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It is well-known that the Gale-Shapley algorithm is not truthful for all agents. Previous studies in this
category concentrate on manipulations using incomplete preference lists by a single woman and by the set
of all women. Little is known about manipulations by a subset of women or other types of manipulations,
such as permutation of complete preference lists.

In this paper, we consider manipulations by any subset of women with arbitrary preferences (either
incomplete or complete). For the setting where agents can report an incomplete preference list (aka. general
manipulations), we show that a strong Nash equilibrium of the induced manipulation game always exists
among the manipulators and the equilibrium outcome is unique and Pareto-dominant. In addition, the set
of matchings achievable by manipulations has a lattice structure.

For the setting where agents can only report complete preference lists (aka. permutation manipulations),
we give answers to Gusfield and Irving’s open question on what matchings can be achieved in the induced
manipulation games. We first construct a counter-example to show that a Pareto-dominant outcome may
not exist. Then we present a polynomial-time algorithm to find a Pareto-optimal strategy profile for the
induced manipulation game. Furthermore, we show that Pareto-optimality is equivalent to super-strong
Nash equilibrium outcomes and all such matchings can be found by our algorithm. The results for the
second part are enabled by connecting this problem to the stable roommate problem and using techniques
there to analyze a graph called suitor graph. We also introduce several new concepts, such as maximum
rotation and principle set, and develop a series of original techniques.

Even though all these results may suggest that the Gale-Shapley algorithm is vulnerable to coalition
manipulations, we do, however, prove a hardness result in the end, saying that it is NP-complete to find a
manipulation that induces a matching strictly better off for all manipulators.

Additional Key Words and Phrases: Stable matching, algorithm, complexity, Gale-Shapley algorithm, coali-
tion manipulation

1. INTRODUCTION
Stability has been a central concept in economic design, ever since the seminal work by
Gale and Shapley [1962]. Over the years, intensive research has been done in the lit-
erature of stable matching. A variety of applications of this problem have also been de-
veloped, ranging from college admissions and school matchings [Abdulkadiroğlu et al.
2005; Abdulkadiroglu and Sönmez 2003; Gale and Shapley 1962] to centralized kid-
ney exchange programs [Abraham et al. 2007; Roth et al. 2004, 2005] and hospitals-
residents matchings [Irving and Manlove 2009; Irving et al. 2000; Roth 1996].

In the standard stable matching model, there is a set of men and a set of women.
Each agent has a preference list over a subset of the opposite sex. A matching between
men and women is stable if no pair of agents prefer to match with each other than
their designated partner. Gale and Shapley [1962] put forward an algorithm, aka. the
Gale-Shapley algorithm, that computes a stable matching in O(n2) time. The algo-
rithm (men-proposing version) proceeds in multiple rounds. At each round, each man
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proposes to his favorite woman that has not rejected him yet; and each woman keeps
her favorite proposal, if any, and rejects all others. The algorithm iterates until no
further proposal can be made.

The algorithm enjoys many desirable properties. It is well-known that the matching
returned by the algorithm is preferred by every man to any other stable matching,
hence called the M-optimal (for men-optimal) matching. It is also known that all sta-
ble matchings form a lattice defined by such a preference relation and the M-optimal
matching is the greatest element in the lattice [Knuth 1976]. Furthermore, men and
women have strictly opposite preferences over two stable matchings: every man prefers
stable matching µ1 to stable matching µ2 if and only if every woman prefers µ2 to µ1.
As a result, the M-optimal matching is the W-pessimal (for women-pessimal) match-
ing [McVitie and Wilson 1971]. The smallest element in the lattice, the W-optimal
(M-pessimal) matching, can be obtained by swapping the roles of men and women.

A concern with the Gale-Shapley algorithm is its non-truthfulness. While it is known
that the algorithm is group strategy-proof1 for all men [Dubins and Freedman 1981], it
is not truthful for women. In fact, Roth [1982] shows that there is no stable matching
algorithm that is strategyproof for all agents.

1.1. Related work
The above impossibility theorem by Roth initiates an interesting literature of finding
manipulations for women by fixing men preferences in the Gale-Shapley algorithm.
Knuth et al. [1990] show that any woman may have at least

(
1
2 − ε

)
lnn and at most

(1 + ε) lnn different partners in all possible stable matchings, where n is the number
of men and ε is a positive constant. Gale and Sotomayor [1985] show that it is possible
for all women to strategically truncate their preference lists so that each of them is
matched with their partner in the W-optimal matching, and Teo et al. [2001] provide a
polynomial time algorithm to find the optimal single-agent truncation manipulation.

Jaramillo et al. [2014] study dropping strategies in a many-to-many setting where
agents can use blacklists but no shuffling is allowed. They show that dropping strate-
gies are exhaustive in this setting, i.e., any stable matching can be replicated or im-
proved using some dropping strategies. Gonczarowski [2014] also looks into general
manipulations where the agents use dropping strategies. He focuses on manipulations
by all women and give a tight upper bound on the number of men that must be deleted
to reach the W-optimal matching in the worst case.

Teo et al. [2001] study permutation manipulations, where a woman can report any
permutation of her true preference list2. They give an efficient algorithm to compute
the best manipulation for a single manipulator. Aziz et al. [2015] also study permuta-
tion manipulations in a many-to-one setting, but focus on a single manipulator with
quota more than one. Huang [2010] considers the classified stable matching problem
in a many-to-one setting where each man has his own classifications and has quota
limits on each class. Pini et al. [2009] create a stable matching mechanism and show
that for a single agent, it is computationally hard to manipulate the matching result.
All the results, except for the last, do not apply to cases where a coalition of women
jointly manipulate.

1Precisely, group strategy-proof means no coalition manipulation can make all men in the coalition strictly
better off, in this context. If consider the case where no man is worse off and at least one man is strictly
better off, the Gale-Shapley algorithm is not group strategy-proof [Huang 2006].
2This type of manipulations is common in the voting domain, e.g. Gibbard [1973].



1.2. Our contributions
In this paper, we study the game where a coalition of women can manipulate the Gale-
Shapley algorithm. The manipulators can use either general manipulation or permu-
tation manipulations.

We first analyze the setting of general manipulations, where agents (women) can re-
port a preference list over any subset of men. We show that a strong Nash equilibrium
(i.e,. no subset of manipulators can deviate and get strictly better off) always exists for
any subset of women.

THEOREM 1.1. In general manipulations, it is a strong Nash equilibrium that each
manipulator removes every man below her W-optimal partner on her list. Furthermore,
in the induced matching, all manipulators can be matched to their W-optimal partners.

This result generalizes the result by Gale and Sotomayor [1985], which considers
manipulations by the set of all women, and Teo et al. [2001], which provides an effi-
cient algorithm to compute the optimal single-agent general manipulation. Moreover,
the equilibrium outcome is unique and Pareto-dominant for all manipulators, i.e., all
manipulators reach a consensus on a single manipulation profile. Furthermore, the set
of all stable matchings attainable from general manipulations forms a join-semilattice
(Theorem 3.7).

For the more challenging setting of permutation manipulations where agents can
permute their preference lists, none of the nice properties in the general manipulation
setting continues to hold. We first give an example to show that a coalition of women
could get worse off by manipulating jointly than each performing a single-agent manip-
ulation (see Table I for details). As a result, unlike the general manipulation setting, a
unique Pareto-dominant outcome for all manipulators may not exist.

THEOREM 1.2. In permutation manipulations, there exists a polynomial-time algo-
rithm to find a manipulation such that the induced matching is Pareto-optimal and
stable with respect to true preference lists.

In fact, all Pareto-optimal matchings can be found by the algorithm. The algorithm
iteratively improves the matching and checks if there exists a strategy profile for the
manipulators that induces such a matching. We thus give an algorithmic characteriza-
tion of the open problem raised by Gusfield and Irving [1989] on what can be produced
by permutation manipulations. This problem is studied and reemphasized as an open
problem in [Kobayashi and Matsui 2010] and [Sukegawa and Yamamoto 2012].

Our algorithm is enabled by connecting stable matching problem to stable roommate
problem [Irving 1985], and by extensively using a structure called rotation defined in
the stable roommate problem. Using this connection, we can apply an important tool
called suitor graph [Kobayashi and Matsui 2010]. The suitor graph is constructed us-
ing a desired matching and the preference profile of all truthful agents. It can help
construct the manipulators’ preference profile that would yield the desired matching.
To obtain our results, we first construct the suitor graph according to the W-pessimal
matching. Then we eliminate rotations and modify the suitor graph accordingly. We
can decide whether the current matching corresponds to feasible manipulations by
checking certain connectivity properties of the suitor graph. However, some rotations
become exposed only after others are eliminated and thus only closed sets of rotations
can be validly eliminated. We then introduce the concept of maximal rotations and
prove that only closed sets whose maximal rotations contain manipulators can induce
feasible manipulations. However, we cannot afford to enumerate all closed sets since
the number grows exponentially. To tackle this, we further introduce the concept of
principle sets, whose number is polynomial with respect to the number of men and



women, and show that any feasible closed sets can be found if we eliminate feasible
principle sets iteratively. A Pareto-optimal strategy profile is found when no such prin-
ciple set can be eliminated.

We also prove another conceptually interesting result that only minor modifications
are needed for the manipulators to perform a Pareto-optimal manipulation (Theorem
4.20), another evidence of the vulnerability of the algorithm. Furthermore, we show
that Pareto-optimality is equivalent to super-strong Nash equilibrium, i.e., no subset
of manipulators can deviate and get weakly better off and at least one gets strictly
better off (Theorem 4.21).

Our results on permutation manipulations can be seen as a novel generalization of
the main result of Teo et al. [2001], who present an algorithm to compute strategies
for one manipulator by exhaustively searching for possible partners. However, directly
extending their results to coalition manipulations suffers from unacceptable time com-
plexity, since we need to enumerate all possible partner combinations. Our techniques
differ from theirs substantially and can provide different insights of the problem.

Although these results may suggest that the Gale-Shapley algorithm is vulnerable to
coalition manipulations, the following hardness result shows it is NP-complete to find a
manipulation such that the induced matching is strictly better off for all manipulators.

THEOREM 1.3. In permutation manipulations, it is NP-complete to find a manip-
ulation such that the induced matching is strictly better off for all manipulators and
stable with respect to true preference lists.

In other words, if there is a small manipulation cost for the agents, then: (1) any
agent is reluctant to participate in a manipulation that is not strictly better for her (2)
any manipulation that is strictly better off is unlikely to be found.

2. PRELIMINARIES
We consider a stable matching model with a set of men M and a set of women W and
assume |M | = |W |. The preference list of a man m, denoted by P (m), in a preference
profile P is a strict total order �Pm over a subset of W . Let w1 �Pm w2 denote that m
prefers w1 to w2 in profile P . Similarly, the preference list of a woman w is a strict
total order over a subset of M . For simplicity, we use �w to denote the true preference
profile when it is clear from the context. Denote the preference profile of M and W
by P (M) and P (W ), respectively. A matching is a function µ : M ∪W → M ∪W . We
write µ(m) = w if a man m is matched to a woman w, or µ(m) = m if he is unmatched.
Similarly, µ(w) = m if w is matched to m and µ(w) = w if unmatched. Moreover, for
two matchings µ1 and µ2, if for all w ∈W , µ1(w) �w µ2(w), we say µ1 �W µ2.

A matching is individually rational if no one is matched to someone who is not in
his or her preference list. If in a matching µ, a man m and a woman w are not matched
together, yet prefer each other to their partners in µ, then (m,w) is called a blocking
pair. A matching is stable if it is individually rational and contains no blocking pair.

The Gale-Shapley algorithm is not truthful for women [Dubins and Freedman 1981].
Given a set of women manipulators, the algorithm can be thought of as a game (hence-
forth, the manipulation game), between them. Let L ⊆ W be the set of manipulators
and N =W \ L be the set of non-manipulators.

Definition 2.1 (Manipulation game). Given a true preference profile P , a manipu-
lation game is a tuple (L,AL), where:

(1) L ⊆W is the set of manipulators;
(2) AL =

∏
i∈LAi is the set of all possible reported preference profiles.



