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Abstract

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG)
has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers
from high sample complexity. In this paper we consider the deterministic value gradients to improve
the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic
value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly
give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on
this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with
infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off
between the variance of the value gradients and the model bias. Furthermore, to better combine the
model-based deterministic value gradient estimators with the model-free deterministic policy gradient
estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct
extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous
control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.

1 Introduction
Silver et al. propose the deterministic policy gradient (DPG) algorithm [29] that aims to find an optimal
deterministic policy that maximizes the expected long-term reward, which lowers the variance when estimating
the policy gradient [42], compared to stochastic policies [33, 27]. Lillicrap et al. further combine deep neural
networks with DPG to improve the modeling capacity, and propose the deep deterministic policy gradient
(DDPG) algorithm [20]. It is recognized that DDPG has been successful in robotic control tasks such as
locomotion [30] and manipulation [10]. Despite the effectiveness of DDPG in these tasks, it suffers from the
high sample complexity problem [28].

Deterministic value gradient methods [39, 25, 15, 5, 9] compute the policy gradient through back
propagation of the reward along a trajectory predicted by the learned model, which enables better sample
efficiency. However, to the best of our knowledge, existing works of deterministic value gradient methods
merely focus on finite horizon, which are too myopic and can lead to large bias. Stochastic value gradient
(SVG) methods [14] use the re-parameterization technique to optimize the stochastic policies. Among the
class of SVG algorithms, although SVG(1) studies infinite-horizon problems, it only uses one-step rollout,
which limits its efficiency. Also, it suffers from the high variance due to the importance sampling ratio and
the randomness of the policy.

In this paper, we study the setting with infinite horizon, where both state transitions and policies are
deterministic. [14] gives recursive Bellman gradient equations of deterministic value gradients, but the
gradient lacks of theoretical guarantee as the DPG theorem does not hold in this deterministic transition
case. We prove that the gradient indeed exists for a certain set of discount factors. We then derive a closed
form of the value gradients.
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However, the estimation of the deterministic value gradients is much more challenging. The difficulty of
the computation of the gradient mainly comes from the dependency of the gradient of the value function
over the state. Such computation may involve infinite times of the product of the gradient of the transition
function and is hard to converge. Thus, applying the Bellman gradient equation recursively may incur high
instability.

To overcome these challenges, we use model-based approaches to predict the reward and transition function.
Based on the theoretical guarantee of the closed form of the value gradients in the setting, we propose a
class of deterministic value gradients DVG(k) with infinite horizon, where k denotes the number of rollout
steps. For each choice of k, we use the rewards predicted by the model and the action-value at k + 1 step to
estimate of the value gradients over the state, in order to reduce the instability of the gradient of the value
function over the state. Different number of rollout steps maintains a trade-off between the accumulated
model bias and the variance of the gradient over the state. The deterministic policy gradient estimator can
be viewed as a special case of this class, i.e., it never use the model to estimate the value gradients, and we
refer it to DVG(0).

As the model-based approaches are more sample efficient than model-free algorithms [19, 18, 38], and the
model-based deterministic value gradients may incur model bias [36], we consider an essential question: How
to combines the model-based gradients and the model-free gradients efficiently?

We propose a temporal difference method to ensemble gradients with different rollout steps. The intuition
is to ensemble different gradient estimators with geometric decaying weights. Based on this estimator, we
propose the deterministic value-policy gradient (DVPG) algorithm. The algorithm updates the policy by
stochastic gradient ascent with the ensembled value gradients of the policy, and the weight maintains a
trade-off between sample efficiency and performance.

To sum up, the main contribution of the paper is as follows:

• First of all, we provide a theoretical guarantee for the existence of the deterministic value gradients in
settings with infinite horizon.

• Secondly, we propose a novel algorithm that ensembles the deterministic value gradients and the
deterministic policy gradients, called deterministic value-policy gradient (DVPG), which effectively
combines the model-free and model-based methods. DVPG reduces sample complexity, enables faster
convergence and performance improvement.

• Finally, we conduct extensive experiments on standard benchmarks comparing with DDPG, DDPG with
model-based rollouts, the stochastic value gradient algorithm, SVG(1) and state-of-the-art stochastic
policy gradient methods. Results confirm that DVPG significantly outperforms other algorithms in
terms of both sample efficiency and performance.

