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Abstract 
Intra-protein residue-level contact prediction has drawn a lot of attentions in recent years and made very 

good progress, but much fewer methods are dedicated to inter-protein contact prediction, which are 

important for understanding how proteins interact at structure and residue level. Direct coupling analysis 

(DCA) is popular for intra-protein contact prediction, but extending it to inter-protein contact prediction is 

challenging since it requires too many interlogs (i.e., interacting homologs) to be effective, which cannot 

be easily fulfilled especially for a putative interacting protein pair in eukaryotes. We show that deep 

learning, even trained by only intra-protein contact maps, works much better than DCA for inter-protein 

contact prediction. We also show that a phylogeny-based method can generate a better multiple sequence 

alignment for eukaryotes than existing genome-based methods and thus, lead to better inter-protein 

contact prediction. Our method shall be useful for protein docking, protein interaction prediction and 

protein interaction network construction. 

Introduction 

Very few proteins perform their functions alone. Instead, most proteins function by interacting with others 

to form complexes and/or protein-protein interaction (PPI) networks[1-15]. To understand PPIs at 

structure level, their 3D structures may be needed. Although significantly improved, solving the 3D 

structure of a PPI or protein complex by experimental techniques is still very challenging, even if its 

constituent proteins have known 3D structures[16, 17]. There is still little 3D structure information for a 

big percentage of currently known PPIs in bacteria, yeast and human[18]. Therefore, computational 

methods are needed to elucidate the 3D structure of a PPI or complex from its sequence.  

 

Predicting the 3D structure of a PPI or complex is very challenging. Here we focus on an important 

intermediate step that predicts inter-protein residue-residue contacts between a pair of putative interacting 

proteins (i.e., inter-protein contact prediction). Intra-protein contact prediction has demonstrated its 

effectiveness on folding a single protein chain [19-24]. It is also reported that inter-protein contact 

prediction is useful for the 3D structure modeling of a PPI or protein docking[16, 25, 26]. A few 

computational methods have been developed to predict protein-level interaction, including phylogenetic 

profiling[27], force field methods[28], genomic co-localization [29, 30] and others[31-33]. Nevertheless, 

these methods can only predict if two proteins interact or not, but not which residue pairs may interact or 

form a contact. Here our focus is to predict residue-level interactions (i.e., contacts) across two proteins.  

 

Co-evolution analysis or more specifically direct-coupling analysis (DCA) is popular for intra-protein 

contact prediction[19, 34-39] and has also been applied to inter-protein contact prediction [16, 25, 37, 40, 

41]. DCA works by identifying co-evolved residues from a multiple sequence alignments (MSA) of 

sequences homologous to a protein under prediction. Although popular, DCA has low prediction accuracy 

when we cannot find a large number of sequence homologs for a protein under prediction. This problem 

becomes more serious for inter-protein contact prediction since it is challenging to find so many interlogs 

(i.e., interacting homologs) for an interacting protein pair. Because of this, currently DCA for inter-protein 
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contact prediction mainly focuses on prokaryotes and mitochondria[16, 25] since it is relatively easy to 

find interlogs in prokaryotes, but does not fare well on eukaryotes with abundant paralogs because it is 

challenging to identify correct interlogs [42].  
 

We have developed a deep learning (DL) method for intra-protein contact prediction[20, 21], which 

greatly outperformed DCA and obtained the highest F1 score in CASP12[22]. Our DL method not only 

works for soluble proteins, but also for membrane proteins even if trained by only non-membrane 

proteins[21]. Compared to pure DCA, our DL method needs much fewer sequence homologs to be 

effective because it makes use of contact occurrence patterns, in addition to co-evolution information, for 

contact prediction. Inspired by the success of our DL method and the fact that it does not need so many 

sequence homologs, this paper studies how well DL can work on inter-protein contact prediction, 

especially for eukaryotic species. To avoid overfitting, we do not train our DL model using any protein 

complex data (i.e., inter-protein contact maps). Instead, we still use our previous DL model trained by 

only individual protein chains (i.e., intra-protein contact maps) to predict inter-protein contacts.   

