
ar
X

iv
:1

81
1.

08
20

5v
1

 [
cs

.D
S]

 2
0

N
ov

 2
01

8

Simulating Random Walks on Graphs in the

Streaming Model

Ce Jin

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

jinc16@mails.tsinghua.edu.cn

Abstract

We study the problem of approximately simulating a t-step random walk on a graph where

the input edges come from a single-pass stream. The straightforward algorithm using reservoir

sampling needs O(nt) words of memory. We show that this space complexity is near-optimal for

directed graphs. For undirected graphs, we prove an Ω(n
√

t)-bit space lower bound, and give a

near-optimal algorithm using O(n
√

t) words of space with 2−Ω(
√

t) simulation error (defined as

the ℓ1-distance between the output distribution of the simulation algorithm and the distribution

of perfect random walks). We also discuss extending the algorithms to the turnstile model, where

both insertion and deletion of edges can appear in the input stream.

2012 ACM Subject Classification Theory of computation → Streaming models

Keywords and phrases streaming models, random walks, sampling

Acknowledgements I would like to thank Professor Jelani Nelson for introducing this problem

to me, advising this project, and giving many helpful comments on my writeup.

1 Introduction

Graphs of massive size are used for modeling complex systems that emerge in many differ-

ent fields of study. Challenges arise when computing with massive graphs under memory

constraints. In recent years, graph streaming has become an important model for compu-

tation on massive graphs. Many space-efficient streaming algorithms have been designed

for solving classical graph problems, including connectivity [2], bipartiteness [2], minimum

spanning tree [2], matching [8, 12, 1], spectral sparsifiers [14, 13], etc. We will define the

streaming model in Section 1.1.

Random walks on graphs are stochastic processes that have many applications, such as

connectivity testing [17], clustering [18, 3, 4, 5], sampling [11] and approximate counting [10].

Since random walks are a powerful tool in algorithm design, it is interesting to study them

in the streaming setting. A natural problem is to find the space complexity of simulating

random walks in graph streams. Das Sarma et al. [7] gave a multi-pass streaming algorithm

that simulates a t-step random walk on a directed graph using O(
√

t) passes and only

O(n) space. By further extending this algorithm and combining with other ideas, they

obtained space-efficient algorithms for estimating PageRank on graph streams. However,

their techniques crucially rely on reading multiple passes of the input stream.

In this paper, we study the problem of simulating random walks in the one-pass streaming

model. We show space lower bounds for both directed and undirected versions of the problem,

and present algorithms that nearly match with the lower bounds. We summarize our results

in Section 1.3.

http://arxiv.org/abs/1811.08205v1
mailto:jinc16@mails.tsinghua.edu.cn

44:2 Simulating Random Walks on Graphs in the Streaming Model

1.1 One-pass streaming model

Let G = (V, E) be a graph with n vertices. In the insertion-only model, the input graph

G is defined by a stream of edges (e1, . . . , em) seen in arbitrary order, where each edge ei

is specified by its two endpoints ui, vi ∈ V . An algorithm must process the edges of G in

the order that they appear in the input stream. The edges can be directed or undirected,

depending on the problem setting. Sometimes we allow multiple edges in the graph, where

the multiplicity of an edge equals its number of occurrences in the input stream.

In the turnstile model, we allow both insertion and deletion of edges. The input is a

stream of updates ((e1, ∆1), (e2, ∆2), . . .), where ei encodes an edge and ∆i ∈ {1,−1}. The

multiplicity of edge e is f(e) =
∑

ei=e ∆i. We assume f(e) ≥ 0 always holds for every edge

e.

1.2 Random walks

Let f(u, v) denote the multiplicity of edge (u, v). The degree of u is defined by d(u) =
∑

v∈V f(u, v). A t-step random walk starting from a vertex s ∈ V is a random sequence of

vertices v0, v1, . . . , vt where v0 = s and vi is a vertex uniformly randomly chosen from the

vertices that vi−1 connects to, i.e., P[vi = v|vi−1 = u] = f(u, v)/d(u). Let RWs,t : V t+1 →
[0, 1] denote the distribution of t-step random walks starting from s, defined by1

RWs,t(v0, . . . , vt) = 1[v0 = s]

t−1
∏

i=0

f(vi, vi+1)

d(vi)
. (1)

For two distributions P, Q, we denote by |P − Q|1 their ℓ1 distance. We say that a ran-

domized algorithm can simulate a t-step random walk starting from v0 within error ε, if the

distribution Pw of its output w ∈ V t+1 satisfies |Pw − RWv0,t|1 ≤ ε. We say the random

walk simulation is perfect if ε = 0.

We study the problem of simulating a t-step random walk within error ε in the streaming

model using small space. We assume the length t is specified at the beginning. Then the

algorithm reads the input stream. When a query with parameter v0 comes, the algorithm

should simulate and output a t-step random walk starting from vertex v0.

It is without loss of generality to assume that the input graph has no self-loops. If we

can simulate a random walk on the graph with self-loops removed, we can then turn it into

a random walk of the original graph by simply inserting self-loops after u with probability

dself(u)/d(u). The values dself(u), d(u) can be easily maintained by a streaming algorithm

using O(n) words.

