time

O(log4 n
ε2 (ni+ni+1+· · ·+nlog ∆)/h) ≤ O(m log4 n

ε22ih), where
we assume h denote the current number of vertices in Vi

Algorithm 3: Color(G = (V,E))

1 i = log ∆;
2 while i ≥ 0 do
3 build a uniform-random sampler on vertex

set Vi;
4 while G[Vi ∪ Vi+1 · · · ∪ Vlog ∆] is not fully

colored do
5 invoke

OneMore(G[Vi ∪ Vi+1 · · · ∪ Vlog ∆], U),
where U ⊆ Vi is the set of all vertices in
Vi with incident uncolored edges;

6 i← i− 1;

with uncolored incident edges. To make the summation

of such terms O(m log4 n
ε22ih) as large as possible, we should

consider the worst-case scenario where all uncolored
edges incident on the same vertex from Vi are colored by
consecutive invocations of OneMore. More specifically,
suppose for every 1 ≤ j ≤ ni, there are xj invocations
of OneMore with |U | = j. Then the running time is
proportional to:

ni∑
j=1

m log4 n

ε22ij
· xj =

m log4 n

ε22i

ni∑
j=1

xj
j

≤ m log4 n

ε22i
· (1

ni

ni∑
j=1

xj +

ni∑
j=1

1

j(j + 1)

j∑
k=1

xk)

≤ m log4 n

ε22i
· (2i+1 +

ni∑
j=1

1

j(j + 1)
· j · 2i+1)

≤ O(m log5 n/ε2)

Here the first inequality is by Abel transformation, and
the second is by

∑j
k=1 xk ≤ j · 2i+1. Therefore, the ag-

gregate running time summed over all outer loop itera-
tions becomes

∑log ∆
i=0 O(m·log5 n/ε2) = O(m log6 n/ε2),

which concludes the proof.

4 Dynamic edge-coloring with a fixed ∆

In this section we will prove Theorem 1.2. To put an
emphasis on the conditions of Theorem 1.2, we assume
∆ = Ω(log3 n/ε2) and is a fixed value throughout the
entire sequence of edge insertions and deletions. As
we will see, for now we don’t deal with a changing ∆
because when ∆ decreases, lots of colors might be illegal
and a large proportion of the graph coloring might be
invalidated.

Translation of the uncolored edge We will only be
focusing on edge insertions, since when an edge gets

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1941

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

deleted we do not modify the current edge coloring.
The rough idea is that, if the alternating path found
by Algorithm 1 is very long, then we can translate the
uncolored edge to many possible places. After that we
lower bound the probability that this translation could
bring this edge to a new position where the alternating
path is short. Next we formalize the idea of edge
translation.

Definition 4.1. Let G = (V,E) be a partially colored
graph where e ∈ E is the unique uncolored edge, and
let C be a palette with respect to G. For another edge
f ∈ E \{e}, we say e can be translated to f with palette
C if we can rewrite part of the current coloring of G
only with colors from C such that f becomes the unique
uncolored edge in G; here “only with colors from C”
means we only modify the current edges with colors from
C, and we only use colors from C.

Lemma 4.2. Let (u, v) be the unique uncolored edge in
G. Fix a palette C. Suppose Vizing(u, v, C) has found an
alternating path of length L. Then, for any odd integer
1 ≤ l ≤ L, (u, v) can be translated to the l-th edge on
the alternating path in O(l log n+log3 n/ε2) time. Plus,
the translation only uses colors from palette C.