 

To further improve accuracy, we propose a new phylogeny-based method to identify interlogs for a 

putative interacting protein pair, especially for eukaryotes in which some interacting genes may be far 

away from each other along genome. When coupled with DL, this new method works better on 

eukaryotes than genome distance-based methods employed by Baker[16] and Marks[25] (which are 

mainly developed for prokaryotes). Experimental 

results show that combining these two methods can 

even further improve prediction accuracy. 

 

We have tested our DL method using two datasets 

adopted by other groups and a large number of 

interacting protein pairs extracted from 

3DComplex[43]. Experimental results show that our 

DL method indeed outperforms pure DCA for inter-

protein contact prediction. Our DL method not only 

works on prokaryotes, but also on eukaryotes and the 

other species. We have also observed that inter-protein 

contact prediction accuracy is not only highly related to 

the number of effective interlogs available for a protein 

pair under prediction, but also to the density of inter-

protein contacts defined as the ratio between the 

number of inter-protein contacts and the total sequence 

length. 

Method 
Following the definition in[16, 25], we say that two residues of a protein pair form an inter-protein 

contact if 1) they belong to two different protein chains; and 2) in the native 3D structure of a complex 

containing this protein pair, the minimum Euclidean distance between their heavy atoms is less than 6Å. 

We measure the density of inter-protein contacts across two proteins by #contacts/L where #contacts is 

the number of true contacts across two proteins and L is their total sequence length. 
 

Overview.  As shown in Fig. 1, given a pair of putative interacting proteins A and B for which we would 

like to predict inter-protein contacts, we first run HHblits[44] to find sequence homologs and build 

multiple sequence alignments (MSAs) for A and B, respectively. Then we employ two different strategies 

to concatenate MSA_A and MSA_B into a paired MSA consisting of only interlogs (i.e., interacting 

homologs). Let MSA_g and MSA_p be the paired MSAs resulting from genome-based and phylogeny-

based methods (described below), respectively, from which we may use our DL method to predict two 

 
Figure 1. Schematic flowchart of our method. 

The top half of this figure is inspired by Fig. S2 

in [41]. 
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inter-protein contact maps, and then calculate their average as the final prediction. 

Building multiple sequence alignment (MSA) for a protein pair 
We generate an MSA for an individual protein by running HHblits with 8 iterations and E-value=1E-20 to 

search through the UniProt20 HHM library dated in February 2016. The other parameters for HHblits are 

-maxfilt 100000000 -diff inf -all -neffmax 20. Let MSA_A and MSA_B denote the resultant individual 

MSAs for proteins A and B, respectively. We employ two strategies to concatenate MSA_A and MSA_B 

into a paired MSA, which consists putative interacting pairs homologous to the query pair. One is based 

upon genome information and the other utilizes phylogeny information. Not every protein in MSA_A and 

MSA_B can be paired. After concatenation, unpaired proteins are removed. 

 

Concatenating MSAs by genomic distance. In prokaryotes and some eukaryotes, interacting genes are 

often co-located on the chromosome into operons[45], so we may tell if two proteins forming an 

interacting pair (i.e., interlog) or not by checking if their intergenic distance is less than a given threshold 

(we use 20 here). Both EVcomplex[25] and Baker[16] employed this strategy, but differed in some 

details. We may use a bipartite graph to describe the pairing relationship between proteins. That is, we 

treat each individual protein as a node and add one edge between two nodes (of two different MSAs) if 

their intergenic distance is less than 20. We may assign the inverse of the intergenic distance as weight to 

an edge. Then, we may pair two MSAs by finding the maximum matching in the graph[46]. Before doing 

so, we may also prune edges of which at least one endpoint does not have the minimum distance to the 

other. After pairing proteins in two MSAs, we remove the unpaired proteins and generate a paired MSA 

consisting of only putative interlogs, each being supposed to be homologous to the query protein pair. 

 

Fig. 2 shows an example of this method. Here the left (red) and right (blue) MSAs contain 5 and 6 protein 

chains, respectively, and the intergenic distance threshold is set to 3. In total there are 6 contigs containing 

6 copies of proteins (red blocks) in the left MSA and 8 copies of proteins (blue blocks) in the right MSA. 

