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Individual addressing in quantum computation through spatial refocusing
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Separate addressing of individual qubits is a challenging requirement for scalable quantum computation, and
crosstalk between operations on neighboring qubits remains a significant source of error for current experimental
implementations of multiqubit platforms. We propose a scheme based on spatial refocusing from interference of
several coherent laser beams to significantly reduce the crosstalk error for any type of quantum gate. A general
framework is developed for the spatial refocusing technique, in particular with practical Gaussian beams, and we
show that the crosstalk-induced infidelity of quantum gates can be reduced by several orders of magnitude with
a moderate cost of a few correction laser beams under typical experimental conditions.
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I. INTRODUCTION

Performing useful quantum computation and simulation
in the presence of unavoidable noise has been a goal long
sought after. Many solid steps have been taken on different
physical platforms in the past decade, demonstrating for small
systems elementary quantum logic [1], simple algorithms [2],
error correction [3], and quantum simulation [4]. While the
celebrated error threshold theorem [5] guarantees the fault
tolerance of a large-scale quantum computer when each single
operation error is reduced below a certain limit, this threshold
is very hard to satisfy in a typical multiqubit setting. To
fully control the state evolution of the quantum-information
processor, one needs to pinpoint any individual qubit at will
and manipulate it while keeping the others intact. This is
a stringent requirement for almost all physical platforms.
A lot of efforts have been devoted to the development of
individual addressing optical beam delivery and imaging
systems [6,7]. Assuming a Gaussian profile of the beam,
single-qubit addressing typically requires the beam waist to
be much smaller than the interqubit spacing, which is half the
wavelength of the trapping laser in optical lattices and around
1 μm in a linear trapped ion chain. So subwavelength focusing
beyond the diffraction limit is usually required and this makes
it experimentally very challenging.

There have already been many proposals and/or demon-
strations in the context of cold atoms in optical lattices [8–11]
and linearly trapped ions [12,13]. To name a few, interference
of several Bessel beams were proposed to form a pattern such
that all but one atom locate at the nodes of laser profile [8]; the
sharp nonlinear atomic response and position-dependent dark
states in an electromagnetically induced transparency (EIT)
setting were exploited to enable subwavelength selectivity in
various proposals [9] and experimentally demonstrated very
recently [10]; single spin manipulation in an optical lattice
with the combination of a well-focused level shifting beam
and a microwave pulse has also been demonstrated [11].
The adaptation of the composite pulse refocusing technique
widely used in nuclear magnetic resonance [14] and quantum
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information [15] to trapped ions was considered for single-
qubit operation [12] and two-qubit operation with a special
form of interaction [13]. Note the two-qubit correction scheme
depends on the physical operation being carried out and
requires a specific form of controllable interaction, and does
not reduce error for certain gate realizations.

Our approach is along the line of Ref. [8] but in a different
setting. We propose and provide detailed analysis for a scheme
to reduce crosstalk error and achieve individual addressing
with several imperfectly focused laser beams. By applying an
array of beams centered at different qubits and controlling
their relative amplitudes, we can achieve quantum gates with
ideal fidelity even when the beam waist is comparable with or
slightly larger than the interqubit distance. A reduction of the
crosstalk error by several orders of magnitude can be achieved
with only a moderate increase of the required laser power.
The basic idea is reminiscent of the refocusing in NMR, but
works in the spatial domain using multiple beams instead of in
the time domain. So we call this technique spatial refocusing.
Unlike the technique in Ref. [13], this technique is universal
and works for any quantum gate. We believe it is a valuable
addition to the existing toolbox of subwavelength addressing.