Proof. We follow the notations defined in the proof of
Lemma 3.1. Let (u =)w1 → w2 → w3 → · · · → wL →
wL+1 denote the (ck, c)-alternating path found during
the execution of Vizing(u, v, C). For any odd integer
l ∈ [L], we next demonstrate how to translate (u, v)
to (wl, wl+1). Let (v =)v0, v1, v2, · · · , vj , · · · , vk be the
sequence of vertices defined in Algorithm 1. First we do
the rotation: EdgeColor[(u, v0)] ← EdgeColor[(u, v1)],
EdgeColor[(u, v1)] ← EdgeColor[(u, v2)], · · · · · · ,
EdgeColor[(u, vj−1)] ← EdgeColor[(u, vj)], and
EdgeColor[(u, vj)] ←⊥; this operation preserves
the validity of edge coloring so far, plus it translates
the unique uncolored edge from e to (u, vj) = (w1, w2).
This would prove the statement for l = 1.

For a general odd integer 1 < l ≤ L,
we reassign the colors: EdgeColor[(w1, w2)] ← c,
EdgeColor[(w2, w3)] ← ck, EdgeColor[(w3, w4)] ←
c, · · · · · · , EdgeColor[(wl−1, wl)] ← ck, and finally
EdgeColor[(wl, wl+1)]←⊥. Note that this operation also
preserves the validity of edge coloring because: (1) as
c /∈ UsedColor[u] right before, EdgeColor[(w1, w2)] ← c
does not make a violation; (2) all UsedColor[wj], 2 ≤ j ≤
l − 1 do not change.

This algorithm only involves at most l + log n/ε
edges, and thus the running time is bounded by
O(l log n + log3 n/ε2); also one can easily verify that
we are only dealing with colors from palette C.

Main algorithm We set out to describe our main
algorithm that handles edge insertions. For the rest
of this section, let h = logO(1) n/εO(1) and l = O(log n)
be two parameters to be specified later. Let (u, v) be a
newly inserted edge. Roughly speaking, the algorithm
iterates over l rounds. In each round, we tentatively
apply Algorithm 1 to the current unique uncolored
edge (which is initially (u, v)). If Algorithm 1 finds
an alternating path of length ≤ 2h, then it can color
this uncolored edge in time O(h log n) by Corollary 3.1.
Otherwise, by Lemma 4.2, the current uncolored edge
can be translated to any one of the first h edges on the
alternating path; in this case, we randomly pick one
of those edges as destination and translate the current
uncolored edge. Finally we remove all colors in the
palette selected in this round from S. Pseudo-code
Insert summarizes this algorithm.

Algorithm 4: Insert(u, v)

1 X ← S;
2 (x, y)← (u, v);
3 for t = 1, 2, · · · , l do
4 sample a palette C ⊂ X of size 20 log n/ε;
5 start to run Vizing(x, y, C);
6 if Vizing(x, y, C) has found an alternating

path of length ≤ 2h then
7 wait until Vizing(x, y, C) finishes, and

return;

8 else
9 apply Lemma 4.2 to (x, y) with respect

to palette C, and translate (x, y) to the
(2k − 1)-th edge (z, w) on the
alternating path, where 1 ≤ k ≤ h/2 is
picked uniformly at random;

10 (x, y)← (z, w);
11 X ← X \ C;

12 return;

Clearly its running time is bounded by O(hl log n).
One can see that by the end of Algorithm 4, G becomes
fully colored if and only if it returns on line-7.

Success rate analysis We turn to analyze the success
rate of an execution of Insert(u, v). For every 1 ≤ t ≤ l,
let Ct be the palette sampled in the t-th iteration.
Since the choices of C1, C2, · · ·Cl are independent of our
coloring scheme, we can assume they are all fixed right
from the beginning.

Lemma 4.3. With probability ≥ 1 − l · n−4 ≥ 1 −
O(n−4 log n), Ct is a palette with respect to the current
partially colored graph G, ∀1 ≤ t ≤ l.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1942

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof. The size of the remaining colors |X | = |S \⋃t−1
i=1 Ci| > (1 + ε)∆ − 10l log n/ε > (1 + ε/2)∆ as

∆ ≥ Ω(log2 n/ε2). Hence, by Lemma 2.2 with B = 10,
the probability that Ct is a palette is at least 1 − n−4,
and the statement follows from a union bound over all
1 ≤ t ≤ l.