1.1 Related Work
Model-based algorithms has been widely studied [16, 34, 21, 23, 24, 12, 13, 3, 41] in recent years. Model-based
methods allows for more efficient computations and faster convergence than model-free methods [37, 19, 18, 38].
There are two classes of model-based methods, one is to use learned model to do imagination rollouts to
accelerate the learning. [31, 11, 17] generate synthetic samples by the learned model. PILCO [4] learns
the transition model by Gaussian processes and applies policy improvement on analytic policy gradients.
The other is to use learned model to get better estimates of action-value functions. The value prediction
network (VPN) uses the learned transition model to get a better target estimate [26]. [8, 2] combines different
model-based value expansion functions by TD(k) trick or stochastic distributions to improve the estimator of
the action-value function. Different from previous model-based methods, we present a temporal difference
method that ensembles model-based deterministic value gradients and model-free policy gradients. Our
technique can be combined with both the imagination rollout technique and the model-based value expansion
technique.
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2 Preliminaries
A Markov decision process (MDP) is a tuple (S,A, p, r, γ, p0), where S and A denote the set of states
and actions respectively. p(st+1|st, at) represents the conditional density from state st to state st+1 under
action at. The density of the initial state distribution is denoted by p0(s). At each time step t, the
agent interacts with the environment with a deterministic policy µθ. We use r(st, at) to represent the
immediate reward, contributing to the discounted overall rewards from state s0 following µθ, denoted by
J(µθ) = E[

∑∞
k=0 γ

kr(ak, sk)|µθ, s0]. Here, γ ∈ [0, 1) is the discount factor. The Q-function of state st and
action at under policy µθ is denoted by Qµθ(st, at) = E[

∑∞
k=t γ

k−tr(ak, sk)|µθ, st, at]. The corresponding
value function of state st under policy µθ is denoted by V µθ (st) = Qµθ (st, µθ(st)). We denote the density at
state s

′
after t time steps from state s following the policy µθ by p(s, s

′
, t, µθ) . We denote the discounted

state distribution by ρµθ(s
′
) =

∫
S
∑∞
t=1 γ

t−1p0(s)p(s, s
′
, t, µθ)ds. The agent aims to find an optimal policy

that maximizes J(µθ).

3 Deterministic Value Gradients
In this section, we study a setting of infinite horizon with deterministic state transition, which poses challenges
for the existence of deterministic value gradients. We first prove that under proper condition, the deterministic
value gradient does exist. Based on the theoretical guarantee, we then propose a class of practical algorithms
by rolling out different number of steps. Finally, we discuss the difference and connection between our
proposed algorithms and existing works.

Deterministic Policy Gradient (DPG) Theorem [29], proves the existence of the deterministic policy
gradient for MDP that satisfies the regular condition, which requires the probability density of the next state
p(s

′ |s, a) to be differentiable in a. In the proof of the DPG theorem, the existence of the gradient of the value
function is firstly proven, i.e.,

∇θV µθ (s) =
∫
S

∞∑
t=0

γtp(s, s′, t, µθ)∇θµθ(s′)∇a′Qµθ (s′, a′)|a′=µθ(s′)ds
′, (1)

then the gradient of the long-terms rewards exists. Without this condition, the arguments in the proof of
the DPG theorem do not work 1, and poses challenges for cases where the differentiability is not satisfied.
Note this condition does not hold in any case with deterministic transitions. Therefore, one must need a
new theoretical guarantee to determine the existence of the gradient of V µθ (s) over θ in deterministic state
transition cases.

3.1 Deterministic value gradient theorem
We now analyze the gradient of a deterministic policy. Denote T (s, a) the next state given current state s and
action a. Without loss of generality, we assume that the transition function T is continuous, differentiable in
s and a and is bounded. Note that the regular condition is not equivalent to this assumption. Consider a
simple example that a transition T (s, a) = s+ a, then the gradient of p(s′|s, a) over a is infinite or does not
exist. However, the gradient of T (s, a) over a exists. By definition,

∇θV µθ (s) =∇θ
(
r (s, µθ(s)) + γV µθ (s

′
)|s′=T (s,µθ(s))

)
=∇θr(s, µθ(s)) + γ∇θV µθ (s

′
)|s′=T (s,µθ(s))

+ γ∇θT (s, µθ(s))∇s′V µθ (s
′
).

Therefore, the key of the existence (estimation) of the gradient of V µθ (s) over θ is the existence (estimation)
of ∇sV µθ (s).

1Readers can refer to http://proceedings.mlr.press/v32/silver14-supp.pdf
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By definition,

5sV µθ (s) =5s r(s, µθ(s)) + γ 5s T (s, µθ(s))5s′ V
µθ (s

′
)|s′=T (s,µθ(s))

. (2)

In Theorem 1, we give a sufficient condition of the existence of ∇sV µθ (s).