The random walk is not well-defined when it starts from a vertex u with d(u) = 0. For

undirected graphs, this can only happen at the beginning of the random walk, and we simply

let our algorithm return Fail if d(v0) = 0. For directed graphs, one way to fix this is to

continue the random walk from v0, by adding an edge (u, v0) for every vertex u with d(u) = 0.

We will not deal with d(u) = 0 in the following discussion.

1.3 Our results

We will use log x = log2 x throughout this paper.

1 For a statement p, define 1[p] = 1 if p is true, and 1[p] = 0 if p is false.

C. Jin 44:3

The following two theorems give space lower bounds on directed and undirected versions

of the problem. Note that the lower bounds hold even for simple graphs2.

◮ Theorem 1. For t ≤ n/2, simulating a t-step random walk on a simple directed graph in

the insertion-only model within error ε = 1
3 requires Ω(nt log(n/t)) bits of memory.

◮ Theorem 2. For t = O(n2), simulating a t-step random walk on a simple undirected graph

in the insertion-only model within error ε = 1
3 requires Ω(n

√
t) bits of memory.

Theorem 3 and Theorem 4 give near optimal space upper bounds for the problem in the

insertion-only streaming model.

◮ Theorem 3. We can simulate a t-step random walk on a directed graph in the insertion-

only model perfectly using O(nt) words3 of memory. For simple directed graphs, the memory

can be reduced to O(nt log(n/t)) bits, assuming t ≤ n/2.

◮ Theorem 4. We can simulate a t-step random walk on an undirected graph in the insertion-

only model within error ε using O
(

n
√

t · q
log q

)

words of memory, where q = 2 + log(1/ε)√
t

. In

particular, the algorithm uses O(n
√

t) words of memory when ε = 2−Θ(
√

t).

Our algorithms also extend to the turnstile model.

◮ Theorem 5. We can simulate a t-step random walk on a directed graph in the turnstile

model within error ε using O(n(t + log 1
ε) log2 max{n, 1/ε}) bits of memory.

◮ Theorem 6. We can simulate a t-step random walk on an undirected graph in the turnstile

model within error ε using O(n(
√

t + log 1
ε) log2 max{n, 1/ε}) bits of memory.

2 Directed graphs in the insertion-only model

The simplest algorithm uses O(n2) words of space (or only O(n2) bits, if we assume the

graph is simple) to store the adjacency matrix of the graph. When t≪ n, a better solution

is to use reservoir sampling.

◮ Lemma 7 (Reservoir sampling). Given a stream of n items as input, we can uniformly

sample m of them without replacement using O(m) words of memory.

We can also sample m items from the stream with replacement in O(m) words of memory

using m independent reservoir samplers each with capacity 1.

◮ Theorem 8. We can simulate a t-step random walk on a directed graph in the insertion-

only model perfectly using O(nt) words of memory.

Proof. For each vertex u ∈ V , we sample t edges eu,1, . . . , eu,t outgoing from u with replace-

ment. Then we perform a random walk using these edges. When u is visited for the i-th

time (i ≤ t), we go along edge eu,i. ◭

By treating an undirected edge as two opposite directed edges, we can achieve the same

space complexity in undirected graphs.

Now we show a space lower bound for the problem. We will use a standard result from

communication complexity.

2 A simple graph is a graph with no multiple edges.
3 A word has Θ(log max{n, m}) bits.

44:4 Simulating Random Walks on Graphs in the Streaming Model

◮ Definition 9. In the Index problem, Alice has an n-bit vector X ∈ {0, 1}n and Bob has

an index i ∈ [n]. Alice sends a message to Bob, and then Bob should output the bit Xi.

◮ Lemma 10 ([15]). For any constant 1/2 < c ≤ 1, solving the Index problem with success

probability c requires sending Ω(n) bits.

◮ Theorem 11. For t ≤ n/2, simulating a t-step random walk on a simple directed graph

in the insertion-only model within error ε = 1
3 requires Ω(nt log(n/t)) bits of memory.

Proof. We prove by showing a reduction from the Index problem. Before the protocol

starts, Alice and Bob agree on a family F of t-subsets of [n] 4 such that the condition

|S ∩ S′| < t/2 is satisfied for every S, S′ ∈ F , S 6= S′. For two independent uniform random

t-subsets S, S′ ⊆ [n], let p = P[|S ∩ S′| ≥ t/2] ≤
(

t
t/2

)

(t
n)t/2 < (4t

n)t/2. By union bound over

all pairs of subsets, a randomly generated family F satisfies the condition with probability

at least 1 −
(|F|

2

)

p, which is positive when |F| = ⌈
√

1/p⌉ ≥ (n
4t)t/4. So we can choose such

family F with log |F| = Ω(t log(n/t)).

Assume |F| is a power of two. Alice encodes n log |F| bits as follows. Let G be a directed

graph with vertex set {v0, v1, . . . , v2n}. For each vertex u ∈ {vn+1, vn+2, . . . , v2n}, Alice

chooses a set Su ∈ F , and inserts an edge (u, vi) for every i ∈ Su.