II. MATHEMATICAL FORMULATION

We consider an array of qubits with even spacing a located
at the positions xi (i = 1,2, . . . ,N ). The laser beam used to
manipulate the qubits is assumed to have a spatial profile
denoted by g(x − xi) when it is centered at xi . To have
individual addressing, normally we assume the laser is strongly
focused so that g(xj − xi) → 0 for any j �= i [i.e., g(xj −
xi) = δij ]. It remains experimentally challenging to achieve
this condition in multiqubit quantum computing platforms
where the spacing a needs to be small to have sufficiently
strong interaction. Here, instead of strong focusing, we assume
that the laser beams applied to different qubits have relative
coherence. To address a single qubit, say qubit i at position xi ,
instead of just shining this qubit with g(x − xi), we apply a
number of identical beams centered on its nearby qubits with
relative amplitudes denoted by f (xj − xi). The total effective
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laser profile is then the convolution

G(x − xi) =
∑

j

g(x − xj )f (xj − xi). (1)

For a given g(x − xi), we want to find an envelop function
f (xj − xi) to make G(xj − xi) → 0 for any j �= i. It is
desirable that f (xj − xi) is fast decaying so that in practice we
can cut off j in the summation of Eq. (1) and apply laser beams
to only a few of its neighbors. If we take the normalization
g(0) = G(0) = 1, f (0) then determines the relative increase
of the required laser light amplitude, which is desired to be
moderate for practical applications.

The solution depends on the laser profile g(x − xi). To
show that the idea works, first we look at a toy model by
assuming g(x − xi) given by an exponential decay g(x −
xi) = e−α|x−xi |. In this case, two correction beams applied
to its nearest neighbors xi−1 and xi+1 perfectly cancel the
residue laser amplitude for all the qubits j �= i. To see this,
let us take f (0) = β0, f (xj − xi) = β1 for j = i ± 1, and all
other f (xj − xi) = 0. If we choose β0 = (1 + λ2)/(1 − λ2)
and β1 = −λ/(1 − λ2), where λ ≡ e−αa , we immediately have
G(xj − xi) = δij . The required increase of the laser power
f (0) = (1 + λ2)/(1 − λ2) is moderate even when the original
laser profile g(x − xi) has a significant residue amplitude
λ = e−αa on the neighboring qubits.

For a general laser profile g(x − xi), if the number of qubits
is large or if the envelop function f (xi) is fast decaying so that
the boundary condition is irrelevant, we can formally solve
Eq. (1) by assuming the periodic boundary condition for the
array. In this case, we can take a discrete Fourier transformation
of Eq. (1), which yields g(k)f (k) = G(k). Because the target
profile G(x − xi) needs to be a δ function, G(k) = 1, and a
formal solution of Eq. (1) is

f (xj − xi) = 1

N

∑
k

1

g(k)
eik(xj −xi )/a, (2)

where the summation is over k = πn/N with n = −N/2,

− N/2 + 1, . . . ,N/2. In the limit of large N , f (xj − xi) ≈
(1/2π )

∫ π

−π
dk[1/g(k)]eik(xj −xi )/a .

Now we apply this formalism to practical Gaussian
beams, for which g(x − xi) = exp[−(x − xi)2/w2], where w

characterizes the width of the beam. The discrete Fourier
transformation of g(x − xi) gives

g(k) =
∑
n∈Z

exp[−(na)2/w2] exp(−ikn) = θ3(k/2,γ ), (3)

where γ ≡ e−a2/w2
< 1 and θ3(z,q) ≡ 1 + 2

∑∞
n=1 qn2

cos(2nz) is the Jacobi elliptic function. We can do
a series expansion with γ , and up to the order of
γ 2, g(k) ≈ 1 + 2γ cos(k) + O(γ 4) and f (xj − xi) ≈
(1 + 2γ 2)δij − γ δi±1,j + γ 2δi±2,j . One can see that the
envelop function f (xj − xi) decays exponentially by the
factor −γ as one moves away from the target qubit. This
result holds in general. To show this, we write Eq. (1) into
a matrix form,

∑
j Mnjfji = δn,i , denoting x as xn = na

and g(xn − xj ) as Mnj = e−(n−j )2a2/w2 = γ (n−j )2
, where

n and j are integers between 1 and N . For large enough
positive integers m, γ m � 1, so we can always cut off
at certain m and set terms O(γ m+1) in Mnj to zero. The

j − i

|f ji |
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FIG. 1. (Color online) (a) Envelope function fji under different
Gaussian beam waist (w/a = 1.5, 1.0, and 0.5 for curves from top
to bottom), calculated for a homogeneous chain of 401 qubits. Near
the center j − i = 0, fji has coexisting components with different
decay constants so |fji | = (−1)j−ifji deviates from a straight line on
the log plot. Only a few lattice sites away, |fji | straightens and the
slope matches that of γ |j−i| precisely. (b) Amplitude f (0) versus the
beam waist w/a. For visibility f (0) − 1 is plotted. The black solid
line is from the numerical exact integration of Eq. (2) and the blue
dash-dot (red dashed) line is from the analytic approximation f (0) =
1/