Grey blocks are coding DNA sequences not belonging to these two MSAs. Based upon intergenic 

distance, 4 protein pairs can be formed, as shown by the black double arrows. For example, in contig 2, 

the intergenic distance between proteins 2 and B is 1, smaller than that between proteins 2 and A, so we 

pair proteins 2 and B together. In contig 4, the intergenic distance between proteins 4 and D is 4, larger 

than the threshold, so we do not pair them together.  
 

To calculate intergenic distance, we need map proteins 

(more specifically, coding DNA sequence (CDS)) to 

chromosome. To do so, we extract the UniProt IDs of a 

protein from the database and fetch the contig IDs 

from European Nucleotide Archive (ENA) via its 

XREF service[47]. Then we retrieve the contigs from 

ENA by their IDs and extract CDS lines that map 

UniProt IDs to their positions in contigs. Two CDSs 

are considered belonging to one gene if their spanning 

regions have an overlap of length at least one CDS. 
 

Concatenating MSAs by phylogeny information. It 

is much more challenging to concatenate two 

individual MSAs for a protein pair in eukaryotes. This is because an individual MSA may contain 

abundant paralogs and two genes may interact with each other even if they are not close by genomic 

distance [40, 42]. Here we propose to concatenate two individual MSAs using phylogeny and homology 

information. First, we group proteins in each MSA by their species (or sub-species if possible) according 

to the phylogeny tree stored in the Taxonomy Database[48]. Then we sort proteins of a specific 

species/subspecies in each MSA by their sequence similarity (from high to low) to their respective query 

 
Figure 2. An example for genome-based MSA 

concatenation.  
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proteins. Let p1, p2, …, pm be the sorted proteins of a specific species in one MSA and q1, q2, …, qn be the 

sorted proteins of the same species in the other MSA. Then we pair pi and qi together where i ranges from 

1 to the minimum of m and n.  

 

Fig. 3 shows an example of this method. Each individual MSA contains 8 proteins (including the query). 

Manis pentadactyla and Alligator sinensis have no subspecies. Ailuropoda melanoleuca has two 

subspecies: A.m.melanoleuca and 

A.m.qinlingensis. Therefore, we may divide 

the proteins into 4 groups. Manis 

pentadactyla has only one protein in each 

MSA, so we simply pair its two proteins to 

form an interlog. Alligator sinensis has 2 and 

3 proteins for queries 1 and 2, respectively. 

We sort them by sequence similarity and 

remove the protein which is the least similar 

to query 2 and pair the remaining proteins to 

form 2 interlogs. Similarly, we obtain 1 

interlog for A.m.qinlingensis and 2 for 

A.m.melanoleuca. Finally, we obtain a paired 

MSA of 7 interlogs (including the query itself), as shown by the black double arrows. 

 

Calculating the number of effective interlogs. Meff measures the amount of homologous information in 

a multiple sequence alignment (MSA). It can be interpreted as the number of non-redundant (or effective) 

sequence homologs in an MSA. Here we use 70% sequence identity as cutoff to determine if two 

interlogs are similar or not. Two interlogs are similar if and only if two proteins in one interlog are similar 

to their corresponding proteins in the other interlog. Let Si denote the number of interlogs (including 

itself) similar to interlog i. Then we may calculate Meff of an MSA as the sum of 1/Si over all the 

interlogs in this MSA. 

Protein features for a protein pair 
For each protein pair under prediction, we derive two kinds of protein features (sequential and pairwise 

features) and then feed them into our DL model for contact prediction. Sequential features include protein 

sequence profile (i.e., position-specific scoring matrix), 3-state secondary structure[49] and 3-state 

solvent accessibility[50] predicted by our in-house tool RaptorX-Property[51]. We generate sequential 

features separately for two proteins in a pair and then concatenate them to form paired sequential features. 

That is, we treat a protein pair as a single protein by concatenating their sequences. Sequence profile is 

represented as a 2D matrix with dimension L×20 where L is the total protein length. Predicted secondary 

structure is represented as a 2D matrix with dimension L×3 (each entry is a predicted probability), so is 

the predicted solvent accessibility. Combining them together, we have a 2D matrix with dimension L×26 

as the input sequential feature. 

 

To calculate pairwise features, we feed a paired MSA to CCMpred[34], which outputs direct co-evolution 

strength between any two residues (i.e., columns) in the MSA. We also calculate mutual information and 

pairwise potential between any two columns in a paired MSA. See our previous work[20] for details. 