Suppose Bob wants to query Su. He adds an edge (v, u) for every v ∈ {v0, v1, v2, . . . , vn},
and then simulates a random walk starting from v0. The random walk visits u every two

steps, and it next visits vi for some random i ∈ Su. At least t/2 different elements from

Su can be seen in 2t samples with probability at least 1 −
(

t
t/2

)

(1
2)2t ≥ 1 − 2−t, so Su

can be uniquely determined by an O(t)-step random walk (simulated within error ε) with

probability 1 − 2−t − ε
2 > 1

2 . By Lemma 10, the space usage for simulating the O(t)-step

random walk is at least Ω(n log |F|) = Ω(nt log(n/t)) bits. The theorem is proved by scaling

down n and t by a constant factor. ◭

For simple graphs, we can achieve an upper bound of O(nt log(n/t)) bits.

◮ Theorem 12. For t ≤ n/2, we can simulate a t-step random walk on a simple directed

graph in the insertion-only model perfectly using O(nt log(n/t)) bits of memory.

Proof. For every u ∈ V , we run a reservoir sampler with capacity t, which samples (at most)

t edges from u’s outgoing edges without replacement. After reading the entire input stream,

we begin simulating the random walk. When u is visited during the simulation, in the next

step we choose at random an outgoing edge used before with probability dused(u)/d(u), or an

unused edge from the reservoir sampler with probability 1−dused(u)/d(u), where dused(u) is

the number of edges in u’s sampler that are previously used in the simulation. We maintain

a t-bit vector to keep track of these used samples.

The number of different possible states of a sampler is at most
∑

0≤i≤t

(

n
i

)

≤ (t+1)(en
t)t,

so it can be encoded using
⌈

log
(

(t + 1)(en
t)t

)⌉

= O(t log(n/t)) bits. The total space is

O(nt log(n/t)) bits. ◭

3 Undirected graphs in the insertion-only model

3.1 A space lower bound

◮ Theorem 13. For t = O(n2), simulating a t-step random walk on a simple undirected

graph in the insertion-only model within error ε = 1
3 requires Ω(n

√
t) bits of memory.

4 Define [n] = {1, 2, . . . , n}. A t-subset is a subset of size t.

C. Jin 44:5

a

b

Aj Bj Aj+1

V0

...
· · ·

...

...

v0

Figure 1 Proof of Theorem 13

Proof. Again we show a reduction from the Index problem.

Alice encodes Ω(n
√

t) bits as follows. Let G be an undirected graph with vertex set

V0 ∪ V1 ∪ · · · ∪ Vn/
√

t, where each Vj has size 2
√

t, and the starting vertex v0 ∈ V0. For

each j ≥ 1, Vj is divided into two subsets Aj , Bj with size
√

t each, and Alice encodes

|Aj | × |Bj | = t bits by inserting a subset of edges from {(u, v) : u ∈ Aj , v ∈ Bj}. In total

she encodes t · n/
√

t = n
√

t bits.

Suppose Bob wants to query some bit, i.e., he wants to see whether a and b are connected

by an edge. Assume (a, b) ∈ Aj × Bj . He adds an edge (u, v) for every u ∈ Aj and every

v ∈ V0 (see Figure 1). A perfect random walk starting from v0 ∈ V0 will be inside the

bipartite subgraph (Aj , Bj ∪ V0). Suppose the current vertex of the perfect random walk is

vi ∈ Aj . If a, b are connected by an edge, then

P[(vi+2, vi+3) = (a, b) | vi]

≥ P[vi+1 ∈ V0 | vi]P[vi+2 = a | vi+1 ∈ V0]P[vi+3 = b | vi+2 = a]

≥ |V0|
|V0|+ |Bj |

· 1

|Aj |
· 1

|V0|+ |Bj |

≥ 2

9t
,

so in every four steps the edge (a, b) is passed with probability Ω(1
t). Then a O(t)-step

perfect random walk will pass the edge (a, b) with probability 0.9. Hence Bob can know

whether the edge (a, b) exists by looking at the random walk (simulated within error ε)

with success probability 0.9 − ε
2 > 1/2. By Lemma 10, the space usage for simulating the

O(t)-step random walk is at least Ω(n
√

t) bits. The theorem is proved by scaling down n

and t by a constant factor. ◭

3.2 An algorithm for simple graphs

Now we describe our algorithm for undirected graphs in the insertion-only model. As a warm-

up, we consider simple graphs in this section. We will deal with multi-edges in Section 3.3.

44:6 Simulating Random Walks on Graphs in the Streaming Model

Intuition

We start by informally explaining the intuition of our algorithm for simple undirected graphs.

We maintain a subset of O(n
√

t) edges from the input graph, and use them to simulate

the random walk after reading the entire input stream.

For a vertex u with degree smaller than
√

t, we can afford to store all its neighboring

edges in memory. For u with degree greater than
√

t, we can only sample and store O(
√

t)

of its neighboring edges. During the simulation, at every step we first toss a coin to decide

whether the next vertex has small degree or large degree. In the latter case, we have to

pick a sampled neighboring edge and walk along it. If all sampled neighboring edges have

already been used, our algorithm fails. Using the large degree and the fact that edges are

undirected, we can show that the failure probability is low.

Description of the algorithm

We divide the vertices into two types according to their degrees: the set of big vertices

B = {u ∈ V : d(u) ≥ C + 1}, and the set of small vertices S = {u ∈ V : d(u) ≤ C}, where

parameter C is an positive integer to be determined later.