We construct a probability tree T of depth l to
analyze the success rate. Roughly speaking, every
instance of Algorithm 4 can be viewed as a path that
starts at the root of T , and in each iteration of the for-
loop, it selects a child node according to the randomness
used on line-9 and travels downward. Next we formally
define the construction of T . Let T be a tree where
each node p ∈ T is associated with three fields:

• a type value Type[p] ∈ {1, 2, 3},

• a probability mass µ[p] ∈ [0, 1],

• a set E[p] of vertex-disjoint edges, which is non-
empty only when Type[p] = 3.

Initially, for the root r of T , we simply set Type[r] = 3,
E[r] = {(u, v)}, µ[r] = 1. Now, given any node p, we
recursively specify its children nodes if Type[p] = 3.
Suppose p has depth t − 1 ∈ [0, l − 1] on T . Then,
for every edge e = (x, y) ∈ E[p], imagine we remove
its current color from G0 and run Vizing(x, y, Ct) on
G0. Let (c1[e], c2[e]) ∈ C2

t ∪ {(⊥,⊥)} be the type
of the alternating path found during the execution of
Vizing(x, y, Ct) and define ρ[e] to be the (c1[e], c2[e])-
alternating path itself; note that, as before, if no
alternating path is ever found, then (c1[e], c2[e]) = (⊥
,⊥) and ρ[e] is an empty path. Next we create three
types of children.

(i) Create a child node q1 of p, and define E1 = {e ∈
E[p] | |ρ[e]| ≤ 2h}, and then assign Type[q1] = 1

and µ[q1] = µ[p] · |E1|
|E[p]| .

(ii) Collect all pairs of (c1, c2) ∈ C2
t , such that {e ∈

E[p] \ E1 | (c1[e], c2[e]) = (c1, c2)} has less or

equal to ε2

log3 n
|E[p] \ E1| elements. Let D be the

set of all such (c1, c2)’s. Create a child node q2

with Type[q2] = 2, and define E2 to be the set of
e ∈ E[p] \E1 such that (c1[e], c2[e]) ∈ D, and then

assign µ[q2] = µ[p] · |E2|
|E[p]| .

(iii) For every (c1, c2) ∈ C2
t \ D, create a child node

qc1,c2 , and define E3[c1, c2] = {e ∈ E[p] \ E1 |
(c1[e], c2[e]) = (c1, c2)}, and set Type[qc1,c2] = 3,

µ[qc1,c2] = µ[p] · |E3[c1,c2]|
|E[p]| . After that, for every

e ∈ E3[c1, c2] and every 1 ≤ k ≤ h/2, collect the
(2k − 1)-th edge on ρ[e] to build set E[qc1,c2]. We

will shortly prove that E[qc1,c2] is indeed a set of
vertex-disjoint edges.

First, let us see two basic facts regarding T .

Lemma 4.4. For every node p ∈ T with Type[p] = 3,
let q1, q2 and qc1,c2 ’s be all of its children defined right
above. Then µ[q1] + µ[q2] +

∑
c1,c2

µ[qc1,c2] = µ[p], and
µ[q2] < 400µ[p]/ log n.

Proof. By definition of E1, E2, clearly E[p] = E1 ∪E2 ∪⋃
c1,c2

E3[c1, c2]. Thus µ[q1] + µ[q2] +
∑
c1,c2

µ[qc1,c2] =
µ[p]. For the second statement, note that by definition
of D, {e ∈ E[p] \ E1 | (c1[e], c2[e]) = (c1, c2)} has at

most ε2

log3 n
|E[p] \ E1| elements. Hence, ranging over

all different choices of (c1, c2), |E2| ≤ |Ct| · (|Ct| −
1) · ε2

log3 n
|E[p] \ E1| < 400|E[p]|/ log n, and therefore

µ[q2] < 400µ[p]/ log n.

Lemma 4.5. Let p be a type-3 node with depth < l, and
let q1 be its unique type-1 child and let qc1,c2 be any one
of its type-3 children. Then

• E[qc1,c2] is a set of vertex-disjoint edges.