Deep learning (DL) for inter-protein contact prediction 
As shown in Fig. S1 in Appendix, our DL model is formed mainly by two deep residual neural networks 

(ResNet)[52]. One is used to handle sequential features and the other pairwise features. The first ResNet 

conducts 1-dimensional (1D) convolutional transformation of sequential features to capture long-range 

sequential context of each residue in the query proteins. Its output is converted to a 2-dimensional (2D) 

matrix by an operation similar to outer product and then fed into the 2nd ResNet together with the original 

 
Figure 3. An example for phylogeny-based MSA 

concatenation.  
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pairwise features. The 2nd ResNet conducts 2D convolutional transformation of its input to capture long-

range 2D context of a residue pair. Finally, the output of the 2nd ResNet is fed into logistic regression, 

which predicts the probability of any two residues forming a contact. Please see our previous work [20, 

22] for a detailed description of this DL model. 

 

Combining contacts predicted from MSAs constructed by two strategies. For a protein pair, we build 

two paired MSAs using both genome- and phylogeny-based methods, and from the two MSAs predict 

two inter-protein contact maps, respectively. Then we may calculate their arithmetic average as the final 

prediction for this protein pair.  

Training and test datasets 
We employed three testsets. (1) Baker’s dataset: a set of 32 protein pairs used by Baker to test a direct 

coupling (DCA) method Gremlin[16], 28 of which are from prokaryotes. This set includes protein pairs 

extracted from bacterial 50S ribosomal unit, the TRAP complex, tripartite efflux system, pyruvate formate 

lyase-activating enzyme complex and D-methionine transport system. (2) EVcomplex’s dataset[25]: a set 

of 86 protein pairs, in which 82 are from prokaryotes. (3) 3DComplex version 2.0[43]: 3067 non-

redundant (40% sequence identity cutoff) complexes with experimentally-solved structures in PDB. Here 

we only consider heteromers, so finally obtained 4954 chain pairs in contact that involve 5296 protein 

chains. Among them, 841 and 178 pairs belong to human and E. coli., respectively; 1863 and 728 pairs 

belong to the other eukaryotes and prokaryotes, respectively. The remaining 1344 pairs belong to neither 

prokaryotes nor eukaryote (e.g. archaea and virus). In this set, 475 of protein pairs are too long and 

CCMpred cannot run them on GPUs due to memory limit, so we exclude them from consideration. 

 

Our DL model is trained and validated using only individual protein chains (i.e., intra-protein contacts) in 

PDB25. That is, we did not train our DL model using any protein pairs (i.e., inter-protein contacts). A 

benefit of training by only protein chains is that there is no redundancy between our training data and the 

test data. To further verify this, we concatenate two proteins in a test pair to a single sequence and BLAST 

it against our training proteins. It turns out that BLAST cannot find any good alignment between the 

concatenated sequences and our training proteins. Please see our previous work on training our DL 

model[20].  

Evaluation and metrics 
We evaluate our DL method by comparing it with a few pure DCA methods such as CCMpred[34], 

Gremlin[16] and EVcomplex[25]. In terms of methodology and accuracy, CCMpred, EVcomplex and 

Gremlin are not very different given the same input MSA. However, CCMpred runs much faster, so we 

focus more on it. We calculate the accuracy of the top 50, 20, 10, 5 and top L/k (k=5, 10, 20) predicted 

contacts where L is the total length of the two protein chains. The prediction accuracy is defined as the 

percentage of correctly predicted contacts among the top predictions.  

Result 

Prediction accuracy on the Baker’s and EVcomplex’s datasets 
As shown in Tables 1 and 2, tested on these two datasets, our DL method (denoted as GCNN) greatly 

outperforms all pure DCA methods such as EVComplex (EVfold), Gremlin and CCMpred regardless of 

how many top predicted contacts are evaluated and no matter how the MSA is constructed. The results 

indicate that the genome-based method for MSA construction outperforms our phylogeny-based method 

on these datasets. This is because that most test protein pairs belong to prokaryotes and co-regulated 

genes in prokaryotes are often co-located on the genome into operons. Merging the contacts predicted 

from MSAs constructed by both phylogeny-based and genome-based methods does not help, partially 

because that the contacts predicted from phylogeny-based MSAs have much lower accuracy. Tables 1 and 