Theorem 1 For any policy µθ, the gradient of the value function over the state, ∇sV µθ (s), exists with two
assumptions:

• A.1: The set of states that the policy visits starting from any initial state s is finite.

• A.2: For any initial state s, by Assumption A.1, we get that there is a periodic loop of visited states.
Let (s0, s1, ..., sk) denote the loop, and A(s) = γk+1

∏k
i=0∇siT (si, µθ(si)), the power sum of A(s),∑∞

m=0A
m(s) converges.

Proof 1 By definition,
V µθ (s) = r(s, µθ(s)) + γV µθ (s

′
)|s′=T (s,µθ(s))

. (3)

Taking the gradient of Eq. (3), we obtain

5sV µθ (s) =5s r(s, µθ(s))

+γ 5s T (s, µθ(s))5s′ V
µθ (s

′
)|s′=T (s,µθ(s))

.
(4)

Unrolling Eq. (4) with infinite steps, we get

5sV µθ (s) =
∞∑
t=0

γtg(s, t, µθ)5st r(st, µθ(st)), (5)

where g(s, t, µθ) =
∏t−1
i=05siT (si, µθ(si)), s0 = s and si is the state after i steps following policy µθ.

With the assumption A.1, we rewrite (5) by the indicator function I(s, s
′
, t, µθ) that indicates whether s

′

is obtained after t steps from the initial state s following the policy µθ:

5sV µθ (s) =
∞∑
t=0

∑
s′∈B(s,θ)

γtg(s, t, µθ)I(s, s
′
, t, µθ)

5s′ r(s
′
, µθ(s

′
)),

(6)

Where B(s, θ) is the set of states the policy visits from s.
We now prove that for any µθ, s, s

′
, the infinite sum of gradients,

∑∞
t=0 γ

tg(s, t, µθ)I(s, s
′
, t, µθ) converges.

For each state s′, there are three cases during the process from the initial state s with infinite steps:

1. Never visited:
∑∞
t=0 γ

tg(s, t, µθ)I(s, s
′
, t, µθ) = 0.

2. Visited once: Let ts′ denote the number of steps that it takes to reach the state s′, then
∑∞
t=0 γ

tg(s, t, µθ)I(s, s
′
, t, µθ) =

γts′ g(s, ts′ , µθ).

3. Visited infinite times: Let t1 denote the number of steps it takes to reach s′ for the first time. The state
s′ will be revisited every k steps after the previous visit. By definition,

∞∑
t=0

γtg(s, t, µθ)I(s, s
′
, t, µθ)

=

∞∑
a=0

γt1g(s, t1, µθ)A
a(s).

(7)

By the assumption A.2 we get (7) converges.
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Figure 1: State visitation density countour on InvertedPendulum-v2.

By exchanging the order of the limit and the summation,

5sV µθ (s) =
∑

s′∈B(s,θ)

∞∑
t=0

γtg(s, t, µθ)I(s, s
′
, t, µθ)

5s′ r(s
′
, µθ(s

′
)).

(8)

Assumption A.1 guarantees the existence of the stationary distribution of states theoretically. Actually,
it holds on most continuous tasks, e.g., InvertedPendulum-v2 in MuJoCo. We directly test a deterministic
policy with a 2-layer fully connected network on this environment with 10,000 episodes2, and we count the
number that each state is visited. After projecting the data into 2D space by t-SNE [22], we obtain the state
visitation density countour [40] as shown in Figure 3.1. We have two interesting findings: (1) The set of states
visited by the policy is finite. (2) Many states are visited for multiple times, which justifies Assumption A.1.

By the analysis of Assumption A.2, we get that for any policy and state, there exists a set of discount
factors such that the the gradient of the value function over the state exists, as illustrated in Corollary 1.
Please refer to Appendix A for the proof.

Corollary 1 For any policy µθ and any initial state s, let (s0, s1, ..., sk) denote the loop of states following
the policy and the state, C(s, µθ, k) =

∏k
i=0∇siT (si, µθ(si)), the gradient of the value function over the state,

∇sV µθ (s) exists if
γk+1 max {||C(s, µθ, k)||∞, ||C(s, µθ, k)||1} < 1.

In Theorem 2, we show that the deterministic value gradients exist and obtain the closed form based on
the analysis in Theorem 1. Please refer to Appendix B for the proof.