We use arc (u, v) to refer to an edge when we want to specify the direction u → v. So

an undirected edge (u, v) corresponds to two different5 arcs, arc (u, v) and arc (v, u).

We say an arc (u, v) is important if v ∈ S, or unimportant if v ∈ B. Denote the set of

important arcs by E1, and the set of unimportant arcs by E0. The total number of important

arcs equals
∑

s∈S d(s) ≤ |S|C, so it is possible to store E1 in O(nC) words of space.

The set E0 of unimportant arcs can be huge, so we only store a subset of E0. For every

vertex u, we sample with replacement C unimportant arcs outgoing from u, denoted by

au,1, . . . , au,C .

To maintain the set E1 of important arcs and the samples of unimportant arcs after

every edge insertion, we need to handle the events when some small vertex becomes big.

This procedure is straightforward, as described by ProcessInput in Figure 2. Since |E1|
never exceeds nC, and each of the n samplers uses O(C) words of space, the overall space

complexity is O(nC) words.

We begin simulating the random walk after ProcessInput finishes. When the current

vertex of the random walk is v, with probability d1(v)/d(v) the next step will be along

an important arc, where d1(v) denotes the number of important arcs outgoing from v. In

this case we simply choose a uniform random vertex from {u : (v, u) ∈ E1} as the next

vertex. However, if the next step is along an unimportant arc, we need to choose an unused

sample av,j and go along this arc. If at this time all C samples av,j are already used, then

our algorithm fails (and is allowed to return an arbitrary walk). The pseudocode of this

simulating procedure is given in Figure 3.

In a walk w = (v0, . . . , vt), we say vertex u fails if |{i : vi = u and (vi, vi+1) ∈ E0}| >

C. If no vertex fails in w, then our algorithm will successfully return w with probability

RWv0,t(w). Otherwise our algorithm will fail after some vertex runs out of the sampled

unimportant arcs. To ensure the output distribution is ε-close to RWv0,t in ℓ1 distance, it

suffices to make our algorithm fail with probability at most ε/2, by choosing a large enough

capacity C.

5 We have assumed no self-loops exist, so u 6= v.

C. Jin 44:7

procedure InsertArc(u, v)

d(v)← d(v) + 1

if d(v) = C + 1 then ⊲ v changes from small to big

for x ∈ V such that (x, v) ∈ E1 do ⊲ arc (x, v) becomes unimportant

E1 ← E1\{(x, v)}
Feed arc (x, v) into x’s sampler

end for

end if

if d(v) ≤ C then ⊲ v ∈ S

E1 ← E1 ∪ {(u, v)}
else ⊲ v ∈ B

Feed arc (u, v) into u’s sampler

end if

end procedure

procedure ProcessInput

E1 ← ∅ ⊲ Set of important arcs

for u ∈ V do

d(u)← 0

Initialize u’s sampler (initially empty) which maintains au,1, . . . , au,C

end for

for undirected edge (u, v) in the input stream do

InsertArc(u, v)

InsertArc(v, u)

end for

end procedure

Figure 2 Pseudocode for processing the input stream (for simple undirected graphs)

44:8 Simulating Random Walks on Graphs in the Streaming Model

procedure SimulateRandomWalk(v0, t)

for v ∈ V do

c(v)← 0 ⊲ counter of used samples

end for

for i = 0, . . . , t− 1 do

N1 ← {u : (vi, u) ∈ E1}
x← uniformly random integer from {1, 2, . . . , d(vi)}
if x ≤ |N1| then

vi+1 ← uniformly random vertex from N1

else

j ← c(vi) + 1

c(vi)← j

if j > C then return Fail

else

vi+1 ← u, where (vi, u) = avi,j

end if

end if

end forreturn (v0, . . . , vt)

end procedure

Figure 3 Pseudocode for simulating a t-step random walk starting from v0

To bound the probability P[at least one vertex fails | v0 = s]6, we will bound the indi-

vidual failure probability of every vertex, and then use union bound.

◮ Lemma 14. Suppose for every u ∈ V , P[u fails | v0 = u] ≤ δ. Then for any starting

vertex s ∈ V , P[at least one vertex fails | v0 = s] ≤ tδ.

Proof. Fix a starting vertex s. For any particular u ∈ V ,

P[u fails | v0 = s]

= P[u fails, and ∃i ≤ t− 1, vi = u | v0 = s]

= P[∃i ≤ t− 1, vi = u | v0 = s]P[u fails | v0 = s, and ∃i ≤ t− 1, vi = u]

≤ P[∃i ≤ t− 1, vi = u | v0 = s]P[u fails | v0 = u]

≤ P[∃i ≤ t− 1, vi = u | v0 = s] · δ.

By union bound,

P[at least one vertex fails | v0 = s]

≤
∑

u∈V

P[u fails | v0 = s]

≤
∑

u∈V

P[∃i ≤ t− 1, vi = u | v0 = s] · δ

= E[number of distinct vertices visited in {v0, . . . , vt−1} | v0 = s] · δ
≤ tδ.

6 If not specified, assume the probability space is over all t-step random walks (v0, . . . , vt) starting from
v0.

C. Jin 44:9

◭

◮ Lemma 15. We can choose integer parameter C = O
(√

t · q
log q

)

, where q = 2 + log(1/δ)√
t

,

so that P[u fails | v0 = u] ≤ δ holds for every u ∈ V .