2 confirm that CCMpred performs comparably to or better than EVfold, EVComplex and Gremlin, so in 

the following sections we will mainly compare our method with CCMpred. 
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Table 1. Inter-protein contact prediction accuracy (%) on Baker’s data. Our DL method is denoted as GCNN and (s) 

indicates a web server. EVfold is the same as EVcomplex, but run locally with our MSAs. “Genome” and 

“Phylogeny” denote genome- and phylogeny-based methods for MSA generation, respectively. “Merged” indicates 

prediction is merged from “Genome” and “Phylogeny”. Columns 3-9 show accuracy of top L/5, L/10, L/20, 50, 20, 

10, and 5 predicted contacts.  

Predictor MSA L/5 L/10 L/20 50 20 10 5 

EVcomplex(s) Built-in 9.63 14.25 20.10 14.41 21.55 26.55 31.03 

Gremlin(s) Built-in 14.67 23.74 33.23 26.00 41.21 52.76 58.62 

EVfold Genome 17.98 28.01 39.45 31.17 46.90 57.59 62.07 

EVfold Phylogeny 10.11 15.61 23.09 16.41 26.21 36.21 40.69 

EVfold Merged 16.10 25.13 36.12 27.59 42.07 54.83 62.76 

CCMpred Genome 18.47 28.44 39.54 30.76 47.41 53.45 57.93 

CCMpred Phylogeny 11.43 17.04 25.49 18.28 30.34 39.31 46.21 

CCMpred Merged 17.64 27.70 38.72 29.86 46.03 55.52 61.38 

GCNN Genome 39.05 51.41 60.80 53.17 62.76 68.79 71.03 

GCNN Phylogeny 24.52 32.61 39.30 33.31 42.24 47.59 51.03 

GCNN Merged 38.47 48.25 57.09 50.41 60.52 65.86 68.28 

 

Table 2. Inter-protein contact prediction accuracy (%) on EVComplex’s data. See Table 1 for more 

explanation. 

Predictor MSA L/5 L/10 L/20 50 20 10 5 

Gremlin(s) Bulit-in 5.22 8.16 11.51 7.16 12.03 16.05 20.47 

EVfold Genome 6.08 9.73 14.11 9.30 15.87 21.16 26.74 

EVfold Phylogeny 4.22 5.81 8.24 5.21 8.20 11.74 14.88 

EVfold Merged 5.58 8.56 12.71 8.05 13.20 18.49 24.19 

CCMpred Genome 6.05 9.01 13.81 8.35 13.95 19.77 23.72 

CCMpred Phylogeny 3.95 6.16 8.89 4.65 7.97 11.86 15.81 

CCMpred Merged 5.82 8.88 13.26 7.88 13.55 18.95 24.65 

GCNN Genome 13.70 18.18 22.58 17.51 22.79 26.51 30.00 

GCNN Phylogeny 8.81 12.51 16.40 10.70 15.99 19.19 22.09 

GCNN Merged 12.93 17.74 22.41 16.47 22.38 25.23 27.44 
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Prediction accuracy on 3DComplex 
Fig. 4 shows the top L/10 inter-protein contact prediction accuracy of the data in 3DComplex by our DL 

method and CCMpred on MSAs derived from two different strategies. One dot in the figure represents 

one test protein pair. Test protein pairs are colored by their species. Meanwhile, “N/A” indicates all 

species other than eukaryotes and prokaryotes. Fig. 4 shows that on most test protein pairs, our DL 

method outperforms CCMpred by a lot regardless of their species and how their MSAs are constructed.  
 

 
(A) 

 
(B) 

 
(C) 

Figure 4. The top L/10 prediction accuracy by our DL method and CCMpred on the protein 

pairs extracted from 3DComplex. Each dot represents one test protein pair. (A) and (B) show 

the prediction accuracy of our DL method (X-axis) and CCMpred (Y-axis) on the MSAs 

derived by genome-based and phylogeny-based methods, respectively. (C) shows the accuracy 

of the contacts merged from the predictions represented by (A) and (B).  