√
1 − 4γ 2 [f (0) = 2

π5/2w3 eπ2w2/4], valid for the region w/a � 1
(w/a � 1).

resulting Mnj is then a Toeplitz band matrix with bandwidth
2m + 1 [16]. The solution fji contains several exponential
decay components with different decay constants (see the
Appendix for details), but |−γ | characterizes the largest
decay constant and in the limit of large |j − i| a single
term wins out with fji ≡ f (xj − xi) ∼ (−γ )|j−i|. Numerical
solution of the matrix equation confirms this [see Fig. 1(a)].
An important implication of this result is that we can set
a truncation tolerance error ε and only apply correction
beams to those qubits with |fji | > ε. This will require about
2 ln ε/ ln γ = 2(w/a)2 ln(1/ε) beams, independent of the
system size. We expect this qualitative behavior to persist
for any beam profile that decays quickly with the increase of
distance from its center.

The amplitude f (0), characterizing the required laser
power, is plotted in Fig. 1(b) as a function of w/a from the
exact numerical solution of Eq. (1). When w/a � 1, γ is
small, and from a truncation of Eq. (2) g(k) ≈ 1 + 2γ cos(k),
we find f (0) ≈ (1/2π )

∫ π

−π
dk[1/g(k)] ≈ 1/

√
1 − 4γ 2. In the

other region with w/a � 1, the summation in Eq. (3) can
be approximated with an integration, which yields g(k) ≈√

πw2/a2e−k2w2/(4a2) and therefore f (0) ≈ 2a3

π5/2w3 e
π2w2/(4a2).

These two analytic expressions, also drawn in Fig. 1(b),
agree well with the exact solution in their respective regions.
Note that for w/a � 1, f (0) is close to unity and the cost
in laser power in negligible. For w/a � 1, f (0) increases
exponentially with w2/a2, and the scheme becomes imprac-
tical when w2/a2 
 1. Our scheme is most effective in the
region w/a ∼ 1, where it allows a reduction of the crosstalk
error by several orders of magnitude with just a few correction
beams while keeping the cost in laser power still negligible.

The above analysis extends straightforwardly to higher-
dimensional systems. Moreover, neither the assumption of
homogeneous spacing nor that correction beams center around
each qubit is essential. We can always treat the qubits as
equidistant if we effectively modify the beam profile g(x − xi)
or Mnj according to the actual qubit spacings and the focus
positions of the correction lasers.
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For multiqubit operations, the relative overhead of spatial
refocusing usually becomes lower. For instance, in Ref. [17]
the quantum simulation of the arbitrary Ising interaction with
N trapped ion qubits requires N2 well-focused laser beams.
Without perfect focusing, using the scheme here we still only
need N2 beams.

III. SPECTRAL REFOCUSING

Instead of using localized beams, an alternative for spatial
refocusing is to spectrally decompose the desired amplitude
profile and use broad beams of traveling plane waves with
varying wave vectors k to reconstruct a focused beam.
Note here we do not use light beams with different frequencies.
We simply tilt the traveling wave direction so that the effective
spatial periodicity is varied along the system axis. The
desired spatial profile G(xj − xi) = δij , transformed to
the momentum space, is a constant function. For N qubits, one
can use N plane waves with k evenly spread in the Brillouin
zone [−π/a,π/a] to reconstruct the profile δij . We may tilt a
traveling wave with a fixed k by different angles with respect
to the qubit array to get a varying wave-vector component
kx along the axis. For ion qubits in a harmonic trap, the
spacing is inhomogeneous and the exact amplitudes of the
components are not even, but can be obtained using the matrix
formalism of Eq. (1). For the plane wave with wave vector
k