Proof. Let d0(u) = |{v : (u, v) ∈ E0}|.
For any u ∈ V ,

P[u fails | v0 = u]

≤ P[u fails | v0 = u, (v0, v1) ∈ E0].

We rewrite this probability as the sum of probabilities of possible random walks in which

u fails. Recall that u fails if and only if |{i : vi = u, (vi, vi+1) ∈ E0}| ≥ C + 1. In

the summation over possible random walks, we only keep the shortest prefix (v0, . . . , vk) in

which u fails, i.e., the last step (vk−1, vk) is the (C +1)-st time walking along an unimportant

arc outgoing from u. We have

P[u fails | v0 = u, (v0, v1) ∈ E0]

=
∑

k≤t

∑

walk(v0,...,vk)

1

[

v0 = vk−1 = u, (v0, v1), (vk−1, vk) ∈ E0,

|{i : vi = u, (vi, vi+1) ∈ E0}| = C + 1

]

1

d0(u)

k−1
∏

i=1

1

d(vi)

=
∑

k≤t

∑

walk(v0,...,vk−1)

1

[

v0 = vk−1 = u, (v0, v1) ∈ E0,

|{i : vi = u, (vi, vi+1) ∈ E0}| = C

] k−1
∏

i=1

1

d(vi)
. (2)

Let v′
i = vk−1−i. Since the graph is undirected, the vertex sequence (v′

0, . . . , v′
k−1) (the

reversal of walk (v0, . . . , vk−1)) is also a walk starting from and ending at u. So the summa-

tion (2) equals

∑

k≤t

∑

walk(v′

0
,...,v′

k−1
)

1

[

v′
0 = v′

k−1 = u, (v′
k−1, v′

k−2) ∈ E0,

|{i : v′
i = u, (v′

i, v′
i−1) ∈ E0}| = C

] k−2
∏

i=0

1

d(v′
i)

= P
random walk (v′

0, . . . , v′

t−1)

[

|{i : v′
i = u, (v′

i, v′
i−1) ∈ E0}| ≥ C

∣

∣

∣
v′

0 = u
]

.

Recall that (v′
i, v′

i−1) ∈ E0 if and only if v′
i−1 ∈ B. For any 1 ≤ i ≤ t − 1 and any fixed

prefix v′
0, . . . , v′

i−1,

P
[

v′
i = u, (v′

i, v′
i−1) ∈ E0

∣

∣ v′
0, . . . , v′

i−1

]

≤ 1[v′
i−1 ∈ B] · 1

d(v′
i−1)

<
1

C
. (3)

44:10 Simulating Random Walks on Graphs in the Streaming Model

Hence the probability that |{1 ≤ i ≤ t− 1 : v′
i = u, (v′

i, v′
i−1) ∈ E0}| ≥ C is at most

(

t− 1

C

) (

1

C

)C

≤
(

e(t− 1)

C

)C (

1

C

)C

<

(

et

C2

)C

.

We set C =
⌈

4
√

t q/ log q
⌉

, where q = 2 + log(1/δ)/
√

t > 2. Notice that q/ log2 q > 1/4.

Then

C log

(

C2

et

)

≥ 4
√

tq

log q
log

(

16q2

e log2 q

)

>
4
√

tq

log q
log(4q/e) > 4

√
tq > log(1/δ),

so

(

et

C2

)C

< δ.

Hence we have made P[u fails | v0 = u] < δ by choosing C = O(
√

tq/ log q). ◭

◮ Theorem 16. We can simulate a t-step random walk on a simple undirected graph in

the insertion-only model within error ε using O
(

n
√

t · q
log q

)

words of memory, where q =

2 + log(1/ε)√
t

.

Proof. The theorem follows from Lemma 14 and Lemma 15 by setting δ = ε
2t . ◭

3.3 On graphs with multiple edges

When the undirected graph contains multiple edges, condition (3) in the proof of Lemma 15

may not hold, so we need to slightly modify our algorithm.

We still maintain the multiset E1 of important arcs. Whether an arc is important will

be determined by our algorithm. (This is different from the previous algorithm, where im-

portant arcs were simply defined as (u, v) with d(v) ≤ C.) We will ensure that condition (3)

still holds, i.e., for any u ∈ V and any fixed prefix of the random walk v0, . . . , vi−1,

P
[

(vi, vi−1) /∈ E1, and vi = u
∣

∣ v0, . . . , vi−1

]

< 1/C. (4)

Note that there can be both important arcs and unimportant arcs from u to v. Let

f(u, v) denote the number of undirected edges between u, v. Then there are f(u, v) arcs

(u, v). Suppose f1(u, v) of these arcs are important, and f0(u, v) = f(u, v)−f1(u, v) of them

are unimportant. Then we can rewrite condition (4) as

f0(u, vi−1)

d(vi−1)
< 1/C, (5)

for every u, vi−1 ∈ V .

Similarly as before, we need to store the multiset E1 using only O(nC) words of space.

And we need to sample with replacement C unimportant arcs au,1, . . . , au,C outgoing from

u, for every u ∈ V . Finally we use the procedure SimulateRandomWalk in Figure 3 to

simulate a random walk.