Theorem 2 (Deterministic Value Gradient Theorem) For any policy µθ and MDP with deterministic
state transitions, if assumptions A.1 and A.2 hold, the value gradients exist, and

∇θV µθ (s) =
∑

s′∈B(s,θ)

ρµθ (s, s′)∇θµθ(s′)
(
∇a′r(s′, a′) + γ∇a′T (s′, a′)∇s′′V

µθ (s
′′
)|s′′=T (s′,a′)

)
,

where a′ is the action the policy takes at state s′, ρµθ (s, s′) is the discounted state distribution starting from
the state s and the policy, and is defined as ρµθ (s, s′) =

∑∞
t=1 γ

t−1I(s, s′, t, µθ).

3.2 Deterministic value gradient algorithm
The value gradient methods estimate the gradient of value function recursively [6]:

∇θV µθ (s) =∇θr(s, µθ(s)) + γ∇θT (s, µθ(s))∇s′V µθ (s′) + γ∇θV µθ (s′) (9)

∇sV µθ (s) =∇sr(s, µθ(s)) + γ∇sT (s, µθ(s))∇s′V
µθ (s

′
)|s′=T (s,µθ(s))

. (10)

2We test different weights, the observation of finite visited states set is very common among different weights.
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In fact, there are two kinds of approaches for estimating the gradient of the value function over the state,
i.e., infinite and finite. On the one hand, directly estimating the gradient of the value function over the state
recursively by Eq. (10) for infinite times is slow to converge. On the other hand, estimating the gradient by
finite horizon like traditional value gradient methods [39, 25, 14] may cause large bias of the gradient.

We set out to estimate the action-value function denoted by Qw(s, a) with parameter w, and replace
∇sV µθ (s) by ∇sQw(s, µθ(s)) in Eq. (9). In this way, we can directly obtain a 1-step estimator of the value
gradients, G1(µθ, s) = ∇θr(s, µθ(s)) + γ∇θT (s, µθ(s))∇s1Qw(s1, µθ(s1)) + γG1(µθ, s1),

where s1 is the next state of s, which can be generalized to k(k ≥ 2) rollout steps. Let si denote the state
visited by the policy at the i-th step starting form the initial state s0, g(s, t, µθ, T ) =

∏t−1
i=1∇siT (si, µθ(si)).

We choose to rollout k − 1 steps to get rewards, then replace ∇skV µθ (sk) by ∇skQw(sk, µθ(sk)) in Eq. (10),
and we get

Lk(µθ, s, r, T ) =

k−1∑
t=1

γt−1g(s, t, µθ, T )∇str(st, µθ(st)) + γk−1g(s, k, µθ, T )∇skQw(sk, µθ(sk)).

Replacing ∇s′V µθ (s′) with Lk(µθ, s, r, T ) in Eq. (9), we get a k-step estimator of the value gradients:

Gk(µθ, s) = ∇θr(s, µθ(s)) + γ∇θT (s, µθ(s))Lk(µθ, s, r, T ) + γGk(µθ, s1). (11)

It is easy to see that Gk(µθ, s) and G1(µθ, s) are the same if we have the true reward and transition
functions, which is generally not the case as we need to learn the model in practical environments. Let
Dk(µθ, s, T

′, r′) denote the value gradient at the sampled state s with k rollout steps, on learned transition
function T ′ and reward function r′, which is defined as:

Dk(µθ, s, T
′, r′) = ∇θr′(s, µθ(s)) + γ∇θT ′(s, µθ(s))Lk(µθ, s, r′, T ′). (12)

Based on Eq.(12), we propose the deterministic value gradients with infinite horizon, where the algorithm is
shown in Algorithm 1: given n samples (sj , aj , rj , sj+1), for each choice of k, we use 1

n

∑
j Dk(µθ, sj , T

′, r′)
to update the current policy. We use sample-based methods to estimate the deterministic value gradients.
For each state in the trajectory, we take the analytic gradients by the learned model. As the model is not
given, we choose to predict the reward function and the transition function. We choose to use
experience replay to compare with the DDPG algorithm fairly. Different choices of the number of rollout
steps trade-off between the variance and the bias. Larger steps means lower variance of the value gradients,
and larger bias due to the accumulated model error.