j
x , the amplitude at position xn is Mnj = exp(i k

j
x xn). To get a

perfectly focused beam at position xi , the amplitude fji for the
k

j
x component is given by the solution of the matrix equation∑

j Mnj fji = δni . The maximum k
j
x = k sin(θm) needs to be

comparable with π/a, so we require the laser angle be tunable
over a window [−θm, θm], where θm ≈ sin(θm) ≈ π/ka is
typically small. For instance, in an ion trap quantum computer,
the ion spacing is about 5 μm and the laser has a wavelength of
about 0.4 μm, which gives θm ∼ 0.04 ∼ 2.3◦. In Fig. 2(a), we
show the amplitude distribution f (kj

x ) for 21 ions in a harmonic
trap and the associated profile G(x), which is basically
a δ function at ions’ positions albeit with small wiggles
at other locations. This spectral decomposition approach is
particularly convenient for quantum simulation where we need
to simultaneously apply focused laser beams on each ion [17].
With spectral decomposition, we only need to apply a number
of broad plane wave beams that cover all the ions, with their
angles tunable in a small window [−θm, θm].

IV. APPLICATION EXAMPLE

As an example of application, we consider two-qubit
quantum gates in an ion chain. With spatial refocusing, we
can perform high-fidelity entangling gates even when the
Gaussian beam width is comparable with the ion spacing,
which significantly simplifies the experimental realization.
For two-qubit operations, we need to illuminate only two
target ions in the chain. To be concrete, we consider a
conditional phase flip (CPF) gate, UCPF

jn = exp(iπσ z
j σ z

n/4),
mediated by transverse phonon modes based on the scheme
in Refs. [18,19]. Here we only list the essential formula and
for detailed derivation we point the readers to the original
papers. From a practical point of view, one only needs to
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FIG. 2. (Color online) (a) Intensity (amplitude modulus squared)
profile of superposition of 21 plane waves with different wave-vector
components kj

x along the chain. Blue circles indicate ions’ positions.

The unit of position x is l = ( Z2e2

4πε0Mω2
z
)1/3, where Ze and M are the

charge and mass of each ion, ε0 is the free space permittivity, and
ωz is the trap frequency along the z axis. (b) Amplitudes of spectral
components. Here amin is the smallest spacing of ions in the middle
of the chain.

have Eq. (4) below in hand to understand this example. We
define the trap axis to be the z direction. The gate is achieved
by applying a state-dependent ac Stark shift on the ions,
induced by a pair of Raman beams with frequency detuning μ

and wave-vector difference �k along the transverse direction
x. The effective Hamiltonian for the laser-ion interaction is
H = ∑N

j=1 h̄j cos(�k · qj + μt)σ z
j , where qj is the j th ion’s

displacement operator along the x direction and σ z
j acts on the

qubit space of the j th ion. Expanding qj with normal phonon
modes [20] qj = ∑

k bk
j

√
h̄/2Mωk(ak + a

†
k) and assuming the

Lamb-Dicke regime ηk = |�k|√h̄/2Mωk � 1, the interac-
tion picture Hamiltonian under the rotating wave approxima-
tion is HI = −∑N

j,k=1 h̄χj (t)gk
j (a†

ke
iωkt + ake

−iωkt )σ z
j , where

gk
j = ηkb

k
j , χj (t) = j (t) sin(μt), bk

j is the normal-mode wave
function, M is the ion mass, and ωk is the frequency of the kth
motional mode. The associated evolution operator is [18,19]

U (τ ) = exp

⎛
⎝i

∑
j

φj (τ )σ z
j + i

∑
j<n

φjn(τ )σ z
j σ z

n

⎞
⎠ , (4)

where

φj (τ ) =
∑

k

(
αk

j (τ )a†
k + H.c.

)
,

αk
j (τ ) =

∫ τ

0
χj (t)gk

j e
iωktdt,

φjn(τ ) = 2
∫ τ

0
dt2

∫ t2

0
dt1

∑
k

χj (t2)gk
j g

k
nχn(t1)

× sin[ωk(t2 − t1)].