• |E[qc1,c2]| ≥ (1− µ[q1]/µ[p]) · ε2h
2 log3 n

· |E[p]|.

Proof. We prove the two claims separately as following.

• For vertex-disjointness, by Lemma 2.4, any two
paths ρ[e], ρ[f],∀e, f ∈ E3[c1, c2] are vertex-disjoint
or refer to the same alternating path in opposite
order, since they are (c1, c2)-alternating paths in
G0; in the latter case, as |ρ[e]| > 2h, edges added
to E[qc1,c2] from ρ[e] and ρ[f] make two vertex-
disjoint edge sets.

• As for the lower bound on the size of E[qc1,c2],
noting that each e ∈ E3[c1, c2] contributes exactly
h/2 vertex-disjoint edges to E[qc1,c2], we know that

|E[qc1,c2]| ≥ h/2· ε2

log3 n
·|E[p]\E1| = (1−µ[q1]/µ[p])·

ε2h
2 log3 n

· |E[p]|.

The following establishes a connection between
probability tree T and behavior of Algorithm 4.

Lemma 4.6. During the execution of Algorithm 4, at
the beginning of iteration t,∀1 ≤ t ≤ l, for every type-
3 node p of depth t − 1, (x, y) is drawn uniformly at
random on E[p], with disjoint probability µ[p] based on
random coins taken in previous iterations.

Proof. We prove by an induction on t. For t = 1 the
statement is trivial as (x, y) = (u, v) with probability
µ[r] = 1. Now suppose the statement holds for some

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1943

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1 ≤ t < l, and with disjoint probability µ[p], (x, y)
is uniformly distributed over E[p] at the beginning of
iteration t, where p is a type-3 node of depth t − 1.
Then, for any type-3 child qc1,c2 of p, with disjoint
probability µ[qc1,c2], (x, y)is uniformly distributed on
E3[c1, c2]. Then in case this event happens, according to
Algorithm 4, (z, w) is chosen from the first h/2 vertex-
disjoint edges on the (c1, c2)-alternating path uniformly
at random. This (c1, c2)-alternating path is exactly the
same as ρ[(x, y)] since the Algorithm 4 only modifies

edges with colors from
⋃t−1
s=1 Cs in previous iterations.

Hence (x, y) = (z, w) is picked uniformly at random
from E[qc1,c2]. This concludes the induction.

Corollary 4.1. The success rate of Algorithm 4 is at
least

∑
q∈T ,Type[q]=1 µ[q].

Proof. For any type-1 node q1 ∈ T , let p be its par-
ent, with Type[p] = 3. Then, according to Lemma 4.6,
with disjoint probability µ[p], variable (x, y) of Algo-
rithm 4 follows a uniform distribution over E[p]. Then,
with probability µ[q1], (x, y) lies in set E1 = {e ∈
E[p] | |ρ[e]| ≤ 2h}; namely, Vizing’s algorithm would
find an alternating path of length ≤ 2h, and thus Algo-
rithm 4 succeeds in coloring the whole graph. Because
of disjointness of events, the overall success rate of Al-
gorithm 4 is at least

∑
q1∈T ,Type[q1]=1 µ[q1].

By the above corollary, it suffices to prove a lower
bound on

∑
q∈T ,Type[q]=1 µ[q]. For any node p ∈ T with

Type[p] = 3, define ν[p] to be the sum of all µ[q] where
q is a descendant of p and Type[q] = 1. So, by definition
ν[r] =

∑
q∈T ,Type[q]=1 µ[q]. To lower bound ν[r], we try

to prove the following lemma which is more general.

Lemma 4.7. For any type-3 node p of depth t, t < l,

if |E[p]| ≥ n
2 /
(

ε2h
2 log4 n

)l−t
, then ν[p] ≥ µ[p] · (1 −

400/ log n)l−t.

Proof. We prove this by a reverse induction on t.