 

Key factors impacting inter-protein contact prediction accuracy 
We have observed that inter-protein contact prediction accuracy is related to two factors: the number of 

sequence homologs in an MSA (i.e., Meff) and inter-protein contact density measured by #contacts/L 

where #contacts is the number of native contacts across two proteins and L is their total length. We divide 

all the 3DComplex test protein pairs into groups by their ln(Meff) or contact density and then calculate the 

average accuracy in each group. Since for each protein pair we have two different MSAs, we use the 

geometric average of their Meffs to measure the Meff of one protein pair. Fig. 5 shows that the top L/10 

prediction accuracy increases with respect to both contact density and Meff and that our DL method 

greatly outperforms CCMpred regardless of Meff and contact density. We have also observed that when 

contact density is below 0.10, the prediction accuracy is low even if Meff is large. When contact density is 

larger than 0.25, the top L/10 accuracy increases faster when Meff is large than when Meff is small. This 

trend is similar for both our DL method and CCMpred.  

 
(A) 

 
(B) 
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Figure 5. The average top L/10 accuracy (Y-axis) of our DL method and CCMpred with 

respect to (A) the number of sequence homologs measured by Meff and (B) contact density 

measured by #contacts/L. The test protein pairs are from 3DComplex. The last group in (A) 

has ln(Meff) between 5 and 10. The last group in (B) has contact density between 0.5 and 1.5. 

 

Tables 3 and 4 further illustrate that prediction accuracy is related to contact density. Table 3 shows the 

top L/10 accuracy of our DL method and CCMpred on 125 randomly-selected protein pairs from 

3DComplex, covering both prokaryotes and eukaryotes. Table 4 shows the top L/10 accuracy on 125 

protein pairs from 3DComplex with the largest contact density. It shows that the prediction accuracy of 

our DL method and CCMpred is better by ~30% and ~10%, respectively, than those in Table 3, even 

when only top 5 or 10 predicted contacts are evaluated.  
 

Table 3. Accuracy (%) on 125 randomly-selected protein pairs from 3DComplex. See Table 1 for more 

explanation. 

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 1.64 2.21 2.54 1.9 2.72 3.28 4.32 

CCMpred Phylogeny 1.71 1.82 2.31 1.71 2.32 2.88 3.84 

CCMpred Merged 1.91 2.3 2.94 2.06 3.00 4.08 5.12 

GCNN Genome 3.70 4.51 5.42 4.40 5.80 6.56 6.08 

GCNN Phylogeny 3.28 3.64 4.49 3.78 4.44 4.72 5.44 

GCNN Merged 4.32 5.09 5.73 4.96 6.28 7.04 7.68 

 

Table 4. Accuracy (%) on 125 protein pairs from 3DComplex with the largest contact density. See Table 1 for 

more explanation. 

Predictor MSA  L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 7.06 9.10 10.44 7.10 9.60 12.24 14.72 

CCMpred Phylogeny 7.58 9.20 12.37 8.26 11.00 15.20 18.08 

CCMpred Merged 9.16 12.08 15.31 10.02 13.95 18.20 19.60 

GCNN Genome 22.99 26.89 28.62 23.60 27.48 29.68 32.32 

GCNN Phylogeny 27.61 32.27 35.45 28.29 34.04 36.48 36.48 

GCNN Merged 30.02 34.38 36.83 30.69 35.44 37.76 38.08 

 

Phylogeny- vs. Genome-based methods for MSA construction 
The phylogeny- and genome-based methods for MSA construction are complementary to each other. In 

general, for prokaryotic species, genome-based method works better and for eukaryotes, our phylogeny-

based method works better. As shown in Tables 5 and 6, evaluated on 125 (50) test protein pairs (in 

3DComplex) from all prokaryotic species (E. coli) with the largest contact density (i.e., #contacts/L), both 

our DL method GCNN and CCMpred have better prediction accuracy when the MSAs are derived from 
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genome-based methods. Further, merging the predicted contacts from two types of MSAs yield higher 

accuracy on the 125 test protein pairs.  

 

As shown in Tables 7 and 8, evaluated on 125(50) test protein pairs from eukaryotes (Human) with the 

largest contact density, the predicted contacts from the MSAs derived from our phylogeny-based method 

has better accuracy when coupled with our DL method. On both testsets, merging the predicted contacts 

from two types of MSAs yield higher accuracy than any single type of MSAs. The results in these 4 tables 

also confirm that our DL method greatly outperforms the pure co-evolution method such as CCMpred. 