This is the key equation of this gate example so let us give
more comments to clarify the picture. The evolution operator
contains single-spin and two-spin parts. The coefficients of
the single-spin part φj (τ ) are operators acting on the motional
degree of freedom. They give ions an internal state dependent
displacement of the motion. This would entangle the spin and
motional degrees of freedom. Since we care only about the
spin part without measuring the motional states, spin-motion
entanglement reduces the purity of the spin states. To get
a high-fidelity gate we desire a vanishing single-spin part.
The coefficients of the two-spin part of evolution φjn(τ ) are
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c numbers and they only add a phase to the state. Both φj (τ )
and φjn(τ ) can be tuned by varying the Raman detuning μ,
the gate time τ , and the time-dependent laser Rabi frequency
j (t). By definition of a controlled phase flip gate between
ions j and n, one should have φjn(τ ) = π/4, with every other
single-spin and two-spin coefficient being zero. To perform
such a gate, we shine lasers to ions j and n only, i.e., i = 0
for i �= j,n, and optimize over μ so that the effective evolution
best approximates UCPF

jn . For simplicity, here we assume a
time-independent  and pick a relatively long gate time,
τ = 180τ0 (τ0 ≡ 2π/ωz is the trap period). The gate fidelity is
quantified by F = Trm〈�f |U (τ )|�0〉〈�0|U †(τ )|�f 〉, where
|�0〉 = 1

2 (|0〉 + |1〉) ⊗ (|0〉 + |1〉) is the assumed initial state,
|�f 〉 ≡ UCPF

jn |�0〉 is the ideal final state, and Trm indicates
tracing over all the motional modes.

Similar to real experiments, we apply Gaussian beams to
the target ions j and n. We consider two entangling CPF gates
in a 20-ion chain with ωx/ωz = 10, one for two center ions and
the other for two ions on one edge, with the beam width about
15% larger than the separation of the two center ions and 2/3
of separation of the two edge ions. The ion spacings and laser
beam width are fixed throughout the calculation. Clearly the
condition w/a � 1 is violated in both cases. All the transverse
phonon modes are assumed to be initially in thermal states with
the same temperature T such that the center-of-mass mode
has one phonon on average, a typical situation after Doppler
cooling. We scan over the Raman detuning μ and for each μ

optimize over j and n to find the best possible gate fidelity.
As expected, without applying correction beams the fidelity of
the gate is rather low [see the top curves in Figs. 3(a) and 3(b)].
However, keeping all other parameters fixed, the gate error is
largely reduced by including only one correction beam and
including two correction beams the fidelity gets very close to
the ideal case. For the center ions, three correction beams on
both sides already reduce the gate error by nearly 3 orders
of magnitude. As shown in Fig. 3(c), the gate infidelity (t1
fidelity) caused by the crosstalk error decreases exponentially
with the number of correction beams, until one approaches the
optimal value set by other error sources. Note that with time
constants j and n, there is an intrinsic gate fidelity due to
the lack of control knobs, shown in Fig. 3(c) as dashed lines.

V. EXPERIMENTAL IMPLEMENTATION
AND ERROR RESISTANCE

The proposed spatial refocusing technique is ready to
implement in many quantum computation architectures, such
as harmonically trapped ion crystals [4,21] or arrays of
micro-traps [22], Rydberg atoms in optical lattices [23], arrays
of optical tweezers [24], etc. After measurement of qubit
positions, laser focusing positions, and the laser beam profile,
one only needs to apply the inverse linear transformation M−1

nj

to the target beam profile Gj and use the result as input to the
beam delivery device. Removing the need of strong focusing,
this scheme should significantly simplify the required optics.
Another nice feature is that we do not even require each beam
to center at each qubit, as long as the beam positions are
known and fixed. The scheme requires coherence between the
correction beams. Since Raman beams are used we only need
to stabilize the relative phase between the Raman beams. We
also note that in small-scale systems, the ln(1/ε) scaling of the
number of required correction beams ncorr with the truncation
error is often irrelevant. An array of N coherent pulses should
always suffice for the generation of arbitrary laser strength
profile for N qubits. So one would never need ten beams to
address five qubits.