• Basis.

Suppose t = l − 1. Let q1 be p’s type-1 child,
and let q be an arbitrary type-3 child. If µ[q1] <
(1− 1/ log n)µ[p], then by Lemma 4.5,

|E[q]| ≥ (1− µ[q1]/µ[p]) · ε2h

2 log3 n
· |E[p]|

> |E[p]| · ε2h

2 log4 n
> n/2

which is impossible as E[q] is a collection of
vertex-disjoint edges. Thus ν[p] = µ[q1] ≥ (1 −
1/ log n)µ[p] ≥ (1− 400/ log n)µ[p].

• Induction.

Suppose the statement works for depth t + 1.
Consider any type-3 node p of depth t. Let q1

be p’s type-1 child, q2 be p’s type-2 child, and let
{qc1,c2} be the set of all type-3 children. If µ[q1] ≥
(1− 1/ log n)µ[p], then we are done. Otherwise we
assume µ[q1] < (1 − 1/ log n)µ[p]. By Lemma 4.5,
for any type-3 child qc1,c2 which has depth t+ 1,

|E[qc1,c2]| ≥ (1− µ[q1]/µ[p]) · ε2h

2 log3 n
· |E[p]|

>
n

2
/

(
ε2h

2 log4 n

)l−t−1

So, by inductive hypothesis, ν[qc1,c2] ≥ µ[qc1,c2] ·
(1− 400/ log n)l−t−1.

Taking a summation over all qc1,c2 and applying
Lemma 4.4, we have:

ν[p] = µ[q1] +
∑
c1,c2

ν[qc1,c2]

≥ µ[q1] + (1− 400/ log n)l−t−1 ·
∑
c1,c2

µ[qc1,c2]

≥ (1− 400/ log n)l−t−1 · (µ[p]− µ[q2])

≥ µ[p] · (1− 400/ log n)l−t

which concludes the induction.

Set h = 4 log4 n
ε2 and l = log n, and apply Lemma 4.7

with t = 0, we immediately have ν[r] ≥ (1 −
400/ log n)logn = Ω(1). Therefore, repeating Algo-
rithm 4 for O(log n) times can blow the success rate to a
high probability. As Algorithm 4 runs in O(hl log n) =
O(log6 n/ε2) time, the overall running time becomes
O(log7 n/ε2), thus proving Theorem 1.2.

5 Extension to a changing ∆

In this section we use Theorem 1.2 as a black box to
prove Theorem 1.3. The rough idea is that we guess the
future ∆ and maintain multiple edge colorings at the
same time. Concretely speaking, let δ > 0 be a constant
to be determined shortly, and define a set of integers
D = {d | d = b(1 + 3δ)ic, i ≥ 1} ∩ [Ω(log2 n/δ2), n], and
for each d ∈ D we will maintain a partial coloring of G
using (1 + 3δ)d colors. For the rest of this section, we
fix one parameter d ∈ D and describe how such partial
coloring is maintained.

Define Vhigh = {u | deg(u) > (1 + δ)d} and Vlow =
{u | deg(u) ≤ d}. Each vertex has two states: active
and inactive. A vertex is inactive if its most recent
appearance in Vhigh ∪ Vlow is in Vhigh, and otherwise it

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1944

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

is active. Let H be the induced subgraph of G on all
active vertices, and thus the maximum degree of H is at
most (1 + δ)d. Then we apply Theorem 1.2 on H with
ε = 2δ/(1 + δ) to maintain a dynamic (1 + 3δ)d edge
coloring of H.

As the maximum degree ∆ of G changes over time,
we look at our data structure associated with parameter
d ∈ D such that d/(1 + 3δ) < ∆ ≤ d. Then it
is guaranteed that our dynamic algorithm correctly
maintains a (1 + 3δ)d ≤ (1 + 3δ)2∆ = (1 + O(ε))∆
edge coloring.