Fig. S2 in Appendix also shows the contact prediction accuracy of individual protein pairs in 3DComplex 

resulting from these two MSA building methods. 
 

Table 5. Inter-protein contact prediction accuracy (%) on 125 protein pairs from prokaryotic species in 

3DComplex with the largest #contacts/L.  

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 9.83 13.49 17.47 13.49 18.56 23.92 29.28 

CCMpred Phylogeny 8.44 11.67 15.43 11.02 16.00 20.96 26.08 

CCMpred Merged 10.49 14.80 19.38 14.24 20.48 25.92 30.24 

GCNN Genome 23.67 28.70 32.41 28.88 34.68 38.88 41.92 

GCNN Phylogeny 20.29 24.79 28.36 24.21 29.00 32.96 34.88 

GCNN Merged 25.32 30.06 34.09 30.34 35.28 40.00 42.08 

 

Table 6. Inter-protein contact prediction accuracy (%) on 50 protein pairs from E. coli in 3DComplex with the 

largest #contacts/L.  

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 8.73 12.24 17.20 11.68 17.30 22.40 31.20 

CCMpred Phylogeny 6.54 9.29 12.34 8.00 12.50 19.00 25.20 

CCMpred Merged 8.32 11.56 15.17 10.72 15.90 23.40 30.40 

GCNN Genome 22.98 27.59 31.85 27.64 35.70 39.60 39.20 

GCNN Phylogeny 18.70 23.99 29.82 22.84 30.50 34.40 37.20 

GCNN Merged 23.74 29.53 36.33 29.12 37.40 44.80 45.60 

 

Table 7. Inter-protein contact prediction accuracy (%) on top 125 chain pairs from eukaryotic species in 

3DComplex with the largest #contacts/L ratio.  

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 4.58 6.28 7.95 4.50 5.88 7.52 8.80 

CCMpred Phylogeny 5.07 6.28 9.05 5.62 7.12 9.36 12.96 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/240754doi: bioRxiv preprint first posted online Dec. 29, 2017; 

http://dx.doi.org/10.1101/240754
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Merged 6.46 8.81 10.58 7.15 9.08 11.84 15.04 

GCNN Genome 15.17 17.85 18.77 14.42 17.92 19.20 20.96 

GCNN Phylogeny 21.78 24.99 25.93 22.75 26.68 26.64 26.24 

GCNN Merged 23.66 26.08 27.49 23.95 27.96 28.32 26.72 

 

Table 8. Inter-protein contact prediction accuracy (%) on 50 protein pairs from human species in 3DComplex 

with the largest #contacts/L ratio.  

Predictor MSA L/5 L/10 L/20 50 20 10 5 

CCMpred Genome 6.93 9.42 11.33 6.84 9.40 11.20 12.40 

CCMpred Phylogeny 5.01 5.99 8.30 5.68 6.90 9.40 13.20 

CCMpred Merged 8.00 11.09 13.53 8.64 10.70 14.20 18.00 

GCNN Genome 17.48 20.7 22.98 17.52 21.60 22.80 24.40 

GCNN Phylogeny 20.27 23.42 26.03 21.60 24.70 27.20 28.40 

GCNN Merged 23.59 27.39 29.96 24.56 28.80 30.40 30.00 

Conclusion and Discussion 
We have described the first deep learning (DL) method for inter-protein contact prediction that greatly 

outperforms existing pure co-evolution methods. Our approach works for both prokaryotes and 

eukaryotes. By contrast, existing co-evolution methods were mainly tested on prokaryotes. Our DL 

method is not trained by any existing protein complex data (i.e., inter-protein contact maps). Instead it is 

trained by only single-chain proteins (i.e., intra-protein contact maps), but still works for inter-protein 

contact prediction. The underlying reason is that both inter- and intra-protein contacts share similar 

physical-chemical properties[53] and contact occurrence patterns which are learned by our DL method. 

Nevertheless, the set of training intra-protein contact maps may not cover all possible contact occurrence 

patterns across two proteins. According to our experience in developing deep transfer learning for 

membrane protein contact prediction[21], we shall be able to further improve our DL method by training 

it using both intra- and inter-protein contact maps.  