C. Jin 44:11

procedure InsertArc(u, v)

d(v)← d(v) + 1

if u ∈ Lv then

Av(u)← Av(u) + 1

else

Insert u into Lv

Av(u)← 1

if |Lv| ≥ C + 1 then

for w ∈ Lv do

Feed arc (w, v) into w’s sampler

Av(w)← Av(w) − 1

if Av(w) = 0 then

Remove w from Lv

end if

end for

end if

end if

end procedure

procedure ProcessInput

for u ∈ V do

d(u)← 0

Initialize u’s sampler (initially empty) which maintains au,1, . . . , au,C

Initialize empty list Lu

end for

for undirected edge (u, v) in the input stream do

InsertArc(u, v)

InsertArc(v, u)

end for

E1 ←
⋃

v∈V

⋃

u∈Lv
{Av(u) copies of arc (u, v)} ⊲ Multiset of important arcs

end procedure

Figure 4 Pseudocode for processing the input stream (for undirected graphs with possibly mul-

tiple edges)

The multiset E1 is determined as follows: For every vertex v ∈ V , we run Misra-Gries

algorithm [16] on the sequence of all v’s neighbors. We will obtain a list Lv of at most C

vertices, such that for every vertex u /∈ Lv, f(u,v)
d(v) < 1

C . Moreover, we will get a frequency

estimate Av(u) > 0 for every u ∈ Lv, such that 0 ≤ f(u, v) − Av(u) < d(v)
C . Assuming

Av(u) = 0 for u /∈ Lv, we can satisfy condition (5) for all u ∈ V by setting f1(u, v) = Av(u).

Hence we have determined all the important arcs, and they can be stored in O(
∑

v |Lv|) =

O(nC) words. To sample from the unimportant arcs, we simply insert the arcs discarded

by Misra-Gries algorithm into the samplers. The pseudocode is given in Figure 4.

◮ Lemma 17. After ProcessInput (in Figure 4) finishes, |Lv| ≤ C. For every u ∈ Lv,

0 ≤ f(u, v)−Av(u) ≤ d(v)
C+1 . For every u /∈ Lv, f(u, v) ≤ d(v)

C+1 .

Proof. Every time the for loop in procedure InsertArc finishes, the newly added vertex

u must have been removed from Lv, so |Lv| ≤ C still holds. Let W = {w1, · · · , wC+1} be

the set of vertices in Lv before this for loop begins. Then for every u ∈ V , f(u, v)− Av(u)

44:12 Simulating Random Walks on Graphs in the Streaming Model

equals the number of times u is contained in W (assuming Av(u) = 0 for u /∈ Lv), which is

at most 1
C+1

∑

W |W | ≤
d(v)
C+1 . ◭

◮ Corollary 18. Procedure ProcessInput in Figure 4 computes the multiset E1 of import-

ant edges and stores it using O(nC) words. It also samples with replacement C unimportant

arcs au,1, . . . , au,C outgoing from u, for every u ∈ V . Moreover,

f0(u, v)

d(v)
<

1

C

holds for every u, v ∈ V .

Now we analyze the failure probability of SimulateRandomWalk (in Figure 3), similar

to Lemma 15.

◮ Lemma 19. We can choose integer parameter C = O
(√

t · q
log q

)

, where q = 2 + log(1/δ)√
t

,

so that P[u fails | v0 = u] ≤ δ holds for every u ∈ V .

Proof. Let d0(u) =
∑

v∈V f0(u, v). As before, we rewrite this probability as a sum over pos-

sible random walks. Here we distinguish between important and unimportant arcs. Denote

si = 1[step (vi−1, vi) is along an important arc]. Then for any u ∈ V ,

P[u fails | v0 = u]

≤ P[u fails | v0 = u, arc (v0, v1) is unimportant]

=
d(u)

d0(u)

∑

k≤t

∑

(v0,...,vk)

∑

s1,...,sk

1

[

v0 = vk−1 = u, s1 = sk = 0,

|{i : vi = u, si+1 = 0}| = C + 1

] k−1
∏

i=0

fsi+1
(vi, vi+1)

d(vi)

=
∑

k≤t

∑

(v0,...,vk−1)

∑

s1,...,sk−1

1

[

v0 = vk−1 = u, s1 = 0,

|{i : vi = u, si+1 = 0}| = C

] k−2
∏

i=0

fsi+1
(vi, vi+1)

d(vi)
.

Let v′
i = vk−1−i, s′

i = sk−i. Then this sum equals

∑

k≤t

∑

(v′

0
,...,v′

k−1
)

∑

s′

1
,...,s′

k−1

1

[

v′
0 = v′

k−1 = u, s′
k−1 = 0,

|{i : s′
i = 0, v′

i = u}| = C

] k−1
∏

i=1

fs′

i
(v′

i, v′
i−1)

d(v′
i−1)

= P
random walk (v′

0, . . . , v′

t−1)

[

|{i : v′
i = u, arc (v′

i, v′
i−1) is unimportant}| ≥ C

∣

∣

∣
v′

0 = u
]

.