Algorithm 1 The DVG(k) algorithm
1: Initialize the reward network r′, transition network T ′, critic network Q, actor network µθ, target networks Q′, µ′

θ

and experience replay buffer B
2: for episode= 0, ..., N − 1 do
3: for t = 1, ..., T do
4: Select action according to the current policy and exploration noise
5: Execute action at, observe reward rt and new state st+1, and store transition (st, at, rt, st+1) in B
6: Sample a random minibatch of n transitions from B
7: Update the critic Q by minimizing the TD error: 1

n

∑n
i (ri + γQ′(si+1, µθ(si+1))−Q(si, ai))

2

8: Update the reward network r′ and the transition network T ′ on the batch by minimizing the square loss
9: Estimate the value gradients by 1

n

∑
j Dk(µθ, sj , T

′, r′) and perform gradient update on the policy

10: Update the target networks by θQ
′
= τθQ + (1− τ)θQ

′
; θµ

′
= τθµ + (1− τ)θµ

′

11: end for
12: end for
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3.3 The difference between infinite and finite horizon
In this section, we discuss the advantage of our proposed DVG algorithm over finite horizon and validate the
effect on a continuous control task. The estimator of deterministic value gradients with finite horizon, DVGF,
is defined as [6]:

Fk(µθ, s) = ∇θr(s, µθ(s)) + γ∇θT (s, µθ(s))
k−1∑
t=1

γt−1g(s, t, µθ, T )∇str(st, µθ(st)) + γFk(µθ, s1).

Note that Fk(µθ, s) does not take rewards after the k-th step into consideration. Therefore, given n
samples {(sj , aj , rj , sj+1)}, DVGF uses the sample mean of D′k(µθ, s, T

′, r′) to update the policy, where
D′k(µθ, s, T

′, r′) is defined as:

D′k(µθ, s, T
′, r′) = ∇θr′(s, µθ(s)) + γ∇θT ′(s, µθ(s))

k−1∑
t=1

γt−1g(s, t, µθ, T
′)∇s′tr(s

′

t, µθ(s
′

t)).

We then test the two approaches on the environment HumanoidStandup-v2, where we choose the parameter
k to be 23. As shown in Figure 2(a), DVG significantly outperforms DVGF, which validates our claim that
only considering finite horizon fails to achieve the same performance as that of infinite horizon.
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(a) Return of DVG and DVGF.
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(b) Comparisons of DVG with DDPG.

Figure 2: Justification of DVG.

3.4 Connection and comparison of DVG and DDPG
By the proof of the DPG theorem in [29], Eq. (9) can be re-written as ∇θV µθ(s) = ∇θµθ(s)∇aQµθ(s, a) +
γ∇θV µθ(s1). The DDPG algorithm uses the gradient of the estimator of the Q function over the action,
∇aQw(s, a) to estimate ∇aQµθ(s, a), i.e., G0(µθ, s) = ∇θµθ(s)∇aQw(s, a) + γG0(µθ, s1). The DDPG algo-
rithm is a model-free algorithm which does not predict the reward and the transition, and can be viewed
as the DVG(0) algorithm. We compare the DVG algorithm with different rollout steps k and DDPG on
a continuous control task in MuJoCo, Hopper-v2. From Figure 2(b), we get that DVG with any choice of
the number of rollout steps is more sample efficient than DDPG, which validates the power of model-based
techniques. DVG(1) outperforms DDPG and DVG with other number of rollout steps in terms of performance
as it trades off well between the bias and the variance of the value gradients. Note that with a larger number
of step, DVG(5) is not stable due to the propagated model error.

3For the choice of k, we test DVGF with steps ranging from 1 to 5, and we choose the parameter with the best performance
for fair comparison.
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4 The DVPG Algorithm
As discussed before, the model-based DVG algorithm are more sample efficient than the model-free DDPG
algorithm. However, it suffers from the model bias which results in performance loss. In this section, we
consider to ensemble these different gradient estimators for better performance.

Motivated by the idea of TD(λ) algorithm [32], which ensembles the TD(k) error with a geometric
decaying weight λ, we propose a temporal-difference method to ensemble DVG with varying rollout steps
and the model-free deterministic policy gradients. We defined the temporal difference deterministic value
gradients as Gλ,t(µθ, s) = (1− λ)

∑t
k=0 λ

kGk(µθ, s), where t denotes the maximal number of rollout steps
by the learned model. For the gradient update rule, we also apply sample based methods: given n samples
{(sj , aj , rj , sj+1)}, we use

1

n

∑
j

((1− λ)∇θµθ(sj)∇aQw(sj , a) + (1− λ)
t∑

k=1

λkDk(µθ, sj , T
′, r′)) (13)

to update the policy. Based on this ensembled deterministic value-policy gradients, we propose the determin-
istic value-policy gradient algorithm, shown in Algorithm 2 4.