In practice, spatial refocusing is subject to several types of
experimental noise. First of all, the ions are not stationary point
particles. Their positions fluctuate thermally and quantum
mechanically. Second, the amplitudes and phases of each beam
in the array may deviate from the prescription. It is unclear
whether the interference is robust to these deviations. We first
estimate the position fluctuations of the ions. Take a 21-ion
chain as an example, the ion spacing varies between 1.02
and 1.78 μm, with the smallest spacing in the middle of the
chain. Among the axial motional modes the center-of-mass
mode has the lowest frequency, about 2π × 1 MHz, and the
corresponding oscillator length is

√
h̄/2Mωz ≈ 5.4 nm. The

other axial modes all have higher frequencies and the oscillator
lengths are even smaller. Assuming the Doppler cooling limit,
i.e., with temperature given by kBT = h̄�/2 and the cooling
transition linewidth � ≈ 2π × 20 MHz, the center-of-mass
mode along z contains on average kBT

h̄ωz
≈ 10 phonons for a trap

with ωz = 2π × 1 MHz. With these realistic data, the exact
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10
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−2
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μ/ ωz

δF

9.93 9.935 9.94 9.945 9.95
μ/ ωz

0 2 4 6 8ncorr

center ions
edge ions

(a) (b) (c)

FIG. 3. (Color online) Panels (a) and (b): Infidelity (δF ≡ 1 − F ) of the CPF gate versus the Raman detuning μ for (a) two ions in the
center and (b) two ions on one edge in a 20-ion chain. Vertical dashed lines indicate the position of the transverse phonon modes. The beam
waist is set to 15% larger than the minimum spacing (at the center) of ions and about 2/3 of the maximum spacing (at the edge) of the chain.
In panel (a), curves from top to bottom are for the cases with 0, 2, 4, 6, and 8 correction beams, respectively; in panel (b), curves from top to
bottom are for the cases with 0, 1, 2, and 3 correction beams. (c) Infidelity under a fixed Raman detuning μ = 9.9888ωz for center ions and
μ = 9.9387ωz for edge ions, as a function of the number of correction beams ncorr. Dashed lines denote the infidelity under perfect focusing
(with zero crosstalk error).
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numerical calculation taking all the axial modes into account
shows that for each ion the standard deviation of position
ranges from 6.5 to 10 nm, at least 2 orders of magnitude smaller
than the interion spacing. So for our purpose here the noise
caused the thermal motion of ions is negligible. For the second
problem, since the laser beams superpose linearly to give the
final refocused pulse, an arbitrary deviation of the j th pulse’s
amplitude δf (xj − xi) only adds noise δf (xj − xi)g(x − xj )
to the final amplitude distribution G(x − xi). To consider both
strength and phase error of the laser, we allow the deviation
δf (xj − xi) to be a complex number. To quantify the effect of
δf (xj − xi), we parametrize the deviation as follows:

f (xj − xi) + δf (xj − xi) = f (xj − xi)(1 + rj ) exp(iφj ),

(5)

where the real numbers rj and φj measure, respectively, the
relative amplitude error and phase error of the beam on ion j .
Each rj /φj is sampled from the normal distribution with zero
mean and standard deviation �r/�φ, i.e., rj ∼ N (0,σ 2 =
�r2) and φj ∼ N (0,σ 2 = �φ2). We define the quantity

ε = 1

N

∑
j

||G(xj − xi)|2 − |G̃(xj − xi)|2| (6)

to measure the difference of actual and ideal intensity dis-
tribution. We now do a numerical simulation to investigate
the robustness of the interference. We take a 21-ion chain
harmonically trapped and try to address the central ion, i = 11.
The ideal target is G(xj − x11) = δj,11. Assume the addressing
beams have a Gaussian profile with width the same as the
distance between the 11th and 12th ion. We randomly sample
rj and φj 5000 times, calculate ε for each sample, and plot
the average ε̄ as a function of �r and �φ (Fig. 4). We
find that the interference pattern is pretty robust. For 5%
standard amplitude error and 0.2 radians phase error, the
average intensity error ε̄ is still below 1%. In terms of gate
infidelity, we did numerical experiments and found that 1%
intensity error induces on the order of 10−2 (10−3) infidelity
for two center ions with ncorr = 8 (edge ions with ncorr = 5),
with every other parameter the same as described in the caption
of Fig. 3. For 0.5% intensity error, both infidelities are on the
10−3 level.