 

We have developed a phylogeny-based method for MSA construction, which outperforms genome-based 

methods on eukaryotes and provides information complementary to genome-based method. The 

combination of these two methods may lead to better prediction accuracy on eukaryotes. Although our DL 

method greatly outperforms pure co-evolution methods, the prediction accuracy of our method on 

eukaryotes is still not that high, maybe because the MSAs constructed by our phylogeny-based method is 

still suboptimal. We will continue to study better methods for MSA construction to further improve 

prediction accuracy.  

 

Our experimental results show that prediction accuracy is related to inter-protein contact density, in 

addition to the number of interlogs (i.e., interacting homologs) available for a protein pair under 

prediction. Usually permanent PPIs has a larger inter-protein contact density than transient PPIs and thus, 

so our approach may have a better predictive effect for permanent PPIs and a better method is needed to 

predict contacts for transient PPIs.  
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Due to space limit, this paper focuses only on contact prediction, but not on building 3D structural models 

from predicted contacts. In an extended version we will describe how well our predicted contacts can be 

used to build 3D complex models of a PPI or to help improve protein docking. In this paper, we assume 

that we do not have the 3D structure models of the two constituent proteins of a putative interacting 

protein pair. Sometimes we may have native structures or good 3D models of individual proteins. In this 

case, we shall study how to further improve inter-protein contact prediction by making use of the known 

3D structures of partner proteins. 
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Appendix 

1. Deep learning network architecture used for inter-protein contact prediction 
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Figure S1. The network architecture used for contact prediction where L is the total protein length. 

 

2. Comparison of phylogeny- and genome-based methods for MSA 
construction in terms of prediction accuracy 

 
(A) 

 
(B) 

Figure S2. The top L/10 prediction accuracy of our DL method on MSAs generated by different 

methods. (A) merged (X-axis) vs. genome-based method (Y-axis); (B) merged (X-axis) vs. 

phylogeny-based method (Y-axis). Each dot represents one test protein pair in 3DComplex. All the 

3DComplex protein pairs are colored by their species. Meanwhile, N/A indicates species other than 

eukaryotes and prokaryotes. 

 

3. Specific example: study of an E. coli QFR complex 
The quinol-fumarate reductase (QFR) respiratory complex (PDB ID 1KF6) of Escherichia coli is a four-

subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the 

terminal electron acceptor. The two chains, kf6_C and 1kf6_D, have 130 and 119 residues, respectively, and in 

total there are 146 contacts across them. Their individual MSAs have Meff ~72 and ~430, respectively. The 

paired MSAs created by the phylogeny- and genome-based methods have Meff ~60 and ~63, respectively. For 

a protein pair with such a small number of interlogs, our DL approach yields significantly better contact 

prediction than co-evolution methods including CCMpred, EVfold and Gremlin. As shown in Table S1, our 

method has top L/10 accuracy 79.17%, while CCMpred-, EVfold-, and Gremlin have top L/10 accuracy only 

16.67%, 12.50%, and 20.83%, respectively. Figure S3 shows top L/10 predicted contact by each method and 

their overlaps with all the native contacts. This figure shows that CCMpred, EVfold and Gremlin predict some 

wrong contacts which are far away from any natives. 

 

Table S1. Interfacial contact prediction accuracy (%) of our method GCNN, CCMpred, EVfold and Gremlin 

on the quinol-fumarate reductase (QFR) respiratory complex of E. coli (PDB: 1kf6). 

Prediction L/5 L/10 L/20 50 20 10 5 

GCNN 63.27 79.17 83.33 64.00 85.00 80.00 95.00 

CCMpred 12.24 16.67 16.67 12.00 15.00 10.00 13.00 

EVfold 6.12 12.50 16.67 6.00 15.00 20.00 17.00 

Gremlin 14.29 20.83 16.67 14.00 20.00 20.00 21.00 
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(A) 

 
(B) 

 
(C) 

 
(D) 

Figure S3. Overlap between the top L/10 predicted contacts (in red and 

green) and all the natives (in grey). Red (green) dots indicate correct 

(incorrect) predictions by (A) our approach, (B) CCMpred, (C) EVfold, 

and (D) Gremlin. 
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