The outcome of the manipulation game (also called induced matching in this paper)
is the matching resulted from the Gale-Shapley algorithm with respect to the reported
preference profiles. A manipulator’s preference in this game is naturally her true pref-
erence in P .

Remark 2.2. In a manipulation game, only manipulators L are considered as play-
ers, i.e., the reported preference profiles for all men and non-manipulators are their
true preference profiles. The set of all possible preferences Ai depends on different ma-
nipulation types and we only consider the case where all manipulators use the same
type of manipulations.

We now define three types of manipulations [Gonczarowski 2014; Kobayashi and
Matsui 2010; Roth and Sotomayor 1992], which determines the elements in AL.

Definition 2.3 (General manipulation). Let Ob be the set of strict total orders over
any subset of M . In general manipulations, Ai = Ob,∀i ∈ L.

Definition 2.4 (Truncation manipulation). Let (m1,m2, . . . ,mk) be a woman i’s true
preference list. In truncation manipulations, Ai = {(m1,m2, . . . ,mj) | ∀j 6 k}, ∀i ∈ L.

Definition 2.5 (Permutation manipulation). Let Op be the set of strict total orders
over M . In permutation manipulations, Ai = Op, ∀i ∈ L.

Clearly, the truncation manipulation is a special case of the general manipulation. In
permutation manipulations, each woman takes interest in all men and a manipulation
is simply a total order on M .

Let P (L) be the preference profile of all manipulators. We slightly abuse nota-
tions and write P (L) =

⋃
l∈L P (l), where P (l) is the preference list reported by l.

Similarly, denote the preference profiles for men and for non-manipulators by P (M)
and P (N). Thus the overall preference profile is P = (P (M), P (N), P (L)). Denote by
S(P (M), P (W )) the set of all stable matchings under profile (P (M), P (W )).

In this paper, our results are based on the feasibility assumption of a manipulation,
according to a series of literature [Gale and Sotomayor 1985; Roth and Vande Vate
1991; Roth 2002].

ASSUMPTION 2.6 (FEASIBILITY ASSUMPTION). A manipulation is feasible if the in-
duced matching is stable with respect to the true preference profile.

We call a matching feasible if it is induced by a feasible manipulation. The assump-
tion is worth some explanations. As Roth [2002] and Roth and Vande Vate [1991] sug-
gest, stability is of great importance for a successful clearinghouse. Empirical evidence
shows that most stable mechanisms have succeeded in practice while almost all un-
stable ones have failed. If the induced matchings were unstable, a manipulation is
no longer a Nash equilibrium, thus agents are unlikely to follow and the manipula-
tions fall apart [Gale and Sotomayor 1985]. Such unpredictability makes the unstable
matchings less desirable. This is equivalent to what the assumption states: unsta-
ble matchings yield low payoffs for the agents. The following solution concepts are all
based on the feasibility assumption.

Definition 2.7 (Nash equilibrium). A preference profile P (L) =
⋃
l∈L P (l) of a ma-

nipulation game is a Nash equilibrium if ∀l ∈ L, P (l) is a best response to P (L)\{P (l)}.
In other words, in a Nash equilibrium, l cannot be matched with a better partner in

any stable matching she can manipulate to.

Definition 2.8 (Strong Nash equilibrium & Super-strong Nash equilibrium). A
Nash equilibrium is strong, if no subset of manipulators can jointly manipulate to a



matching that is strictly better off for all of them. A Nash equilibrium is super-strong,
if no subset of manipulators can jointly manipulate to a matching that is weakly
better off for all and strictly better off for at least one of them.

Definition 2.9 (Pareto-optimal matching). A matching µ is Pareto-optimal if there
is no feasible matching in which all women (not necessarily a manipulator) are weakly
better off than in µ and at least one woman is strictly better off.

The above definition can be thought of as the standard Pareto-optimality restricted
to feasible matchings. Let SA(P (M), P (W )) denote the set of all feasible matchings. We
sometimes write SA for short when (P (M), P (W )) is clear from the context. Finally, we
say a strategy profile is Pareto-optimal when its induced matching is Pareto-optimal.

3. GENERAL MANIPULATIONS
Gale and Sotomayor [1985] prove that a strong Nash equilibrium always exists if all
women are manipulators and use truncation manipulations. They construct explicitly
such a strong equilibrium by letting each woman use a truncation manipulation that
removes all men ranked below her W-optimal partner. Ma [2010] also studies trunca-
tion manipulations in the same setting and shows that there is only one Nash equi-
librium. In addition, the equilibrium profile admits a unique stable matching, namely,
the W-optimal matching. Moreover, Teo et al. [2001] provide a polynomial time algo-
rithm to find the optimal single-agent manipulation. In this section, we extend these
results to coalition manipulations and consider any subset L ⊆W as manipulators.

LEMMA 3.1. Let P = (P (M), P (W )) be the true preference profile for all agents.
Every matching in SA(P ) induced by a feasible general manipulation can be induced
by a feasible truncation manipulation.

Remark 3.2. Note that this result is different from the exhaustiveness result in
[Jaramillo et al. 2014], since exhaustiveness only requires that ∀µ ∈ SA(P ), there
exists a truncation manipulation such that the induced matching is weakly preferred
by the manipulators.

According to Lemma 3.1, it is therefore without loss of generality to focus on trunca-
tion manipulations. In the remainder of this section, unless explicitly specified, we say
a partner or a matching is W-optimal or W-pessimal for a woman if it is so under the
true preference profile.

3.1. Super-strong Nash equilibria
The following theorem states that any unmatched woman in a stable matching re-
mains unmatched in all stable matchings.

THEOREM 3.3 (ROTH [1986]). Given P (M) and P (W ), the set of unmatched agents
is the same among all stable matchings.

Recall that a feasible manipulation must induce a stable matching under true pref-
erences. Therefore, any unmatched woman in the W-optimal matching has no incentive
to misreport since she will always be unmatched. Thus, we only need to consider the
case where no manipulator is unmatched in the W-optimal matching.

THEOREM 3.4 (THEOREM 1.1). In truncation manipulations, it is a super-strong
Nash equilibrium that each manipulator removes every man below her W-optimal part-
ner on her list. Furthermore, in the induced matching, all manipulators can be matched
to their W-optimal partners.



This result generalizes the result by Gale and Sotomayor [1985], which only consid-
ers manipulations by the set of all women. If the set of manipulators contains only one
woman, the problem becomes a single-agent manipulation and Theorem 3.4 can also
be applied. Thus, in coalition manipulations, every manipulator is matched with the
same man as in her best single-agent manipulation.

3.2. Lattice structure
Definition 3.5. Given two matchings µ and µ′, define µ∨ = µ∨µ′ to be the matching

that matches each man to his more preferred partner and each woman to her less
preferred partner in µ and µ′. Similarly, we can define µ∧ = µ∧µ′, which matches each
man to his less preferred partner and each woman to her more preferred partner.

The following theorem states that µ∨ and µ∧ are not only well-defined matchings,
but also essential to the lattice structure of the set of all stable matchings.

THEOREM 3.6 (CONWAY’S LATTICE THEOREM; [KNUTH 1976]). When all prefer-
ences are strict, if µ and µ′ are stable matchings under preference profile P , then the
matching µ∨ = µ ∨ µ′ and µ∧ = µ ∧ µ′ are both matchings. Furthermore, they are both
stable under P .

Therefore, the set of all stable matchings is a lattice with �M and �W . Let µL be a
partial matching obtained by restricting the corresponding full matching µ to the set
of manipulators and we call µ an extension of µL. Let SLA be the set of partial matchings
obtained by restricting all matchings in SA to the set of manipulators L.

THEOREM 3.7. Given the true preference profiles (P (M), P (W )) and the set of ma-
nipulators L, then the set of matchings that can be induced by feasible general ma-
nipulations, SA(P (M), P (W )), is a join-semilattice3, and the set of partial matchings
SLA(P (M), P (W )) is a lattice.

Since a finite join-semilattice has a greatest element, if there exist two distinct
matchings resulted from super-strong Nash equilibria, at least one matching can be
improved. Thus, the matching induced from the super-strong Nash equilibria is unique
and Pareto-dominant.

3.3. Relaxing the feasibility assumption
Recall that we consider feasible manipulations and if this restriction is relaxed, the
strategy profile constructed in Theorem 3.4 is still a strong Nash equilibrium.

THEOREM 3.8. In general manipulations without the feasibility assumption, it is
a strong Nash equilibrium that each manipulator removes every man below her W-
optimal partner on her list. Furthermore, in the induced matching, all manipulators
can be matched to their W-optimal partners.

However, without the feasibility assumption, it is no longer a super-strong Nash equi-
librium. A counter-example is provided in Appendix C.1.

4. PERMUTATION MANIPULATIONS
In this section, we analyze the open problem raised by Gusfield and Irving [1989] on
what can be achieved by permutation manipulations. We are interested in algorith-
mic characterizations of solution concepts such as Pareto-optimal strategy profiles and
super-strong Nash equilibria. Formally, we have the following results.

3A join-semilattice is a partially ordered set where every two elements have a unique join (or supremum).



THEOREM 4.1 (FORMAL VERSION OF THEOREM 1.2). There exists a polynomial-
time algorithm in the number of agents, such that given any complete preference profile
P and any subset L ⊆ W as manipulators, the algorithm computes a feasible permuta-
tion manipulation, i.e., a strategy profile P ′(L), for L and the induced matching µ′:

(1) if L reports P ′(L), the induced matching µ′ is Pareto-optimal;
(2) for each w ∈ L, P ′(w) is modified from P (w) by moving at most one man to some

higher ranking.

Moreover, the algorithm can be adapted to find the set of all Pareto-optimal matchings.

Remark 4.2. It is weakly better off for all manipulators to follow the strategy P ′(L)
rather than P , since µ′ is stable under P , which is preferred by each manipulator to
the W-pessimal matching under P .

THEOREM 4.3. Under the feasibility assumption, the set of all Pareto-optimal
matchings is the same as the set of super-strong Nash equilibrium outcomes.

The two theorems together indicate that all super-strong Nash equilibria can be
found by our algorithm. Recall that in permutation manipulations, both men and
women have complete preference lists and each manipulator is only allowed to per-
mute her true preference list. Previous results about general manipulation do not
carry over here mainly due to the challenge that joint manipulations may result in
worse matchings. Consider an example with 4 men and 4 women (see Table I).

Table I. Example of non-cooperativeness
Men’s preference lists

m1 w1 w4 w2 w3

m2 w1 w3 w2 w4

m3 w2 w3 w1 w4

m4 w2 w4 w1 w3

Women’s preference lists
w1 m3 m2 m1 m4

w2 m1 m4 m3 m2

w3 m2 m3 m1 m4

w4 m4 m1 m3 m2

{(m1, w4), (m2, w1), (m3, w3), (m4, w2)} is the M-optimal matching. Suppose the set of
manipulators is L = {w1, w2} and consider individual manipulations by w1 and w2.

(1) w1 exchanges m1 and m2 and get {(m1, w4), (m2, w3), (m3, w1), (m4, w2)};
(2) w2 exchanges m3 and m4 and get {(m1, w2), (m2, w1), (m3, w3), (m4, w4)};

In both cases, w1 and w2 can manipulate to get their W-optimal partner. However, if
they try to cooperate, it is surprising that they both get worse off than the matching
corresponding to their true preference lists. In fact, the only way for them to manip-
ulate together is that each manipulator performs the operation mentioned above and
the induced matching is (m1, w1), (m2, w3), (m3, w2), (m4, w4).

The above example shows that conflict of interest exists among different manipu-
lators. To analyze the problem, we borrow two structures, rotations [Irving 1985] and
suitor graphs [Kobayashi and Matsui 2009], from the literature. We further develop
several new structures such as maximal rotations and principle sets to derive connec-
tions between suitor graphs and feasible manipulations.