It is easy to see that H can be maintained under
edge updates to G using amortized O(1/ε) many edge
updates to H. Since Theorem 1.2 has O(log7 n/ε2)
worst-case update time, the partial coloring of H has
O(log7 n/ε3) amortized update time. Ranging over
all different choices of d ∈ D, the overall running
time becomes O(|D| log7 n/ε3) = O(log8 n/ε4), which
concludes the proof of Theorem 1.3.

6 Conclusion

In this paper we first propose a near-linear time algo-
rithm for static (1 + ε)∆ edge coloring. Based on its
techniques we devise an algorithm for (1 + ε)∆ edge
coloring in dynamic graphs under edge insertions and
deletions using poly-logarithmic update time. The ma-
jor question left by our result is whether we can remove
the assumption that ∆ ≥ Ω(log2 n/ε2). Another ques-
tion is whether we can further improve the current dy-
namic algorithm to reduce the large exponents of log n
and 1/ε.

References

[1] Noga Alon. A simple algorithm for edge-coloring
bipartite multigraphs. Information Processing Letters,
85(6):301–302, 2003.

[2] Leonid Barenboim and Tzalik Maimon. Fully-dynamic
graph algorithms with sublinear time inspired by
distributed computing. Procedia Computer Science,
108:89–98, 2017.

[3] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika
Henzinger, and Danupon Nanongkai. Dynamic al-
gorithms for graph coloring. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 1–20. SIAM, 2018.

[4] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pet-
tie, and Jara Uitto. The complexity of distributed
edge coloring with small palettes. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2633–2652. SIAM, 2018.

[5] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-
colouring bipartite multigraphs in o(e log d) time.
Combinatorica, 21(1):5–12, 2001.

[6] Devdatt Dubhashi, David A Grable, and Alessandro
Panconesi. Near-optimal, distributed edge colouring
via the nibble method. Theoretical Computer Science,
203(2):225–252, 1998.

[7] Antoine Dutot, Frédéric Guinand, Damien Olivier, and
Yoann Pigné. On the decentralized dynamic graph
coloring problem. Proc. Worksh. Compl. Sys. and Self-
Org. Mod, 2007.

[8] Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2δ- 1)-
edge-coloring is much easier than maximal matching in
the distributed setting. In Proceedings of the twenty-
sixth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 355–370. Society for Industrial and Ap-
plied Mathematics, 2015.

[9] Harold N Gabow. Algorithms for edge-coloring graphs.
Technical Report TRECIS-8501, Tohoku Univ., 1985.

[10] Bradley Hardy, Rhyd Lewis, and Jonathan Thompson.
Tackling the edge dynamic graph colouring problem
with and without future adjacency information. Jour-
nal of Heuristics, pages 1–23, 2017.

[11] Ian Holyer. The np-completeness of edge-coloring.
SIAM Journal on computing, 10(4):718–720, 1981.

[12] Howard J Karloff and David B Shmoys. Efficient
parallel algorithms for edge coloring problems. Journal
of Algorithms, 8(1):39–52, 1987.

[13] Linda Ouerfelli and Hend Bouziri. Greedy algorithms
for dynamic graph coloring. In Communications,
Computing and Control Applications (CCCA), 2011
International Conference on, pages 1–5. IEEE, 2011.

[14] Alessandro Panconesi and Aravind Srinivasan. Ran-
domized distributed edge coloring via an extension
of the chernoff–hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997.

[15] Scott Sallinen, Keita Iwabuchi, Suraj Poudel, Maya
Gokhale, Matei Ripeanu, and Roger Pearce. Graph
colouring as a challenge problem for dynamic graph
processing on distributed systems. In High Perfor-
mance Computing, Networking, Storage and Analysis,
SC16: International Conference for, pages 347–358.
IEEE, 2016.

[16] Vadim G Vizing. On an estimate of the chromatic class
of a p-graph. Diskret analiz, 3:25–30, 1964.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1945

D
ow

nl
oa

de
d

02
/1

2/
19

 to
 1

01
.6

.9
6.

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