Notice that for any i and any fixed prefix v′
0, . . . , v′

i−1,

P

[

v′
i = u, arc (v′

i, v′
i−1) is unimportant

∣

∣

∣
v′

0, v′
1, . . . , v′

i−1

]

=
f0(u, v′

i−1)

d(v′
i−1)

<
1

C

by Corollary 18. The rest of the proof is the same as in Lemma 15. ◭

◮ Theorem 20. We can simulate a random walk on an undirected graph with possibly mul-

tiple edges in the insertion-only model within error ε using O
(

n
√

t · q
log q

)

words of memory,

where q = 2 + log(1/ε)√
t

.

Proof. The theorem follows from Lemma 14 and Lemma 19 by setting δ = ε
2t . ◭

C. Jin 44:13

4 Turnstile model

In this section we consider the turnstile model where both insertion and deletion of edges

can appear.

◮ Lemma 21 (ℓ1 sampler in the turnstile model, [9]). Let f ∈ R
n be a vector defined by a

stream of updates to its coordinates of the form fi ← fi + ∆, where ∆ can either be positive

or negative. There is an algorithm which reads the stream and returns an index i ∈ [n] such

that for every j ∈ [n],

P[i = j] =
|fj|
‖f‖1

+ O(n−c), (6)

where c ≥ 1 is some arbitrary large constant. It is allowed to output Fail with probability

δ, and in this case it will not output any index. The space complexity of this algorithm is

O(log2 n log(1/δ)) bits.

◮ Remark. For ε≪ 1/n, the O(n−c) error term in (6) can be reduced to O(εc) by running

the ℓ1 sampler on f ∈ R
⌈1/ε⌉, using O(log2(1/ε) log(1/δ)) bits of space.

We will use the ℓ1 sampler for sampling neighbors (with possibly multiple edges) in the

turnstile model. The error term O(n−c) (or O(εc)) in (6) can be ignored in the following

discussion, by choosing sufficiently large constant c and scaling down ε by a constant.

4.1 Directed graphs

◮ Theorem 22. We can simulate a t-step random walk on a directed graph in the turnstile

model within error ε using O(n(t + log 1
ε) log2 max{n, 1/ε}) bits of memory.

Proof. For every u ∈ V , we run C′ = 2t + 16 log(2t/ε) independent ℓ1 samplers each having

failure probability δ = 1/2. We use them to sample the outgoing edges of u (as in the

algorithm of Theorem 8). By Chernoff bound, the probability that less than t samplers

succeed is at most ε/(2t).

We say a vertex u fails if u has less than t successful samplers, and u ∈ {v0, v1, . . . , vt−1}
(where v0, v1, . . . , vt is the random walk). Then P[u fails] ≤ ε

2tP[u ∈ {v0, . . . , vt−1}]. By

union bound, P[at least one vertex fails] ≤ ε
2t

∑

u∈V P[u ∈ {v0, . . . , vt−1}] ≤ ε
2 . Hence, with

probability 1− ε
2 , every vertex u visited (except the last one) has at least t outgoing edges

sampled, so our simulation can succeed. The space usage is O(nC′ log2 max{n, 1/ε} log(1/δ)) =

O(n(t + log 1
ε) log2 max{n, 1/ε}) bits. ◭

4.2 Undirected graphs

We slightly modify the ProcessInput procedure of our previous algorithm in Section 3.3.

We will use the ℓ1 heavy hitter algorithm in the turnstile model.

◮ Lemma 23 (ℓ1 heavy hitter, [6]). Let f ∈ R
n be a vector defined by a stream of updates to

its coordinates of the form fi ← fi + ∆, where ∆ can either be positive or negative. There

is a randomized algorithm which reads the stream and returns a subset L ⊆ [n] such that

i ∈ L for every |fi| ≥ ‖f‖1

k , and i /∈ L for every |fi| ≤ ‖f‖1

2k . Moreover it returns a frequency

estimate f̃i for every i ∈ L, which satisfies 0 ≤ fi− f̃i ≤ ‖f‖1

2k . The failure probability of this

algorithm is O(n−c). The space complexity is O(k log2 n) bits.

44:14 Simulating Random Walks on Graphs in the Streaming Model

◮ Remark. For ε ≪ 1/n, the O(n−c) failure probability of this ℓ1 heavy hitter algorithm

can be reduced to O(εc) by running the algorithm on f ∈ R
⌈1/ε⌉, using O(k log2(1/ε)) bits

of space. In the following discussion, this failure probability can be ignored by making the

constant c sufficiently large.

◮ Theorem 24. We can simulate a t-step random walk on an undirected graph in the turnstile

model within error ε using O(n(
√

t + log 1
ε) log2 max{n, 1/ε}) bits of memory.

Proof. Similar to the previous insertion-only algorithm (in Figure 4), we perform two arc

updates ((u, v), ∆), ((v, u), ∆) when we read an edge update ((u, v), ∆) from the stream.

For every u ∈ V , we run C′ = 2C + 16 log(2t/ε) independent ℓ1 samplers each having

failure probability δ = 1/2, where C is the same constant as in the proof of Lemma 19 and

Theorem 20. By Chernoff bound, the probability that less than C samplers succeed is at

most ε/(2t). For every arc update ((u, v), ∆), we send update (v, ∆) to u’s ℓ1 sampler.