The remainder of this section is organized as follows: Section 4.1 and Section 4.2
briefly introduce the structures of rotations and suitor graphs. Section 4.3 and Sec-
tion 4.4 provides an algorithmic characterization of Pareto-optimal strategy profiles.
Section 4.5 characterizes the equivalence between Pareto-optimal matchings and
super-strong Nash equilibrium outcomes. Section 4.6 discusses variations of the prob-
lem and provides hardness results for a decision problem and a counting problem.



4.1. The stable roommate problem and rotations
The stable roommate problem is a natural generalization of the stable marriage prob-
lem. In the stable roommate problem, each agent has a preference list over all other
agents and can be matched to any other agent. We abbreviate the two problems to SM
(stable marriage) and SR (stable roommate) respectively.

Irving [1985] designs an efficient algorithm for solving the SR problem. The algo-
rithm consists of two phases. In phase 1, the algorithm runs just like the Gale-Shapley
algorithm. Each agent proposes to other agents according to his preference list. When
ai proposes to aj , aj accepts ai if he does not hold any proposal or ai is better than his
current mate, and rejects ai otherwise. If ai is rejected, then remove them from each
other’s preference list. It is shown that if aj accepts ai, then aj can not be matched with
anyone ranked below ai in aj ’s preference list. As a result, if ai is accepted, for each
ak ranked below ai in aj ’s preference list, we can remove ak and aj from each other’s
preference list. Phase 1 terminates until each agent holds a proposal. Each agent’s list
at the end of phase 1 is called a reduced list. The set of all reduced lists is called a
reduced table. At the end of phase 1, ai is in aj ’s reduced list if and only if aj is in ai’s.
In phase 2, the algorithm solves the problem by eliminating a series of rotations.

Definition 4.4 (Rotation). A rotation is a sequence of agents R = (a1, a2, . . . , ar)
where the first entry of ai+1’s reduced list is the second in ai’s reduced list, for all
1 ≤ i ≤ r, and i+ 1 is taken modulo r.

The elimination of a rotation R is to force an agent ai of R to reject his current
proposer. Then we can run the phase 1 algorithm since ai no longer holds any proposal.
the rotation R is eliminated until the phase 1 algorithm terminates again. After each
elimination, the reduced table is updated and new rotations may appear. We call a
rotation exposed if it is in the current reduced list. The phase 2 algorithm terminates
until no rotations are exposed. We refer readers to the original paper for more details
of the algorithm [Irving 1985].

Gusfield [1988] explores the structure of the solutions of the SR problem. He dis-
covered that some rotations are singleton while others have a dual rotation. A dual
rotation of a rotation R = (a1, a2, . . . , ar) is also a rotation Rd = (ad1, a

d
2, . . . , a

d
r) where

R and Rd have the same length and adi is the second entry in ai’s reduced list. Gusfield
[1988] proves that in order to find a solution, all singleton rotations and exactly one
rotation of each dual pair must be eliminated. The solution is determined by the set
of eliminated rotations but not the order of elimination. Furthermore, he showed that
every solution corresponds to a certain set of rotations and there exists an order of
elimination that produces it.

We also use R = (A,F ,S) to represent a rotation, where A is the sequence of agents
contained in R and F and S are the corresponding sequences of the first and the second
entry in A’s reduced lists. Therefore, Fi+1 = Si by the definition of rotations, and Rd =
(S,A,Ar), where Ar is the sequence A with each agent shifted left by one position.

A SM problem can be easily converted to a SR problem by adding all agents of the
same sex to the end of each agent’s preference list. One can easily check that the
converted problem has exactly the same set of solutions as the original problem. We
study the rotations of the converted problem and figure out how to eliminate rotations
in the Gale-Shapley algorithm. Although rotations can be defined directly in the SM
problem, known as improvement cycle and useful in the algorithm that converts M-
optimal matching to W-optimal matching [Ashlagi et al. 2013; Gonczarowski 2014;
Immorlica and Mahdian 2005] , we analyze from a different point of view, which can
provide more insight into the structure of the problem. Note that the converted SR



problem is only used to analyze the structure of the rotations, we still stick to the
Gale-Shapley algorithm to solve the original SM problem.

LEMMA 4.5. Any SM problem can be converted to a SR problem using the method
above. In the corresponding SR problem, each rotation contains only agents of the same
sex and each rotation has a dual rotation.

We call a rotation containing only men (women) a M-rotation (W-rotation). Moreover,
an M-rotation’s dual is a W-rotation and vice versa. Therefore, all pairs of rotations
contain an M-rotation and a W-rotation. To generate a certain solution to the converted
SR problem, we need to select either an M-rotation or a W-rotation to eliminate in
each dual pair. Thus, each solution can be represented using a set of M-rotations, and
given a set of M-rotations, we can construct its corresponding reduced table, and the
corresponding matching just matches each man to the first woman in his reduced list
(or matches each woman to the last man in her reduced list) after eliminating the given
set of M-rotations.

We use rotations to represent M-rotations from now on since only M-rotations need
to be considered. A man m is in a rotation R = (M,W,Wr) if m is in the sequenceM
and a woman w is in R if w is inW. Also, an agent is in a set of rotations if this agent is
in any rotation of the set. We may sometimes use mi and wi to mean the i-th agent in
M and W when the order is important. Moreover, we say a rotation R = (M,W,Wr)
moves mi from wi to wi+1 and moves wi from mi to mi−1 since after eliminating the
rotation, the corresponding matching matches mi and wi+1 together.

It is known that the order of proposals and rejections does not affect the induced
matching. As a result, in order to eliminate a rotation R and compute the induced
matching, we can pick an arbitrary woman in R and let her reject her current proposer.
Then we run the Gale-Shapley algorithm again until it terminates.

4.2. Suitor graph
Suitor graph is another important structure for our analysis. It is proposed by
Kobayashi and Matsui [2010] when considering the problem that given a preference
profile for all truthful agents P (M) and P (N), is there a profile P (L) for the manipula-
tors such that the M-optimal matching of the combined preference profile is a certain
matching µ? The detailed definition of suitor graph is as follows:

Definition 4.6 (Suitor graph; Kobayashi and Matsui [2010]). Given a matching µ,
a preference profile for all men P (M) and a preference profile for all non-manipulators
P (N), the corresponding suitor graph G(P (M), P (N), µ) is a digraph (V,E). Then,
G(P (M), P (N), µ) can be constructed using the following steps:

(1) V =M ∪W ∪ s, where s is a virtual vertex;
(2) ∀w ∈W , add edges (w, µ(w)) and (µ(w), w);
(3) ∀w ∈W , let δ(w) = {m | w �m µ(m)};
(4) ∀w ∈ L and for each m in δ(w), add edges (m,w);
(5) ∀w ∈ N , if δ(w) is nonempty, add the edge (m,w), where m is w’s favorite in δ(m);
(6) ∀w ∈W , if δ(w) = ∅, add an edge (s, w) to the graph;

Kobayashi and Matsui [2010] also give a characterization of the existence of such
profiles and a O(n2) time algorithm can be found directly from their constructive proof.

THEOREM 4.7 (KOBAYASHI AND MATSUI [2010]). Given a matching µ, a prefer-
ence profile with P (M) for all men and P (N) for all non-manipulators, there exists a
profile for the manipulators P (L) such that µ is the M-optimal stable matching for the
total preference profile (P (M), P (N), P (L)), if and only if for every vertex v in the corre-



sponding suitor graph G(P (M), P (N), µ), there exists a path from s to v (s is a virtual
vertex in the graph). Moreover, if such P (L) exists, it can be constructed in O(n2).

4.3. Pareto-optimal strategy profiles
We are now ready to combine the structures mentioned above to analyze permutation
manipulations. Notice that eliminating more rotations results in weakly worse match-
ings for all men, which are also weakly better matchings for all women, since all men in
the rotation are rejected and have to make proposals to the next woman in his prefer-
ence list. Thus, a manipulator’s objective is to eliminate as many rotations as possible
by permuting their preference lists. Since there is no direct rotation elimination in the
Gale-Shapley algorithm, we try to figure out what kind of rotations can be eliminated,
i.e., after eliminating these rotations, the corresponding matching is in SA.

We first analyze the structure of the set of all rotations. Rotations are not always
exposed in a reduced table. Some rotations may become exposed only after other rota-
tions are eliminated. Thus, we define the precedence relation between rotations and
based on that, we introduce two concepts, closed set and maximal rotations.

Definition 4.8 (Precedence). A rotation R1 = (M1,W1,Wr
1 ) is said to explicitly pre-

cede another R2 = (M2,W2,Wr
2 ) if R1 and R2 share a common man m such that R1

moves m from some woman to w and R2 moves m from w to some other woman. Let the
relation precede be the transitive closure of the explicit precedence relation, denoted
by ≺. Also, R1 ∼ R2 if neither R1 ≺ R2 nor R2 ≺ R1.

Definition 4.9 (Closed set). A set of rotations R is closed if for each R ∈ R, any
rotation R′ with R′ ≺ R is also in R. A closed set C is minimal in a family of closed sets
C , if there is no other closed set in C that is a subset of C. Moreover, define CloSet(R)
to be the minimal closed set that contains R.

Definition 4.10 (Maximal rotation). Given a closed set of rotations R, R is called
a maximal rotation of R if no rotation R′ ∈ R satisfying R ≺ R′. Let Max(R) denote
the set of all the maximal rotations in R. Furthermore, R is called a principle set if
Max(R) contains only one rotation.

Simply put, R1 precedes R2 if R2 can only be exposed after R1 is eliminated. A ro-
tation R can only be exposed after all rotations preceding R are eliminated. Thus only
closed sets can be validly eliminated. Also, a closed set of rotationsR is uniquely deter-
mined by Max(R). Therefore, given a closed set R, the corresponding matching after
eliminating rotations in R is determined by Max(R).

The following theorem by Irving and Leather [1986] shows that closed sets of rota-
tions are all that we need to consider.

THEOREM 4.11 (IRVING AND LEATHER [1986]). Let S be the set of all stable
matchings for a given preference profile, there is a one-to-one correspondence between S
and the family of all closed sets.

Then we focus on the changes made to the suitor graph when a rotation R is elim-
inated. We keep track of every proposal made by men in R and modify the graph ac-
cordingly. We first assume that the virtual vertex s is comparable with each man and
for every w ∈W and every m ∈M , m �w s. When eliminating a rotation, we follow the
steps below to modify the graph:

(1) Let all women in R reject their current partner, i.e., delete the edge (wi,mi) in-
volved in R for each i;

(2) Arbitrarily choose a man mi in R and let him propose to the next woman w in his
preference list. Repeat until all man in R are accepted:



(a) If w is a manipulator, add an edge frommi to w and delete edge (s, w) if it exists;
(b) If w is not a manipulator, then compare mi with the two men (one is possibly s)

in V ′ = {v | (v, w) ∈ E}. If m is not the worst choice, add an edge from mi to w
and delete the worst edge, and we say w is overtaken by mi;

(c) If w accepts mi, add an edge from w to mi;

Let G and G′ be the graphs corresponding the reduced tables before and after the
elimination of R. It is easy to check that after modifying G using the steps defined
above, the resulting graph is exactly G′. Before we explore the properties of the graph
after eliminating rotations, we need to define a special structure in the suitor graph
called strong components.

Definition 4.12. A sub-graphG′ ofG is said to be strongly connected if for every two
vertices u and v in the G′, there exists a path from u to v in G′. A strong component of
a graph is a maximal strongly connected sub-graph.

The following lemma gives some connectivity properties of the suitor graph after
eliminating a single rotation.

LEMMA 4.13. After eliminating a rotation R,

(1) all agents in R are in the same strong component;
(2) vertices that are formerly reachable from a vertex in R remain reachable from R;
(3) vertices that are overtaken during the elimination of R are reachable from R.

With Lemma 4.13, we do not need to worry about vertices that are reachable from
vertices in R, for they will remain reachable after the elimination. Also, vertices that
are overtaken and the other vertices reachable from overtaken vertices can be reached
from vertices in R after the elimination.