Algorithm 2 The DVPG algorithm
1: Initialize the weight λ and the number of maximal steps t
2: Initialize the reward network r′, transition network T ′, critic network Q, actor network µθ, target networks Q′, µ′

θ

and experience replay buffer B
3: for episode= 0, ..., N − 1 do
4: for t = 1, ..., T do
5: Select action according to the current policy and exploration noise
6: Execute action at, observe reward rt and new state st+1, and store transition (st, at, rt, st+1) in B
7: Sample a random minibatch of n transitions from B
8: Update the critic Q by minimizing the TD error: 1

n

∑n
i (ri + γQ′(si+1, µθ(si+1))−Q(si, ai))

2

9: Update the reward network r′ and the transition network T ′ on the batch by minimizing the square loss
10: Estimate the value gradients by Eq. (13), and perform gradient update on the policy

11: Update the target networks by θQ
′
= τθQ + (1− τ)θQ

′
; θµ

′
= τθµ + (1− τ)θµ

′

12: end for
13: end for

5 Experimental Results
We design a series of experiments to evaluate DVG and DVPG. We investigate the following aspects:
(1) What is the effect of the discount factor on DVG? (2) How sensitive is DVPG to the hyper-parameters?
(3) How does DVPG compare with state-of-the-art methods?

We evaluate DVPG in a number of continuous control benchmark tasks in OpenAI Gym [1] based on
the MuJoCo [35] simulator. The implementation details are referred to Appendix C. We compare DVPG
with DDPG, DVG, DDPG with imagination rollouts (DDPG(model)), and SVG with 1 step rollout and
experience replay (SVG(1)) in the text. We also compare DVPG with methods using stochastic policies, e.g.
ACKTR, TRPO, in Appendix D. We plot the averaged rewards of episodes over 5 different random seeds
with the number of real samples, and the shade region represents the 75% confidence interval. We choose the
same hyperparameters of the actor and critic network for all algorithms. The prediction models of DVPG,
DVG and DDPG(model) are the same.

4The only difference between the DVG(k) algorithm and the DVPG algorithm is the update rule of the policy.
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5.1 The effect of discount factors on DVG
From Eq. (10), we get that ∇sV µθ (s) is equivalent to the infinite sum of the gradient vectors. To study the
effect of the discount factor on DVG, we train the algorithm with 2 rollout steps with different values of the
discount factor on the environment InvertedPendulum-v2. As shown in Figure 3(a), 0.95 performs the best in
terms of rewards and stability while 0.85 and 0.99 performs comparably, while the performance of 0.8 and
0.6 are inferior to other values. This is because the convergence of the computation of the gradient of the
value function over the state may be slow if the discount factor is close to 1 while a smaller value of γ may
enable better convergence of ∇sV µθ(s). However, the sum of rewards discounted by a too small γ will be
too myopic, and fails to perform good. Here, 0.95 trades-off well between the stability and the performance,
which is as expected that there exists an optimal intermediate value for the discount factor.

5.2 Ablation study of DVPG
We evaluate the effect of the weight of bootstrapping on DVPG with different values from 0.1 to 0.9, where
the number of rollout steps is set to be 4. From Figure 3(b), we get that the performance of the DVPG
decreases with the increase of the value λ, where 0.1 performs the best in terms of the sample efficiency and
the performance. Thus, we choose the value of the weight to be 0.1 in all experiments.

We evaluate the effect of the number of rollout steps ranging from 1 to 5. Results in Figure 3(c) show that
DVPG with different number of rollout steps all succeed to learn a good policy, with 1 rollout step performing
the best. Indeed, the number of rollout steps trade off between the model-error and the variance. There is an
optimal value of the number of rollout steps for each environment, which is the only one parameter we tune.
To summarize, for the number of look steps, 1 rollout step works the best on Humanoid-v2, Swimmer-v2 and
HalfCheetah-v2, while 2 rollout steps performs the best on HumanoidStandup-v2, Hopper-v2 and Ant-v2. For
fair comparisons, we choose the same number of rollout steps for both the DVG and the DVPG algorithm.

5.3 Performance comparisons
In this section we compare DVPG with the model-free baseline DDPG, and model-based baselines including
DVG, DDPG(model) and SVG(1) on several continuous control tasks on MuJoCo. As shown in Figure 4,
there are two classes of comparisons.