(
)

FIG. 4. (Color online) Average intensity error ε̄ as a function of
standard amplitude/phase error �r/�φ. The color encodes values
of ε̄. Each point is obtained with 5000 random samples of rj ∼
N (0,σ 2 = �r2) and φj ∼ N (0,σ 2 = �φ2).

VI. CONCLUSION

In summary, we have proposed a spatial refocusing tech-
nique to achieve effective individual addressing and reduce
crosstalk error in a general multiqubit platform. The scheme is
efficient as the crosstalk error decreases exponentially with the
number of correction beams, and the cost in the laser power
is modest even when the beam width is comparable with the
qubit separation. The scheme works universally for any type
of quantum gate and can apply to any quantum computational
platform.
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APPENDIX: SOLVING THE ENVELOPE FUNCTION
WITH TOEPLITZ MATRIX THEORY

According to the Toeplitz matrix theory, the general
solution to the equation Mljfji = δli has the form fji =∑

k c
+/−
k (ak)j−i , where c+

k and c−
k are for the regions j > i

and j < i, respectively. Here ak are the roots of the poly-
nomial Pn(x) = xn(1 + ∑n

m=1(1/xm + xm)γ m2
) and c

+/−
k are

coefficients to be determined (the bandwidth of the matrix Mlj

is 2n + 1). Our first observation is that the roots come in pairs
(a, 1/a) due to the symmetry x ↔ 1/x. Thus fji is composed
of terms like c

+/−
k (ak)j−i decaying (increasing) exponentially

with |j − i| if ak < 1 (ak > 1). In the region j > i (j < i),
the boundary condition at |j − i| → ∞ requires ck = 0 for
ak > 1 (ak > 1). Note that in the large |j − i| limit, the ak

closest to the unity should dominate since other components
die out more quickly. Next we prove that −γ (and hence −1/γ )
is a root of Pn(x) when n is sufficiently large:

Pn(−γ )

(−γ )n
= 1 +

n∑
m=1

(−1)m
(
γ m2+m + γ m2−m

)

= 1 +
n∑

m=1

(−1)mγ m2+m +
n−1∑
m=0

(−1)m+1γ m2+m

= (−1)nγ n2+n +
n−1∑
m=1

(−1)m(1 − 1)γ m2+m

= (−1)nγ n2+n → 0, when n is large.

The characteristic quantities of Pn(x) are γ , γ 4, γ 9, . . . ,

of which the one closest to the unity is γ . This leads us to
conjecture (−γ ) is the root of Pn(x) closest to 1 in magnitude.
This turns out to be true. Since P̃n(x) = Pn(x)/xn > 0 when
x > 0, there is no positive root. Let us focus on the interval
[−1,0). For n = 1, P̃1(x) = 1 + γ (1/x + x) is monotonically
decreasing from P̃1(−1) = 1 − 2γ to P̃1(0−) → −∞ and

there is one root in this interval:
−1+

√
1−4γ 2

2γ
≈ −1+1−2γ 2

2γ
=

−γ . When increasing n by 1, we include one more term,
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Qn+1(x) = (1/xn+1 + xn+1)γ (n+1)2
. Due to the small factor

γ (n+1)2
, the contribution of Qn+1 can be comparable with

that of Qn only when |x| � γ 2n+1. Since Qn(0−) approaches
+∞ for even n and −∞ for odd n and Qn is always
monotonic on [−1,0), adding one more term always introduces

one more turning point in P̃n(x) and thus adds one more
root with magnitude much smaller than the previous roots.
Therefore (−γ ) is the root with the largest magnitude by far on
[−1,0). We therefore conclude fji ∝ (−γ )|j−i| when |j − i| is
large.
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