In fact, every vertex is reachable from s in the initial suitor graph. Therefore, if a
vertex becomes unreachable from s after eliminating a rotation, there must exist some
edge that is deleted during the elimination, which only happens when some woman is
overtaken. The next lemma extends Lemma 4.13 to a closed set of rotations.

LEMMA 4.14. After eliminating a closed set of rotations R, each v in R is reachable
from at least one vertex inMax(R), i.e., there exists a path to v from a vertex inMax(R).

This lemma is a generalization of Lemma 4.13. If R2 explicitly precedes R1, then
they must contain a common man. Therefore, after eliminating R1, vertices in R1 can
reach any vertex that is previously reachable from R2. The analysis goes on recursively
until some rotation has no predecessors.

Given a closed set of rotations R, we say R can be eliminated for simplicity, if the
corresponding matching after eliminating rotations in R is in SA.

LEMMA 4.15. A closed set of rotations R can be eliminated if and only if after elim-
inating R, every vertex of rotations in Max(R) can be reached from s.

The following theorem provides us a desired property of closed sets of rotations that
can be eliminated, based on which, we are able to design a polynomial time algorithm
to find a Pareto-optimal matching.

THEOREM 4.16. Given a closed set of rotationsR, ifR can be eliminated, then there
exists a rotation R ∈ R such that CloSet(R) can be eliminated.

Despite the fact that an optimal strategy profile may not exist, we know for sure that
a Pareto-optimal strategy profile always exists since the set SA is finite and nonempty.
Algorithm 1 computes such a profile.



ALGORITHM 1: Find a Pareto-optimal profile for permutation manipulations
Find the set of all rotations R and all principle sets P = {CloSet(R)|R ∈ R};
while True do

Construct C = {P ∈ P | P can be eliminated};
if C = ∅ then

Construct P (L) for L and return;
else

Arbitrarily choose a principle set P∗ ∈ C and eliminate P∗;

In fact, for any iteration of Algorithm 1, the matching at the beginning of each it-
eration is in SA. Therefore, if a closed set of rotations R can be eliminated, we can
always find a principle set P∗ contained inR such that P∗ can be eliminated according
to Theorem 4.16. To analyze the time complexity of Algorithm 1, we define a graph
describing the precedence relation between rotations.

Definition 4.17 (Precedence graph). Given a set of rotations R, let D be a directed
acyclic graph, where the vertices in D are exactly R, and there is an edge (R1, R2) in
D if R1 ≺ R2. Moreover, let H be the transitive reduction of D defined above, and Hr

be the graph H with all edges reversed.

Note that H is exactly the directed version Hasse diagram of the precedence relation
between rotations. For a rotation R, CloSet(R) is the set of vertices that can be reached
fromR through a directed path inHr. We split the algorithm into the initialization part
and iteration part, and assume |M | = |W | = n.

In the initialization part, we first compute the initial matching using the Gale-
Shapley algorithm, which can be computed in O(n2) time. Next we find all rotations
with respect to preference profile P and also find all the principle sets. These two oper-
ations depend on the graph Hr. However, the graph H is the transitive reduction of D,
and the construction of H is somewhat complex. Gusfield [1987] discusses how to find
all rotations, whose number isO(n2), inO(n2) time. Instead of constructingH, Gusfield
considered a sub-graph H ′ of D, whose transitive closure is identical to D. Moreover,
H ′ can be constructed in O(n2) time. We will not discuss how to construct H ′ in detail
but only apply Gusfield’s results here. Then for each rotation R, we only need to search
H ′ to find CloSet(R), which takes O(n2) time. Thus, we finish the initialization step in
O(n4) time since there are O(n2) rotations altogether.

The iteration part is the bottleneck of the algorithm. At least one rotation is elimi-
nated for each iteration, and thusO(n2) iterations are needed. Inside each iteration, we
need to construct the set C . There are O(n2) principle sets and to determine whether
a principle set can be eliminated, we need to simulate the Gale-Shapley algorithm
and modify the suitor graph accordingly. After the modification, we traverse the suitor
graph to see if each vertex is reachable. Both of the two operations takes O(n2) time.
Thus, the construction of C takes O(n4) time. In the If-Else statement, if we find a
principle set that can be eliminated, we eliminate the principle set and modify the
suitor graph in O(n2). Otherwise, we traverse the suitor graph to construct the pref-
erence profile for L according to Theorem 4.7. Thus, the If-Else statement takes O(n2)
time and totally, the time complexity is O(n6). To sum up, formally we have,

THEOREM 4.18. Algorithm 1 correctly computes a Pareto-optimal strategy profile
and the time complexity of Algorithm 1 is O(n6).

Moreover, notice that at each iteration, the algorithm has multiple choices to select
a principle set to eliminate. In fact, for each possible Pareto-optimal matching µ, there



exists a way to select the principle sets such that the induced matching from the output
of Algorithm 1 is µ.

THEOREM 4.19. All Pareto-optimal strategy profiles can be found by the selection
of principle sets inside each iteration of Algorithm 1.

4.4. Inconspicuousness of feasible manipulations
In fact, in order to obtain a feasible matching, the manipulators only need slight mod-
ifications to their true preference lists. Formally,

THEOREM 4.20. For each feasible manipulation, there exists a preference profile for
the manipulators, in which each manipulator only needs to move at most one man in
her true preference list to some higher ranking, that yields the same matching.

For convenience, we introduce a new notation Pro(w) for each w ∈W . A proposal list
Pro(w) of a woman is a list of all men who have proposed to her in the Gale-Shapley
algorithm, and the orderings of its entries are the same as her stated preference list. A
reduced proposal list contains the top two entries (first entry if only one entry exists)
of Pro(w), denoted by Pror(w). Clearly, each woman w is matched to the first man of
Pror(w). The following algorithm computes a Pareto-optimal strategy profile that is
inconspicuous with respect to the true preference profile.

ALGORITHM 2: The inconspicuous version of Algorithm 1
Use Algorithm 1 to compute a strategy profile P (L) for L;
Compute Pror(w) for each w ∈ L with respect to P (L);
for each w in L do

Modify the true preference list P (w) by moving the second man in Pror(w) to the position
right after the first man in Pror(w);

return the modified preference profile P ;

4.5. Super-strong Nash equilibrium
The strategy profiles computed by Algorithm 2 not only are Pareto-optimal, but also
form super-strong Nash equilibria.

THEOREM 4.21. Under the feasibility assumption, the set of all Pareto-optimal
matchings is the same as the set of super-strong Nash equilibrium outcomes.

However, if we relax the feasibility assumption, the strategy profiles computed by
Algorithm 2 do not necessarily form super-strong Nash equilibria. A counter-example
is provided in Appendix C.2.

4.6. Hardness results
The above discussion shows that the Gale-Shapley algorithm is vulnerable to coalition
manipulation. However, it is NP-complete to find a feasible manipulation in which
every manipulator is strictly better off.

THEOREM 4.22 (THEOREM 1.3). In permutation manipulations, it is NP-complete
to find a manipulation such that the induced matching is strictly better off for all ma-
nipulators and stable with respect to true preference lists.

Interestingly, our reduction can also be extended to search manipulations in unsta-
ble matchings due to the fact that, in the constructed stable matching problem, if all
manipulators are better off in a matching, the matching must be stable.



THEOREM 4.23. In permutation manipulations, it is NP-complete to find a manip-
ulation such that the induced matching (not necessarily stable with respect to the true
preference profile) is strictly better off for all manipulators.

According to Theorem 4.22, one immediate corollary is that the number of different
Pareto-optimal matchings cannot be polynomial in the number of men and women. For
otherwise, we can enumerate all such matchings by Algorithm 1 to develop a polyno-
mial time algorithm. Actually, there are 2Θ(|M |+|W |) different induced matchings, which
is Pareto-optimal and weakly better off for all manipulators, in the constructed stable
matching problem used in the reduction of Theorem 4.22 (see Appendix D for details).
Last but not least, to compute the number of matchings that are Pareto-optimal and
strictly better off for all manipulators is #P-Hard.

THEOREM 4.24. In permutation manipulations, it is #P-Hard to compute the num-
ber of induced matchings, which are strictly better off, Pareto-optimal for all manipula-
tors, and stable with respect to true preference lists.

5. CONCLUSION AND FUTURE WORKS
In this paper, we consider two types of manipulations, general manipulations and per-
mutation manipulations, by any subset of women in the Gale-Shapley algorithm.

— In general manipulations, we show that the induced manipulation game always has
a strong Nash equilibrium, which is also unique and Pareto-dominant.

— In permutation manipulations, we present a polynomial-time algorithm to find a
Pareto-optimal strategy profile and prove that Pareto-optimal matchings are equiv-
alent to super-strong Nash equilibrium outcomes.

Along with theoretical results, we introduce some new concepts, such as maximum ro-
tation and principle set, and develop novel techniques to connect rotations and suitor
graphs, which are useful for further study. Moreover, although these results show the
vulnerabilities of the Gale-Shapley algorithm, we also show that finding a manipula-
tion that induces a matching strictly better off for all manipulators is NP-complete.

Most of the results in this paper are obtained under the feasibility assumption, es-
pecially in the permutation manipulation setting. Finding Nash equilibria or Pareto-
optimal matchings without the feasibility assumption would still be interesting. It re-
mains unknown whether finding such solutions in this setting is easy or not.
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APPENDIX
A. OMITTED PROOFS IN SECTION 3
A.1. Proof of Lemma 3.1

PROOF. Let µ be any matching in SA and P (L) be the corresponding reported pref-
erence profile by the manipulators in a Nash equilibrium of general manipulation.
Therefore, µ is the M-optimal matching of P ′ = (P (M), P (N), P (L)). We construct a
truncated preference profile Pt(L) for the manipulators where for each manipulator w,
µ(w) is the last in her preference lists. (If w is single in µ, her preference list remains
the same as her true preference list).

Notice that µ is stable under the true preference profile. We show that µ is also stable
under Pt = (P (M), P (N), Pt(L)). Clearly, µ is individually rational. Assume on the
contrary that a pair (m,w) blocks µ. Then we must have m �Ptw µ(w) and w �Ptm µ(m).
From the construction of Pt, we know that m �Pw µ(w) is also true ∀w ∈ W . Also,
w �Pm µ(m) is true since no man’s preference list is changed. Thus, (m,w) is a blocking
pair under P , which contradicts to the stability of µ.

We claim that µ is the W-pessimal matching under Pt. Otherwise, assume µ∗ is the
W-pessimal matching and µ 6= µ∗. For each manipulator w, we have µ(w) = µ∗(w), for
µ(w) is already the last man in her preference list. We consider µ∗ under P ′. Since all
manipulators are matched to the same men in the two matchings and µ 6= µ∗, there
must be a non-manipulator w′ such that µ(w′) �P ′w′ µ∗(w′). Thus, µ∗ is not stable under
P ′ since µ is the W-pessimal matching under P ′ and there is a blocking pair (m′′, w′′).
Moreover, w′′ cannot be a manipulator, otherwise since µ(m′′) = µ∗(m′′) (implied by
µ(w′′) = µ∗(w′′)) and m′′ �P ′w′′ µ(m′′), m′′ is in Pt(w

′′) so that (m′′, w′′) blocks µ∗ under
Pt. As a result, w′′ is a non-manipulator but (m′′, w′′) also blocks µ∗ under Pt, since
the preference lists of both m and w are the same in the two preference profiles. A
contradiction.

A.2. Proof of Theorem 3.4
In order to prove Theorem 3.4, we first consider the following lemma.

LEMMA A.1. Let (P (M), P (W )) be the true preference profile and P (L) be the re-
ported profile by the manipulators. If for each manipulator w, her W-optimal partner
is not removed from her list in truncation manipulation, then S(P (M), P (N), P (L)) ⊆
S(P (M), P (W )).

PROOF. Suppose not and there exists a matching µ which is in S(P (M), P (N), P (L))
but not in S(P (M), P (W )). Then, there exists a blocking pair (m,w) in µ under true
preference lists. For m, since his preference list is not modified, he prefers w to µ(m) in
true preference lists and the lists after truncation.