Firstly, we compare DVPG with DDPG and DVG to validate the effect of the temporal difference technique
to ensemble model-based and model-free deterministic value gradients. The DVG algorithm is the most
sample efficient than other algorithms in environments HumanoidStandup-v2, and Hopper-v2. For sample
efficiency, DVPG outperforms DDPG as it trades off between the model-based deterministic value gradients
and the model-free deterministic policy gradients. In the end of the training, the DVPG outperforms other
two algorithms significantly, which demonstrates the power of the temporal difference technique. In other four
environments, DVPG outperforms other algorithms in terms of both sample efficiency and the performance.
The performance of DVG and DDPG on Swimmer-v2 and Ant-v2 are comparable, while DVG performs bad
in Halfcheetah-v2 and Humanoid-v2 due to the model-error.

Secondly, we compare DVPG with SVG(1) and DDPG with imagination rollouts. Results show that the
DVPG algorithm significantly outperforms these two model-based algorithms in terms of sample efficiency and
performance, especially in environments where other model-based algorithms do not get better performance
than the model-free DDPG algorithm. For the performance of the SVG(1) algorithm, it fails to learn good
policies in Ant-v2, which is also reported in [17].

6 Conclusion
Due to high sample complexity of the model-free DDPG algorithm and high bias of the deterministic value
gradients with finite horizon, we study the deterministic value gradients with infinite horizon. We prove
the existence of the deterministic value gradients for a certain set of discount factors in this infinite setting.
Based on this theoretical guarantee, we propose the DVG algorithm with different rollout steps by the model.
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Figure 4: Performance comparisons on environments from the MuJoCo simulator.

We then propose a temporal difference method to ensemble deterministic value gradients and deterministic
policy gradients, to trade off between the bias due to the model error and the variance of the model-free
policy gradients, called the DVPG algorithm. We compare DVPG on several continuous control benchmarks.
Results show that DVPG substantially outperforms other baselines in terms of convergence and performance.
For future work, it is promising to apply the temporal difference technique presented in this paper to other
model-free algorithms and combine with other model-based techniques.
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A Proof of Corollary 1
Corollary 1 For any policy µθ and any initial state s, let (s0, s1, ..., sk) denote the loop of states following
the policy and the state, let C(s, µθ, k) =

∏k
i=0∇siT (si, µθ(si)), the gradient of the value function over the

state, ∇sV µθ (s) exists if

γk+1 max {||C(s, µθ, k)||∞, ||C(s, µθ, k)||1} < 1. (14)

Proof 2 By the definition of A(s), we get

max {||A(s)||∞, ||A(s)||1} < 1. (15)

Then by [7], the absolute value of any eigenvalue of A(s) is strictly less than 1. By representing A(s) with
Jordan normal form, i.e., A(s) =MJM−1,

∞∑
m=0

Am(s) =M

∞∑
m=0

JmM−1. (16)

As the absolute value of any eigenvalue of A(s) is strictly less than 1,
∑∞
m=0 J

m converges, then∑∞
m=0A

m(s) converges. By Lemma 1, ∇sV µθ (s) converges.

B Proof of Theorem 2
Theorem 2 For any policy µθ and MDP with deterministic state transitions, if assumptions A.1 and A.2
hold, the value gradients exist, and

∇θV µθ (s) =
∑

s′∈B(s,θ)

ρµθ (s, s′)∇θµθ(s′)(∇a′r(s′, a′) + γ

∇a′T (s′, a′)∇s′′V
µθ (s

′′
)|s′′=T (s′,a′),a′=µθ(s′)

),

(17)

where ρµθ (s, s′) is the discounted state distribution starting from the state s and the policy, and is defined as
ρµθ (s, s′) =

∑∞
t=1 γ

t−1I(s, s
′
, t, µθ).

13



Proof 3 By definition,

∇θV µθ (s)
=∇θQµθ (s, µθ(s))

=∇θ(r(s, µθ(s)) + γV µθ (s
′
)|s′=T (s,µθ(s))

)

=∇θµθ(s)∇ar(s, a)|a=µθ(s) + γ∇θV µθ (s
′
)|s′=T (s,µθ(s))

+γ∇θµθ(s)∇aT (s, a)|a=µθ(s)∇s′V
µθ (s

′
)|s′=T (s,a).