In addition, for every v ∈ V , we run ℓ1 heavy hitter algorithm with k = C. For every arc

update ((u, v), ∆), we send update (u, ∆) to v’s heavy hitter algorithm. In the end, we will

get a frequency estimate Av(u) for every u ∈ V , such that f(u, v)− d(v)
C ≤ Av(u) ≤ f(u, v).

We then insert Av(u) copies of arc (u, v) into E1 (the multiset of important arcs), and send

update (v,−Av(u)) to u’s ℓ1 sampler. Then we use the ℓ1 samplers to sample unimportant

arcs for every u.

As before, we use the procedure SimulateRandomWalk (in Figure 3) to simulate the

random walk. The analysis of the failure probability of the ℓ1 samplers is the same as in The-

orem 22. The analysis of the failure probability of procedure SimulateRandomWalk is the

same as in Lemma 19. The space usage of the algorithm is O(nC′ log2 max{n, 1/ε} log δ) =

O(n(
√

t + log 1
ε) log2 max{n, 1/ε}) bits. ◭

5 Conclusion

We end our paper by discussing some related questions for future research.

The output distribution of our insertion-only algorithm for undirected graphs is ε-close

to the random walk distribution. What if the output is required to be perfectly random,

i.e., ε = 0?

For insertion-only simple undirected graphs, we proved an Ω(n
√

t)-bit space lower bound.

Our algorithm uses O(n
√

t log n) bits (for not too small ε). Can we close the gap between

the lower bound and the upper bound, as in the case of directed graphs?

In the undirected version, suppose the starting vertex v0 is drawn from a distribution

(for example, the stationary distribution of the graph) rather than being specified. Is it

possible to obtain a better algorithm in this new setting? Notice that our proof of the

Ω(n
√

t) lower bound does not work here, since it requires v0 to be specified.

We required the algorithm to output all vertices on the random walk. If only the last

vertex is required, can we get a better algorithm or prove non-trivial lower bounds?

References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Information and Computation, 222:59–79,

2013. doi:10.1016/j.ic.2012.10.006.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear

measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 459–467, 2012. doi:10.1137/1.9781611973099.40 .

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1137/1.9781611973099.40

C. Jin 44:15

3 Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition a graph.

Internet Mathematics, 4(1):35–64, 2007. doi:10.1080/15427951.2007.10129139 .

4 Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceed-

ings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 235–244,

2009. doi:10.1145/1536414.1536449.

5 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms

for clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory of

Computing (STOC), pages 30–39, 2003. doi:10.1145/780542.780548.

6 Graham Cormode and Shan Muthukrishnan. An improved data stream summary:

the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

doi:10.1016/j.jalgor.2003.12.001 .

7 Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph

streams. Journal of the ACM (JACM), 58(3):13, 2011. doi:10.1145/1970392.1970397 .

8 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation

guarantees for weighted matching in the semi-streaming model. SIAM Journal on Discrete

Mathematics, 25(3):1251–1265, 2011. doi:10.1137/100801901 .

9 Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. In Proceed-

ings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

pages 544 – 555, 2018. doi:10.1109/FOCS.2018.00058.

10 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM Journal on

Computing, 18(6):1149–1178, 1989. doi:10.1137/0218077.

11 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combin-

atorial structures from a uniform distribution. Theoretical Computer Science, 43:169–188,

1986. doi:10.1016/0304-3975(86)90174-X .

12 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of

the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679–1697,

2013. doi:10.1137/1.9781611973105.121.

13 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-

ford. Single pass spectral sparsification in dynamic streams. SIAM Journal on Computing,

46(1):456–477, 2017. doi:10.1137/141002281 .

14 Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.

Theory of Computing Systems, 53(2):243–262, 2013. doi:10.1007/s00224-012-9396-1.

15 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures

and asymmetric communication complexity. Journal of Computer and System Sciences,

57(1):37 – 49, 1998. doi:10.1006/jcss.1998.1577.

16 J. Misra and David Gries. Finding repeated elements. Science of Computer Programming,

2(2):143 – 152, 1982. doi:10.1016/0167-6423(82)90012-0 .

17 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),

55(4):17, 2008. doi:10.1145/1391289.1391291.

18 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs

and its application to nearly linear time graph partitioning. SIAM Journal on Computing,

42(1):1–26, 2013. doi:10.1137/080744888 .

http://dx.doi.org/10.1080/15427951.2007.10129139
http://dx.doi.org/10.1145/1536414.1536449
http://dx.doi.org/10.1145/780542.780548
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1145/1970392.1970397
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1109/FOCS.2018.00058
http://dx.doi.org/10.1137/0218077
http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.1137/1.9781611973105.121
http://dx.doi.org/10.1137/141002281
http://dx.doi.org/10.1007/s00224-012-9396-1
http://dx.doi.org/10.1006/jcss.1998.1577
http://dx.doi.org/10.1016/0167-6423(82)90012-0
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1137/080744888

	1 Introduction
	1.1 One-pass streaming model
	1.2 Random walks
	1.3 Our results

	2 Directed graphs in the insertion-only model
	3 Undirected graphs in the insertion-only model
	3.1 A space lower bound
	3.2 An algorithm for simple graphs
	3.3 On graphs with multiple edges

	4 Turnstile model
	4.1 Directed graphs
	4.2 Undirected graphs

	5 Conclusion