If w is not single in µ, then m is still in her preference list after truncation manip-
ulation since m �w µ(w), which forms a blocking pair in µ. Otherwise, if w is single
in µ, notice that, since the order of each man and each woman’s preference list is
not changed, W-optimal matching is in S(P (M), P (N), P (L)). Thus, w is single in W-
optimal matching and according to the assumption, she is not a manipulator.

PROOF OF THEOREM 3.4. We first prove that each manipulator is matched to
her M-optimal partner if they report P (L). According to Lemma A.1 the induced
matching µ must be in S(P (M), P (W )). Notice that, W-optimal matching is still in
S(P (M), P (N), P (L)). Thus, according to Theorem 3.3, each manipulator is not single
after manipulation, and she cannot be matched with a man worse than her W-optimal
partners since she already removes him. Also, each woman cannot get a partner bet-



ter than her W-optimal partner. Thus, all manipulators must be matched with their
W-optimal partner.

Next we show that it is a super-strong Nash equilibrium for all manipulators to do
so. Suppose that there exists a sub-coalition of women L′ ⊆ L who can deviate from
P (L) so that each manipulator is weakly better off and at least one is strictly better
off. However, the induced matching must be stable under true preference lists, but all
manipulators are matched with their W-optimal partner already. A contradiction.

A.3. Proof of Theorem 3.7
Before we discuss the lattice structure of the set of SA, we first prove a lemma
about the relation between the length of the preference lists and the induced match-
ing. We say a preference profile P1 = (P (M), P (N), P1(L)) is shorter than another
P2 = (P (M), P (N), P2(L)) if for each w ∈ L, |P1(w)| ≤ |P2(w)|. In other words, P1 is
shorter than P2 if all manipulators remove no less men in P1 than in P2.

LEMMA A.2. Let P1 and P2 be two preference profiles, and µ1 and µ2 be the two
corresponding M-optimal matchings, if for each manipulator, her W-optimal partner is
in both P1 and P2, and P1 is shorter than P2, then µ1 �W µ2.

PROOF. The lemma is a corollary of Lemma A.1. Since P1 is shorter than P2, P1

can be viewed as a manipulation starting from P2. By Lemma A.1, the set of stable
matchings under P1 is a subset of that under P2. Moreover, the Gale-Shapley outputs
the W-pessimal matching and thus, µ1 �W µ2.

LEMMA A.3. Given two preference profiles P1 and P2, and two corresponding M-
optimal matchings by µ1 and µ2. Let P∩ = P1 ∩ P2 = (P (M), P (N), P∩(L)) such that

P∩(w) =

{
P1(w) if |P1(w)| ≤ |P2(w)|
P2(w) otherwise

for all w ∈ L. Then the M-optimal matching µ∩ under P∩ is exactly µ∧ = µ1 ∧ µ2.

PROOF. It is easy to check that P∩(L) is a legal profile for the manipulators, i.e.,
the preference list for each manipulator w can be obtained by truncating her true
preference list.

According to Lemma A.2, we have µ∩ �W µ1 and µ∩ �W µ2, so that from the defini-
tion of µ∧, we have µ∩ �W µ∧. To show that µ∧ is identical to µ∩, we only need to show
that µ∧ �W µ∩. We claim that µ∧ is a stable matching under P∩, and thus µ∧ �W µ∩
because µ∩ is the W-pessimal matching under P∩.

For each w, µ∧(w) �w µ1(w), so µ∧(w) is in P1(w). Similarly µ∧(w) is also in P2(w).
Therefore µ∧(w) is individually rational under P∩. Assume that µ∧ is not stable under
P∩. Then there must be a blocking pair (m,w) and m �w µ∧(w) and w �m µ∧(m) under
P∩. However, the two inequalities also hold in both P1(w) and P2(w). Notice that (m,w)
is unmatched in at least one of the two matchings µ1 and µ2, otherwise µ∧(w) = m.
Thus, (m,w) blocks either µ1 or µ2, which produces a contradiction.

However, it is not a meet-semilattice. Consider the counter-example shown in Table
II. The matching results are in Table III.

Suppose L = {w1, w2}. If w1 alone lies and cuts her list to the one containing only
m5, the induced matching is µ1. If w2 alone lies and lists only m6, we will get µ2. But
the meet of the these two matchings µ∨ cannot be induced by only truncating the
preference lists of w1 and w2.

Nevertheless, we prove that the set of partial matchings SLA is a lattice.



Table II. A counter example for the meet-semilattice structure
Men’s preference lists

m1 w1 w3 w5 − − −
m2 w2 w3 w6 − − −
m3 w3 w4 − − − −
m4 w4 w3 − − − −
m5 w5 w1 − − − −
m6 w6 w2 − − − −

Women’s preference lists
w1 m5 m1 − − − −
w2 m6 m2 − − − −
w3 m4 m2 m1 m3 − −
w4 m3 m4 − − − −
w5 m1 m5 − − − −
w6 m2 m6 − − − −

Table III. Induced matchings and their meet
µ1

m1 w5

m2 w2

m3 w4

m4 w3

m5 w1

m6 w6

µ2
m1 w1

m2 w6

m3 w4

m4 w3

m5 w5

m6 w2

µ∨
m1 w1

m2 w2

m3 w4

m4 w3

m5 w5

m6 w6

LEMMA A.4. Given P1 = (P (M), P (N), P1(L)) and P2 = (P (M), P (N), P2(L)), sup-
pose µ1 and µ2 are the two corresponding M-optimal matchings. Let µ∨ = µ1 ∨µ2. Then
µL∨ is in SLA.

PROOF. We construct a preference profile P∪ as follows. For each w ∈ L, she removes
all men ranked below µ∨(w) in her true preference list. We prove that the correspond-
ing M-optimal matching µ∪ is an extension of µL∨, i.e., µL∪ = µL.

Using similar techniques in the proof of Lemma A.3, we conclude that µ∨ is a stable
matching with respect to preference profile P∪. For each w ∈ L, since µ∨(w) is the last
one in her preference list and they must be matched to their W-pessimal partner under
P∪, µ∨(w) must be equal to µ∪(w) and µL∨ = µL∪.

Lemma A.3 is clearly true when restricted to manipulators. Combining the above
two lemmas together, we immediately get Theorem 3.7.

A.4. Proof of Theorem 3.8
This theorem is a direct corollary of the following theorem.

THEOREM A.5 (LIMITS ON SUCCESSFUL MANIPULATION, DEMANGE ET AL. [1987]).
Let P be the true preferences (not necessarily strict) of the agents, and let P ′ differ from
P in that some coalition C of men and women mis-state their preferences. Then there is
no matching µ, stable for P ′, which is strictly preferred to every stable matching under
the true preferences P by all members of C.

PROOF OF THEOREM 3.8. In proof of Theorem 3.4, we have already shown that for
all stable matchings in S(P (M), P (N), P (L)), each manipulators are matched with
their W-optimal partner. Applying Theorem A.5 with C ⊆ L, we can conclude that
there is no matching in S(P (M), P (N), P (L\C), P (C)) is strictly preferred to every sta-
ble matching in S(P (M), P (N), P (L)) for all members of C. Therefore, the constructed
strategy profile is a strong Nash equilibrium.

B. OMITTED PROOFS IN SECTION 4
B.1. Proof of Lemma 4.5

PROOF. We use Irving’s algorithm to solve the corresponding SR problem. It is
straightforward to check that at the end of phase 1, each man is engaged to his M-
optimal partner of the origin SM problem and each woman is engaged to her W-optimal
partner. It follows that the reduced list of each agent is composed of only agents of the



opposite sex. Therefore, any rotation must contain only agents of the same sex, since
the reduced lists of two adjacent agents in a rotation share a common agent.

When we eliminate a rotation only containing men, each man of the rotation will
be engaged to the second woman in his reduced list and thus become worse off. As-
sume that not all rotations have dual rotations, i.e., there exists a singleton rotation
R. Without loss of generality, suppose R is a rotation only containing men and m is a
man contained in R. Then for any solution of the problem, R must be eliminated to
generate that solution. Thus, m cannot be matched to his M-optimal woman at the end
of phase 2, which contradicts to the fact that the M-optimal matching is a solution.

B.2. Proof of Lemma 4.13
The proof is based on the following lemmas.

LEMMA B.1. For each man mi in R, in the procedure of eliminating the rotation
R, wi+1 (the subscript is taken modulo r) is the first woman to accept him, and each
woman in R accepts only one proposal during the procedure.

PROOF. According to the definition of rotations, wi+1 is the second in mi’s reduced
list. If there are other women between wi and wi+1 in mi’s preference list, they are
absent from the reduced list because these women already hold proposals from better
men. Henceforth, even though mi proposes to these women, they reject him. But mi is
in wi+1’s reduced list since wi+1 is in mi’s. Therefore, mi is a better choice for wi+1 and
wi+1 accepts him.

After the elimination, each man mi in R proposes to wi+1 and each man is accepted
only once. Also each woman wi+1 holds a new proposal from mi and thus accepts at
least once. The conclusion is immediate since the total number of each man being
accepted equals to the total number of each woman accepting a new partner.

LEMMA B.2. After eliminating a rotation R = (M,W,Wr), all agents in R are in
the same strong component.

PROOF. For each mi in R, R moves mi from wi to wi+1. As a result, there exists
an edge from wi+1 to mi. We now prove that each mi has an outgoing edge pointing
to wi, and all agents in R then form a cycle, and thus in the same strong component.
Before the elimination, wi is the partner of mi, so there is an edge from mi to wi. If
wi is a manipulator, the edge (mi, wi) is not removed during the elimination according
to the steps described above. If wi is not a manipulator, then only two incoming edges
are remained after the elimination and these edges are from the best two men among
those who propose to her. According to Lemma B.1, only one man, namely mi−1, is
accepted. Thus, mi−1 is the best suitor of wi. We claim that mi is the second best and
the edge from mi is still in the suitor graph. Otherwise, suppose m′ is a better choice
than mi to wi. Then m′ is also in R. We let m′ propose first, and wi accepts m′, which
makes wi accepts at least twice. A contradiction.

From the proof of Lemma B.2 we know that if v is in R and is a non-manipulator,
then after eliminating R, the two incoming edges are both from inside the rotation.
Only manipulators may have edges coming from outside of the rotation.

PROOF OF LEMMA 4.13. Since each woman can be reached from her partner before
the elimination, it is without loss of generality to assume that a vertex v can be reached
from a man m in R through a path p. Let u be the last vertex in p such that u is in R
or is overtaken by a vertex in R. If u is in R, then after the elimination, m can reach
u since they are in the same strong component. If u is overtaken by some vertex m′,
then during the elimination, an edge (m′, u) is added to the graph. Thus, m can reach
u through m′. Henceforth, in any case, u is reachable. Since in p the vertices between u



and v are neither in R nor overtaken by some vertex in R, the path from u to v remains
in the modified graph. Therefore v is reachable from m and also from any vertex in R
for they are in the same strong component after the elimination.

B.3. Proof of Lemma 4.14
PROOF. We eliminate the rotations inR one by one and generate a sequence of rota-

tions q = (R1, R2, . . . , Rn). Ri is the i-th rotation to eliminate, and after eliminating Rn,
all rotations in R are eliminated. Denote qi as the set of the rotations before Ri in q.
For each i, qi is a closed set. We call i the sequence number of qi and we prove by induc-
tion on the sequence number that after eliminating qi, all vertices in qi can be reached
from a vertex in Max(qi). For i = 1, qi = {R1}, the case is trivial from Lemma B.2.
Assume the statement is true for i = k, then for i = k + 1, we only eliminate one more
rotation Rk+1 than in the case with i = k. Rk+1 is in Max(qk+1) otherwise there ex-
ists another rotation R′ in qk such that Rk+1 ≺ R′ and then qk is not a closed set. Let
D = Max(qk) \Max(qk+1). Rotations in D are no longer maximal rotations simply be-
cause Rk+1 is eliminated, which indicates that rotations in D explicitly precede Rk+1.
Henceforth, every rotation R in D has a common agent with Rk+1 and each vertex u
reachable from R is reachable from that common agent. According to Lemma 4.13, u
can be reached from Rk+1. For each vertex u′ that is not reachable from rotations in
D, it must be reachable from another rotation R′ in Max(qk) through path p and R′ is
still in Max(qk+1). If p is still in the suitor graph, then we are done. Otherwise, some
vertices in p must be in Rk+1 or is overtaken by a man in Rk+1. Let z be the last vertex
in p such that z is in Rk+1 or is overtaken. z can be reached from Rk+1 and the path
from z to u′ is not affected by the elimination. Therefore, u′ is reachable from Rk+1.