(18)

With the indicator function I(s, s
′
, t, µθ), we rewrite the equation (18):

∇θV µθ (s)
=∇θµθ(s)(∇ar(s, a)|a=µθ(s)
+ γ∇aT (s, a)|a=µθ(s)∇s′V

µθ (s
′
)|s′=T (s,a))

+
∑
s′

γI(s, s
′
, 1, µθ)∇θV µθ (s

′
)

=∇θµθ(s)(∇ar(s, a)|a=µθ(s)
+ γ∇aT (s, a)|a=µθ(s)∇s′V

µθ (s
′
)|s′=T (s,a))

+
∑
s′

γI(s, s
′
, 1, µθ)∇θµθ(s

′
)(∇a′ r(s

′
, a

′
)|a′=µθ(s′ )

+ γ∇a′T (s
′
, a

′
)|a′=µθ(s′ )∇s′′V

µθ (s
′′
)|s′′=T (s′ ,a′ ))ds

′

+
∑
s′

γI(s, s
′
, 1, µθ)

∑
s′′

γI(s
′
, s

′′
, 1, µθ)∇θV µθ (s

′′
)

=∇θµθ(s)(∇ar(s, a)|a=µθ(s)
+ γ∇aT (s, a)|a=µθ(s)∇s′V

µθ (s
′
)|s′=T (s,a))

+
∑
s′

γI(s, s
′
, 1, µθ)∇θµθ(s

′
)(∇a′ r(s

′
, a

′
)|a′=µθ(s′ )

+ γ∇a′T (s
′
, a

′
)|a′=µθ(s′ )∇s′′V

µθ (s
′′
)|s′′=T (s′ ,a′ ))ds

′

+
∑
s′′

γ2I(s, s
′′
, 2, µθ)∇θV µθ (s

′′
)ds

′′
.

(19)

By unrolling (19) with infinite steps, we get (17).

C Implementation Details
In this section we describe the details of the implementation of DVPG, DVG, DDPG and DDPG(model).
The configuration of the actor network and the critic network is the same as the implementation of OpenAI
Baselines. For the reward network, we use the same network structure. Each network has two fully connected
layers, where each layer has 64 units. The activation function is ReLU, the batch size is 128, the learning rate
of the actor is 10−4, and the learning rate of the critic is 10−3. The learning rates of the transition network
and the reward network are all 10−3. We also add L2 norm regularizer to the loss.

For the reward network, the loss is ∑n
j=1(r(sj , aj |θr)− rj)2

n
. (20)
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For the transition network, the loss is ∑
j ||T (sj , aj |θT )− sj+1||22

n
. (21)

We also compare with DDPG with model-based rollouts, i.e., besides the training of the policy on real
samples, the actor is also updated by model generated samples. The detail of DDPG(model) is referred to
Algorithm 3.

Algorithm 3 The DDPG with model-based rollouts algorithm
1: Initialize the reward network r′, transition network T ′, critic network Q, actor network µθ and target networks Q′,
µ′
θ

2: Initialize experience replay buffer B and model-based experience replay bufferMB
3: for episode= 0, ..., N − 1 do
4: for t = 1, ..., T do
5: Select action according to the current policy and exploration noise
6: Execute action at, observe reward rt and new state st+1, and store transition (st, at, rt, st+1) in B
7: Sample a random minibatch of n transitions from B
8: Update the critic Q by minimizing the TD error:

1

n

n∑
i

(ri + γQ′(si+1, µθ(si+1))−Q(si, ai))
2

9: Update the reward network r′ and the transition network T ′ on the batch by minimizing the square loss
10: Estimate the policy gradients by

n∑
i=1

∇θµθ(si)∇a′iQ
µθ (si, a

′
i)|a′i=µθ(si)

n
. (22)

11: Perform model-free gradients update on the policy
12: Update the target networks
13: end for
14: Generate K samples by the policy and the learned transitions, and store fictitious samples inMB
15: for t = 1, ..., a do
16: Sample a random minibatch of n transitions fromMB
17: Estimate the policy gradients on fictitious samples
18: Perform model-based gradients update on the policy
19: end for
20: Reset the model-based bufferMB to be empty
21: end for

For the running time of the DVPG algorithm, it takes about 4 hours for running 1M steps.
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D Comparisons with start of the art stochastic policy optimization
methods
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(c) HalfCheetah-v2.
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(d) HumanoidStandup-v2.
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Figure 5: Return/steps of training on environments from the MuJoCo simulator.

We compare the DVPG algorithm and the DDPG algorithm with state of the art stochastic policy optimization
algorithms, TRPO and ACKTR. As shown in Figure 5, results show that DVPG performs much better
than DDPG and other algorithms in the environments where DDPG is more sample efficient than policy
optimization algorithms. DVPG also outperforms other baselines significantly in Swimmer-v2 where DDPG
is outperformed by TRPO.
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