B.4. Proof of Lemma 4.15
PROOF. If a closed set of rotations R can be eliminated, then every vertex is reach-

able after R is eliminated. As a result, any member of Max(R) is reachable.
If after eliminating R, any member of Max(R) can be reached from s, then we need

to show that all other vertices are also reachable from s. We split all vertices into two
parts. Let V denote the set of all the vertices that can be reached from members of
Max(R). If a vertex v is in V , then v is reachable from s through Max(R). If v is not in
V , then in the initial graph, there is a path p from s to v. We claim that all the vertices
in path p is not in any of the rotations in R or overtaken when eliminating a rotation.
Otherwise, according to Lemma 4.14, v is reachable from Max(R). Thus, the path p is
still in the graph after eliminating all the rotations in R.

B.5. Proof of Theorem 4.16
We first consider the following lemma about the maximal rotations of a closed set that
can be eliminated.

LEMMA B.3. If a closed set R can be eliminated, then every rotation in Max(R)
must contain a manipulator.

PROOF. Assume on the contrary that there exists a rotation R in Max(R) such that
R contains no manipulators. We can always change the order of elimination to make
R the last to eliminate. We prove that after eliminating R, any vertex in R is not
reachable from s. From the proof of Lemma B.2, we know that all vertices in R form a
cycle after eliminating R. Each man in R has only one incoming edge from his current
partner who is also in R. Each woman has two incoming edges, one from her partner
in R and another from her former partner which is also in R. Thus, every vertex in R
has no incoming edges from outside the cycle and thus is not reachable from s.



PROOF OF THEOREM 4.16. Let V be the set of all vertices in R. After eliminating
R, we arbitrarily choose a vertex v in V . In the corresponding suitor graph, there is
a path p = (v0 = s, v1, v2, . . . , vn = v) from s to v since R can be eliminated. Let u be
the first vertex in p such that u is in V . u is obviously not v1, or otherwise the edge
(s, u) will be deleted. Moreover, u must be in L, since any non-manipulator can only be
reached from a node in V if she is overtaken during the elimination. Assume u = vl
and l > 1. Then the sub-path p′ = (v0, v1, . . . , vl = u) is not affected (no vertices in
V or overtaken) during the elimination. Henceforth, p′ is in the original suitor graph
before eliminating R. Now we consider the set R′ = {R ∈ R|u ∈ R}. For any R in R′, if
we eliminate CloSet(R), the sub-path is also not affected. Therefore CloSet(R) can be
eliminated according to Lemma 4.15.

B.6. Proof of Theorem 4.18
The remaining thing to prove is the correctness of the algorithm. We begin with the
following lemma.

LEMMA B.4. Given a set of manipulators L ∈ W , and the true preference profile
P = (P (M), P (W )). Let µ be any matching in SA and R be the corresponding closed
set of rotations. Then there exists a preference profile Pµ(L) for L such that µ is the
M-optimal stable matching of the preference profile Pµ = (P (M), P (N), Pµ(L)), and
the reduced table of P after eliminating R is exactly the reduced table of Pµ before
eliminating any rotation.

PROOF. Since µ is in SA, there exists P ′ = (P (M), P (N), P ′(L)) such that the in-
duced matching µ. For each w ∈ L, we modify P ′(w) as follows:

(1) delete all men m such that m �Pw µ(w);
(2) reinsert them at the beginning according to their order in w’s true preference list;
(3) move µ(w) to the position right after all men m such that m �Pw µ(w);

Denote the modified preference profile by P ′µ. In fact, P ′µ is the Pµ we are looking for.
We first prove that µ is the M-optimal matching under P ′µ. After the first two steps of

modifications, the M-optimal matching is still µ, since for each w, we only change the
position of men ranked higher than µ(w) in her true preference list, who must have
not proposed to w under P ′, and thus do not change the output of the Gale-Shapley
algorithm. Otherwise, if a man m with m �Pw µ(w) has proposed to w, then we must
have w �P ′m µ(m), which is equivalent to w �Pm µ(m). Thus (m,w) forms a blocking pair
in µ under the true preference profile P , contradicting to the stability of µ under P .
In the third step, we move µ(w) to the position right after all men ranked higher than
µ(w) in the true preference list P (w). Consider all the men m′ with m′ �P ′w µ(w) but
µ(w) �P

′
µ
w m′. m′ must have not proposed to w under P ′, or otherwise µ(w) cannot be

the partner of w. Therefore, the positions of the men in P ′µ do not affect the output of
the Gale-Shapley algorithm.

Let TPµ be the reduced table of P after eliminating R and TP ′µ be the reduced tables
of P ′µ. We already know that for each woman, her partners in the two reduced tables
are the same, which is µ(w). In fact, a change of reduced table happens if and only if
a woman accepts a proposal from a man m and removes everyone ranked below m in
her preference list. Henceforth, in the reduced list of each woman, no man is ranked
below her current partner. Therefore, to prove that TPµ is the same as TP ′µ , if suffices
to show that for each woman, P and P ′µ are the same after removing all men ranked
below her current partner, which is clear from the construction of P ′µ.



From Theorem 4.11, we know that only closed sets need to be considered. Although
the Lemma B.3 has already ruled out all closed sets that have a maximal rotation con-
taining only non-manipulators, there are still exponentially many possibilities. How-
ever, Theorem 4.16 shows that every closed set that can be eliminated contains a prin-
ciple set, which can also be eliminated. A natural idea is to iteratively grow the closed
set by adding principle sets. The above lemma shows that after each iteration, we can
construct a problem that has the current matching as its initial matching, and contains
rotations that are not yet eliminated. If we find a principle set that can be eliminated
in the constructed problem, it can also be eliminated in the original problem.

PROOF OF THEOREM 4.18. Algorithm 1 can be summarized as iteratively elimi-
nating principle sets. Inside each iteration, we scan all rotations to find closed sets
that can be eliminated. The algorithm terminates since there are finite rotations. Let
P = (P (M), P (W )) be the original preference profile and S be the set of all stable
matchings in terms of P . Let R be the set of all rotations.

Assume on the contrary that the algorithm terminates with a strategy profile Pµ
that is not Pareto-optimal. Denote µ as the matching produced by Pµ and let Rµ be the
corresponding set of rotations. Then there must be another strategy profile P ∗ that
dominates Pµ. Suppose µ∗ is the induced matching of P ∗ and R∗ is the corresponding
closed set of rotations.

According to Lemma B.4, we can construct a problem with the original preference
profile P ′ such that µ is the M-optimal matching of P ′ and the reduced table of P after
eliminating Rµ is exactly the reduced table of P ′ before eliminating any rotation. It
follows that the set of all rotations of P ′ is exactly R′ = R \ Rµ and the set of all
stable matchings of P ′ is S′ = {µ′ ∈ S(P (M), P (W ))|µ′ �W µ}. Henceforth, µ∗ is also
in SA(P

′). Since P ∗ dominates Pµ, we have Rµ ⊂ R∗ and R∗ \ Rµ ⊆ R′. Therefore,
according to Theorem 4.16, there exists a closed set CloSet(R) that can be eliminated
in P ′. Let µ′ be the induced matching after eliminating CloSet(R) in P ′ and Pµ′(L)
be a preference profile for the manipulators such that the induced matching is µ′, i.e.,
µ′ is the M-optimal matching of profile Pµ′ = (P (M), P (N), Pµ′(L)). As a result, µ′ is
in SA(P ) with corresponding profile Pµ′(L). Thus, after eliminating Rµ, CloSet(R) can
still be eliminated, which contradicts to the termination of the algorithm.

B.7. Proof of Theorem 4.19
PROOF. Assume the P (L) is a Pareto-optimal strategy profile for the manipulators.

Let µ be the matching produced by P (L) and Rµ the corresponding set of rotations. µ
can be forced to be the induced matching by always choosing the principle set that is a
subset of Rµ. Let Rk be the rotations eliminated so far at the end of the k-th iteration
and µk be the corresponding matching . We prove by induction on the iterations that
at the end of each iteration, Rk is a subset of Rµ. In the first iteration, Rµ is in SA,
so there exists a principle set P ⊂ Rµ that can be eliminated. Assume the statement
holds for the k-th iteration. At the beginning of the (k+1)-th iteration, µk is the induced
matching, and Rk is a subset of Rµ by the inductive hypothesis, then there exists at
least one principle set Pk+1 ⊂ Rµ \ Rk that can be eliminated. Therefore, at the end of
the (k + 1)-th iteration, Rk+1 = Rk ∪ Pk+1 is also a subset of Rµ. When the algorithm
terminates, the set of all eliminated rotationsR is also a subset ofRµ. AssumeR 6= Rµ,
then we can find some principle set to eliminate, which contradicts to the termination
condition of the algorithm. Therefore the Pareto-optimal strategy profile can be found
by the algorithm.



B.8. Proof of Theorem 4.20
LEMMA B.5. Given all agents’ true preference profile (P (M), P (W )), if a matching

µ is in SA with corresponding preference profile P = (P (M), P (N), P (L)), then the in-
duced matching is still µ, if for each w ∈ L, we modify w’s preference list by moving
Pror(w) to the top and ordering other men arbitrarily.

PROOF. Suppose the corresponding matching to the modified preference profile is
µ′. We show that µ′ = µ.

Let P and P ′ be the original profile and the modified profile. All the partial orders we
used in this proof is defined in P . We construct a graph T , which is a sub-graph of suitor
graph G(P (M), P (N), µ), according to the set of all reduced proposal lists in P . The set
of vertices is just M ∪W , and the edges are E = {(w, µ(w)) | w ∈ W} ∪ {(m,w) | w �m
µ(m),m ∈ Pror(w)}. We also add a virtual vertex s, and add edges from s to each
woman who has no incoming edges. Note that every woman has an outgoing edge
pointing to her mate in µ, and at most one incoming edge from her second entry in
her proposal list. It is easy to prove that at least one woman has only one entry in her
proposal list, and thus this woman has no incoming edge except the one from s.

It is straightforward to check that µ is also stable under P ′. Then we have µ′(m) �m
µ(m), which indicates that if m proposes to some woman w in P ′, then he also proposes
to her in P . Now we can prove the lemma by induction on the height of the breath-first
search tree on graph T rooted at s. Denote the height of a vertex as h(v). For each
vertex with h(v) = 1, it must be a woman and has no incoming edge from vertices of
M . Therefore, she gets only one proposal from µ(w) in P . Therefore each man m other
than µ(w) must be matched to a better woman, i.e., µ(m) �m w. Also, as proved above
µ′(m) �m µ(m). Then we have µ′(m) � w, which means m does not propose to w in
P ′. The only possible partner for w is µ(w). Thus, we can conclude that she is matched
with µ(w) in µ′, or µ′(w) = µ(w).

Assume µ′(v) = µ(v) for each v with h(v) = k, then for a vertex v′ with h(v′) = k + 1,
we prove that we still have µ′(v′) = µ(v′). If k + 1 is even, then v′ is a man and we
consider v′’s parent v = Prt(v′). From the construction of the graph, there is an edge
from v to µ(v). Henceforth, according to the inductive hypothesis, µ′(v) = µ(v) = v′,
and µ(v′) = v = µ′(µ′(v)) = µ′(v′). If k + 1 is odd, then v′ is a woman and there is an
edge pointing to her from v who is the second entry in her received proposal list. On
the one hand, each man in {m|m �v µ(v)} is matched with someone who is better than
v in µ. As a result, µ(m) �m v. And still µ′(m) �m µ(m), we have µ′(m) � v. Therefore
m does not propose to her in P ′. On the other hand, µ(v) proposes to v in P ′ since
µ(v) proposes to her in P . Combining the two sides, we know that µ(v) is the best man
among all those who propose to her. Thus, µ′(v) = µ(v).

PROOF OF THEOREM 4.20. We first construct the suitor graph using µ and com-
pute the corresponding P (L) according to Theorem 4.7. After that, we can compute
Pro(w) and Pror(w) for each woman w according to P (L). Then we just move the sec-
ond entry (if exists) of Pror(w) to the position right after µ(w) in each manipulator
w’s original preference list. Notice that in the modified preference list, no man who is
ranked higher than µ(w) in w’s preference list proposes to w, or otherwise the induced
matching is unstable with respect to true preference lists. Thus, the orderings of these
men is irrelevant to the matching result and we can move Pror(w) to the top without
affecting the induced matching µ′ for the modified lists. According to Lemma B.5, we
can conclude that µ′ = µ.



B.9. Proof of Theorem 4.21
Gonczarowski and Friedgut [2013] consider the sisterhood between manipulators and
non-manipulators, and give the following result.

THEOREM B.6 (GONCZAROWSKI AND FRIEDGUT [2013]). Given agents’ strict
preferences over agents of the other sex, and a set of manipulators L ∈W are allowed to
use general manipulations, if no lying woman is worse off, then (1) No woman is worse
off; (2) No man is better off.

Since our setting is a special case of theirs, the above theorem applies to our setting.

PROOF OF THEOREM 4.21. We first prove that all super-strong Nash equilibrium
outcomes are Pareto-optimal matchings. Assume on the contrary that a matching µ is
induced by a super-strong Nash equilibrium but is not Pareto-optimal. Thus there ex-
ists a matching µ′ ∈ SA and µ′ 6= µ such that µ′(w) �w µ(w),∀w ∈W and ∃w′ ∈W such
that µ′(w′) �w′ µ(w′). It follows that µ′(l) = µ(l),∀l ∈ L because µ is induced by a super-
strong Nash equilibrium, and thus we cannot have µ′(l) �l µ(l). Let Rµ and Rµ′ be the
corresponding set of rotations to µ and µ′, respectively. Since µ′(w) �w µ(w),∀w ∈ W ,
we have Rµ ⊂ Rµ′ and Rµ′ \ Rµ is a closed set that still can be eliminated after elimi-
nating Rµ. Let R ∈ Max(Rµ′ \ Rµ). By Lemma B.3, there exists a manipulator l in R.
Thus µ′(l) � µ(l), which contradicts to the fact that µ′(l) = µ(l),∀l ∈ L.

Now we prove that any Pareto-optimal matching can be induced by a super-strong
Nash equilibrium. Assume, for purposes of contradiction, that a matching µ is Pareto-
optimal but cannot be induced by a super-strong Nash equilibrium. Thus any prefer-
ence profile that yields matching µ is not a super-strong Nash equilibrium. In particu-
lar, we let the manipulators use the inconspicuous manipulation defined above. Let P
be the true preference profile and P ′ be the inconspicuous preference profile that would
yield matching µ ∈ SA(P ). Since P ′ is not a super-strong Nash equilibrium, there exists
a subset Ls of L, if jointly misreport another preference profile, can make the induced
matching to be µ′ ∈ SA(P ), such that ∀l ∈ Ls, µ′(l) �Pl µ(l) and ∃l′ ∈ Ls, µ′(l′) �Pl′ µ(l′).
Moreover, there exists w ∈ W \ Ls, such that µ′(w) ≺Pw µ(w), since otherwise we have
µ′(w) �Pw µ(w),∀w ∈W , which contradicts to the Pareto-optimality of µ. Notice that, in
inconspicuous preference profile P ′, we have for all w ∈ W , m �P ′w µ(w) if and only if
m �Pw µ(w) since the order of men ranked higher than µ(w) in P ′(w) is exactly the same
as P (w). Therefore, for all l ∈ Ls, µ′(l) �P

′

l µ(l). However, according to Theorem B.6,
since no manipulators are worse off according to P ′, we have that no women are worse
off according to P ′. Also, for all w ∈ W \ Ls, µ′(w) �P

′

l µ(w) implies µ′(w) �Pl µ(w).
Thus, µ′ �PW µ. A contradiction.

B.10. Proof of Theorem 4.22
Clearly, this problem is in NP since given a preference profile, we can apply Gale-
Shapley algorithm to generate the induced matching and verify the solution. In order
to show the NP-completeness, we reduce 3-SAT to this problem. Given an instance of
3-SAT φ, suppose the variable set is V = {x1, . . . , xn}, the corresponding literal set is
L = {+xi,−xi | 1 ≤ i ≤ n}, and the clause set is {c1, . . . , cm}, where cj = (l1j , l

2
j , l

3
j ). We

construct an instance of our problem G(φ) with N = 6n+ 2m and

M = {m+1
xi ,m

+2
xi ,m

+3
xi | ∀1 ≤ i ≤ n} ∪ {m

−1
xi ,m

−2
xi ,m

−3
xi | ∀1 ≤ i ≤ n}

∪ {ml
cj | ∀1 ≤ j ≤ m} ∪ {m

r
cj | ∀1 ≤ j ≤ m}

W = {w+1
xi , w

+2
xi , w

+3
xi | ∀1 ≤ i ≤ n} ∪ {w

−1
xi , w

−2
xi , w

−3
xi | ∀1 ≤ i ≤ n}

∪ {wlcj | ∀1 ≤ j ≤ m} ∪ {w
r
cj | ∀1 ≤ j ≤ m}



The set of manipulators is

L = {w+2
xi | ∀1 ≤ i ≤ n} ∪ {w

−2
xi | ∀1 ≤ i ≤ n} ∪ {w

r
cj | ∀1 ≤ j ≤ m}

The preference lists of each agent is specified as follows (the “· · · ” part at the end can
be anything). For all 1 ≤ i ≤ n and each xi, in the positive side (with superscript +),

P (m+1
xi ) = w+1

xi � w
+2
xi � w

−3
xi � · · ·

P (m+2
xi ) = w+2

xi � w
+1
xi � · · ·

P (w+1
xi ) = m+2

xi � m
+1
xi � · · ·

P (w+2
xi ) = m−3

xi � m
+1
xi � m

+2
xi � m

+3
xi � · · ·

P (w+3
xi ) = m−1

xi � m
+3
xi � · · ·

In the negative side (with superscript −), similarly,

P (m−1
xi ) = w−1

xi � w
−2
xi � w

+3
xi � · · ·

P (m−2
xi ) = w−2

xi � w
−1
xi � · · ·

P (w−1
xi ) = m−2

xi � m
−1
xi � · · ·

P (w−2
xi ) = m+3

xi � m
−1
xi � m

−2
xi � m

−3
xi � · · ·

P (w−3
xi ) = m+1

xi � m
−3
xi � · · ·

Suppose +xi ∈ ckj for all 1 ≤ j ≤ K+
i . The preference list of m+3

xi is

P (m+3
xi ) = w+2

xi � w
+3
xi � w

l
ck1
� wlck2 � · · · � w

l
ck
K

+
i

� w−2
xi � · · ·

Similarly, Suppose −xi ∈ ckj for all 1 ≤ j ≤ K−i . The preference list of mr3
xi is

P (m−3
xi ) = w−2

xi � w
−3
xi � w

l
ck1
� wlck2 � · · · � w

l
ck
K
−
i

� w+2
xi � · · ·

Finally, we specify the preference lists for the agent with subscript cj . For all 1 ≤ j ≤ m,

P (ml
cj ) = wlcj � w

r
cj � · · ·

P (mr
cj ) = wrcj � w

l
cj � · · ·

P (wrcj ) = ml
cj � m

r
cj � · · ·

Suppose cj = (s1 xj1) ∨ (s2 xj2) ∨ (s3 xi3). where s1, s2, s3 ∈ {−,+}. The preference list
of wlcj is 4

P (wlcj ) = mr
cj � m

s13
xj1
� ms23

xj2
� ms33

xj3
� ml

cj � · · ·

To complete the reduction, we prove that φ is satisfiable if and only if G(φ) has a
solution, i.e., there exists a strategy profile, whose induced matching is stable and
strictly better off for all manipulators.

First, notice the stable matching µ generated by true preference lists is µ(m+k
xi ) =

w+k
xi , µ(m−kxi ) = w−kxi for all 1 ≤ i ≤ n, 1 ≤ k ≤ 3 and µ(ml

cj ) = wlcj , µ(m
r
cj ) = wrcj for all

1 ≤ j ≤ m. Before providing proofs for both directions, we prove following lemmas first
to establish intuitions.

4If sk = +, then sk3 = +3; otherwise, if sk = −, sk3 = −3.



LEMMA B.7. For all i ∈ [n], woman w+2
xi can perform single-agent manipulation to

be matched with m+1
xi .

PROOF. w+2
xi can manipulate her preference list to P (w+2

xi ) = m−3
xi � m+1

xi � m+3
xi �

m+2
xi � · · · .

LEMMA B.8. For all i ∈ [n], woman w+2
xi can perform single-agent manipulation to

be matched with m−3
xi .

PROOF. w+2
xi can manipulate her preference list to P (w+2

xi ) = m−3
xi � m+3

xi � m+1
xi �

m+2
xi � · · · .

By symmetry of construction, we have for each 1 ≤ i ≤ n, woman w−2
xi can perform

single-agent manipulation to be matched with m−1
xi or m+3

xi .

LEMMA B.9. w+2
xi and w−2

xi cannot manipulate to be matched with m−3
xi and m+3

xi
respectively at the same time, in any feasible permutation manipulation, while it is
possible for them to manipulate to be matched with m+1

xi and m−1
xi , m−3

xi and m−1
xi , or,

m+1
xi and m+3

xi , respectively.

Before proving Lemma B.9, we first prove the following lemma,

LEMMA B.10. If a the induced matching of a permutation manipulation on G(φ) is
stable with respect to true preference lists, then

(1) For all i ∈ [n], ms3
xi , he cannot make proposals to any woman ranked below w−s2xi in

his true preference list; Moreover, he cannot be matched with any wlcj ;
(2) For all i ∈ [n], ms1

xi and ms1
xi with s ∈ {+,−}, he can only make proposals to woman

w
s′k
xi with s′ ∈ {+,−} and k ∈ {1, 2, 3};

(3) For all j ∈ [m], both ml
cj and mr

cj , he can only make proposals to wlcj and wrcj ;

PROOF. Denote
Wi = {w+1

xi , w
+2
xi , w

+3
xi , w

−1
xi , w

−2
xi , w

−3
xi }

and
Mi = {m+1

xi ,m
+2
xi ,m

+3
xi ,m

−1
xi ,m

−2
xi ,m

−3
xi }.

First, for ms3
xi with j 6= i, s ∈ {+,−}, since w−s2xi puts ms3

xj as the favorite candidate, if
ms3
xi proposes to any woman ranked below w−s2xi in his true preference list, the induced

matching is unstable with respect to true preference lists. Moreover, if ms3
xi proposes to

some wlcj , then wlcj accepts ms3
xj1

and rejects ml
cj , next, wrcj accepts ml

cj and rejects mr
cj ,

and finally, wlcj accepts mr
cj and rejects ms3

xj1
.

Second, except m+3
xi and m−3

xi , all men in Mi only propose to women in Wi before they
propose to the woman ranking him as the highest. Therefore, with similar arguments,
we conclude that ms1

xi and ms1
xi with s ∈ {+,−}, he can only make proposals to woman

w
s′k
xi with s′ ∈ {+,−} and k ∈ {1, 2, 3}
Third, since wlcj ranks mr

cj as favorite and wrcj ranks ml
cj as favorite, according to the

preference lists of ml
cj and mr

cj , we can conclude they can only make proposals to wlcj
and wrcj ;

PROOF OF LEMMA B.9. To achieve other combinations, w+2
xi and w−2

xi can manipu-
late their preference lists by following the manipulation in Lemma B.7 and Lemma
B.8 according to their target partners.



We prove the remaining case by contradiction. Suppose w+2
xi and w−2

xi can manipulate
to a matching µ such that they are matched with m−3

xi and m+3
xi . Then, since w+2

xi is
matched with m−3

xi , the closed set of M-rotation

({m+1
xi ,m

−3
xi }, {w

+2
xi , w

−3
xi }, {w

−3
xi , w

+2
xi })

must be eliminated, which contains M-rotation

({m+2
xi ,m

+1
xi }, {w

+2
xi , w

+1
xi }, {w

+1
xi , w

+2
xi }).

Similarly, since w−2
xi is matched with m+3

xi , the closed set of M-rotation

({m−1
xi ,m

+3
xi }, {w

−2
xi , w

+3
xi }, {w

+3
xi , w

−2
xi })

must be eliminated, which contains M-rotation

({m−2
xi ,m

−1
xi }, {w

−2
xi , w

−1
xi }, {w

−1
xi , w

−2
xi }).

Therefore, all of Wi = {w+1
xi , w

+2
xi , w

+3
xi , w

−1
xi , w

−2
xi , w

−3
xi } have received more than one

proposals. Moreover, according to Lemma B.10, they are matched with one of Mi =
{m+1

xi ,m
+2
xi ,m

+3
xi ,m

−1
xi ,m

−2
xi ,m

−3
xi }.

Henceforth, µ ∈ SA only if there is some man m /∈Mi having made proposal to some
w ∈ Wi in order to create connections from s. However, according to Lemma B.10, if
µ ∈ SA, no other man m /∈Mi can make proposal to some w ∈Wi.

We point out that in this lemma, our construction contains the example in Table II
as a gadget. According to this lemma, given an outcome of manipulation, we construct
the assignment as follows. +xi is assigned true if and only if w+2

xi is matched with m−3
xi ;

otherwise, −xi is assigned true. Next lemma guarantees that such assignment is a
satisfiable assignment for φ.

LEMMA B.11. For all j ∈ [m], suppose cj = (s1 xj1) ∨ (s2 xj2) ∨ (s3 xj3). Then, after
manipulation, woman wrcj can be better off if and only if at least one ws

k
2
xjk

is matched

with m
−sk3
xjk

for k ∈ {1, 2, 3}.

PROOF. if direction: Without loss of generality, suppose ws2xj1 with s = s1 is matched
with m−s3xj1

and thus, m−s3xj1
has made proposal to w−s2xj1

, w−s3xj1
� · · · � wlcj � · · · � ws2xj1 �

· · · . Thus, wlcj accepts m−s3xj1
and rejects ml

cj , next, wrcj accepts ml
cj and rejects mr

cj , and
finally, wlcj accepts mr

cj and rejects m−s3xj1
. Therefore, wrcj is better off. Moreover, if more

than one ws
k
2
xjk

is matched with m
−sk3
xjk

, it does not change the matching of wrcj since she
is already matched with her favorite one.

only if direction: If nows
k
2
xjk

is matched withm−s
k
3

xjk
, notice that nom−s

k
3

xjk
makes proposal

to wlcj since from argument in “if direction”, we can see that if m−s
k
3

xjk
makes proposal to

wlcj , w
sk2
xjk

is matched with m−s
k
3

xjk
. Therefore, if wrcj is better off, then wrcj is matched with

ml
cj and wlcj is matched with mr

cj , and notice that, wlcj , w
r
cj have received more than one

proposals. Henceforth, the matching after manipulation is in SA only if there is some
man outside ml

cj ,m
r
cj having made proposal to one of wlcj , w

r
cj in order to create an edge

pointing to the strongly connected component. However, according to Lemma B.10, we
can conclude that no man outside ml

cj ,m
r
cj having made proposal to one of wlcj , w

r
cj .

With Lemma B.7, Lemma B.8, Lemma B.9 and Lemma B.11, we are ready to com-
plete our reduction by showing φ is satisfiable if and only if G(φ) has a solution.



LEMMA B.12. φ is satisfiable only if G(φ) has a solution.

PROOF. Suppose (l′1, . . . , l
′
n) is a satisfiable assignment. For all i ∈ [n],

(1) if l′i = +xi: w+2
xi manipulates to m−3

xi and w−2
xi manipulates to m−1

xi ;
(2) if l′i = −xi: w+2

xi manipulates to m+1
xi and w−2

xi manipulates to m+3
xi ;

According to Lemma B.9, the matching induced by this manipulation is in SA. More-
over, since (l′1, . . . , l

′
n) is a satisfiable assignment, from Lemma B.11, for all j ∈ [m], wrcj

is better off.

LEMMA B.13. φ is satisfiable if G(φ) has a solution.

PROOF. From Lemma B.9, for each 1 ≤ i ≤ n, w+2
xi and w−2

xi cannot manipulate to
be matched with m−3

xi and m+3
xi respectively. Therefore, we create the assignment as

follows:

(1) +xi is assigned true if and only if w+2
xi is matched with m−3

xi ;
(2) otherwise, −xi is assigned true;

Moreover, from Lemma B.11, since for all 1 ≤ j ≤ mwith cj = (s1 xj1)∨(s2 xj2)∨(s3 xj3),
wrcj is better off, at least one w

sk2
xjk

is matched with m
−sk3
xjk

for k ∈ {1, 2, 3}. Thus, the
assignment we create must be a satisfiable assignment for φ.

B.11. Proof of Theorem 4.23
LEMMA B.14. In our construction, if all manipulators are better off in a matching,

the matching must be stable.

PROOF. First, we point out that if a manipulation induces an unstable matching,
then some woman must reject the best proposal she could have in the entire process.
Henceforth, she must be a manipulator, while L = {w+2

xi | ∀1 ≤ i ≤ n} ∪ {w
−2
xi | ∀1 ≤ i ≤

n} ∪ {wrcj | ∀1 ≤ j ≤ m} in our construction.
Notice that for all 1 ≤ j ≤ m, wrcj can only be matched with ml

cj if she is better off,
and thus she cannot reject her best received proposal.

The remaining manipulators are w+2
xi and w−2

xi for 1 ≤ i ≤ n. Consider w+2
xi and the

argument for w−2
xi is similar due to symmetry of construction. Since w+2

xi is better off,
w+2
xi must be matched with either m−3

xi or m+1
xi . In the case that she rejects her best

received proposal, w+2
xi must be matched with m+1

xi and reject m−3
xi . However, if w+2

xi

is matched with m+1
xi , m+1

xi stops proposing after meeting w+2
xi , and thus, w−3

xi cannot
reject m−3

xi since w−3
xi is a non-manipulator and she does not receive her favorite man

m+1
xi to reject her second favorite man m−3

xi . Therefore, m−3
xi has no chance to propose

to w+2
xi and get rejected.

Combining Theorem 4.22 and Lemma B.14, we can conclude our theorem.

B.12. Proof of Theorem 4.24
PROOF OF THEOREM 4.24. Since computing the number of satisfiable assignment

for 3-SAT problem is #P-complete, we only need to show that our reduction is parsi-
monious, i.e., the numbers of solutions in each problem are the same.

First, we show that given one satisfiable assignment for 3-SAT problem, we can con-
struct a solution in PARETO-BETTER. According to Lemma B.12, we can construct
a solution that makes all manipulators better off. Thus, it is sufficient to show that the
constructed solution is also Pareto-optimal. In fact, for all 1 ≤ i ≤ n, either w+2

xi or w+2
xi

is matched with her favorite partner, but it is impossible for them to be matched with



their favorite partners simultaneously. Moreover, for all 1 ≤ j ≤ m, wrcj is matched
with her favorite partner. Thus, such a solution must be Pareto-optimal.

Second, we show that given a solution to PARETO-BETTER, we can construct a
satisfiable assignment for 3-SAT problem. From Lemma B.13, we have shown that
given a matching that makes all manipulators better off, we can construct a satisfi-
able assignment. Thus, given a solution to PARETO-BETTER, we are also able to
construct a satisfiable assignment for 3-SAT problem.

C. EXAMPLES
C.1. Example of general manipulation to an unstable matching
Consider one manipulator w to keep her W-pessimal partner m and reject any better
proposals. Therefore, it is equivalent to a manipulation game by removing w from
W , m from M and it is possible that in the remaining manipulation game, the W-
optimal matching is weakly better off than the W-optimal matching in the original
game, though it is unstable with respect to true preference lists. Thus, with the help of
manipulator w, a coalition can have a further manipulation to make everyone weakly
better off and at least one strictly better off (see Table IV).

Table IV. Example of general manipulation to unstable matching
Men’s preference lists
m1 w1 w3 w2

m2 w2 w1 −
m3 w3 − −

Women’s preference lists
w1 m2 m1 −
w2 m1 m2 −
w3 m1 m3 −

The only stable matching under true preference lists is {(m1, w1), (m2, w2), (m3, w3)}.
However, consider following manipulation (see Table V).

Table V. Manipulation of general manipulation to unstable matching
Men’s preference lists
m1 w1 w3 w2

m2 w2 w1 −
m3 w3 − −

Women’s preference lists
w1 m2 − −
w2 m1 − −
w3 m3 − −

After manipulation, the only stable matching is {(m1, w2), (m2, w1), (m3, w3)}, in
which w1 and w2 are strictly better off while w3 remains the same. However, this
matching is unstable with respect to true preference lists.

C.2. Example of permutation manipulation to an unstable matching
The following example demonstrates the output of Algorithm 1 is no longer a super-
strong Nash equilibrium, without the feasibility assumption (see Table VI). Thus, the
feasibility assumption is essential for our results to hold.

Table VI. Example of permutation manipulation to unstable matching
Men’s preference lists

m1 w1 w3 w4 w2

m2 w2 w3 w1 w4

m3 w3 w1 w2 w4

m4 w3 w4 w1 w2

Women’s preference lists
w1 m3 m1 m2 m4

w2 m3 m2 m1 m4

w3 m2 m3 m4 m1

w4 m1 m2 m3 m4

The stable matching is {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}, while only w3 receives
more than one proposals in the entire process. Therefore, suppose the manipulators
are w1 and w3, in order to manipulate, the only way is that w3 keeps m4 and rejects
m3, and m3 proposes to w1.



Table VII. Process after manipulation

Women w1 w2 w3 w4

Round 1 m1 m2 m4 −
Round 2 m1,m3 m2 m4 −
Round 3 m1 m3,m2 m4 −
Round 4 m1 m3 m2,m4 −
Round 5 m1 m3 m2 m4

Notice that, if w1 keeps her favorite one m3 and rejects m1, then in the next round,
m1 would propose to w3 and no matter which one w3 rejects, either m1 or m4 would
propose to w4 and end the process, leaving w3 worse off. Therefore, the stable matching
is Pareto-optimal under feasibility assumption. In order to go beyond Pareto-optimal
matching under feasibility assumption, we resort to unstable matching, i.e., w1 rejects
m3 and still keeps m1. (see the entire process in Table VII)

Since w1 rejects her best received proposal, the induced matching is unstable. How-
ever, w1, w4 are matched with the same man as in the original matching while w2 and
w3 are better off.

D. NUMBER OF PARETO-OPTIMAL MATCHINGS
PROPOSITION D.1. There are exactly 2n different induced matchings, which is

Pareto-optimal and weakly better off for all manipulators, in G(φ).

PROOF. Notice that, for all 1 ≤ j ≤ m, the partner of wrcj is determined by whether
there is a man other than ml

cj who makes a proposal to wlcj , which is determined by
the matching between ws2xi and w−s3xi , for 1 ≤ i ≤ n and s ∈ {+,−}. Therefore, we can
count the total number according to the number of different matching for ws2xi . From
Lemma B.9, under Pareto-optimal constraints, there are 2 different choices for each
pair of w+2

xi and w−2
xi , and they are independent. Thus, the total number of solutions is

exactly 2n.


