
AN APPROXIMATION ALGORITHM FOR WORD-REPLACEMENT USING A BI-GRAM
LANGUAGE MODEL

Jing He Hongyu Liang

Tsinghua University
Institute for Theoretical Computer Science

Beijing, China

ABSTRACT
This paper presents an approximation algorithm for word-
replacement under a bi-gram language model. Words replace-
ment is an key step in the decoding part of statistical machine
translation. However, the word or phrase replacement step is
often done at the same time with the target language gener-
ating process in machine translation while our algorithm fo-
cus on the special replacement model without the target lan-
guage generating process. We firstly make a reduction from
the famous NP-Complete problem Hamiltonian Path Prob-
lem to the word-replacement problem. Then we apply the
approximation algorithm for Hamiltonian Path on the word-
replacement problem, which gives us a good performance in
the designed experiment.

Index Terms— word-replacement, statistical machine
translation, NP-hard, Hamiltonian Path Problem, approxima-
tion algorithm

1. INTRODUCTION

Statistical method is widely used in natural language pro-
cessing such as machine translation and part-of-speech tag-
ging. The most usually used model in statistical machine
translation is the source-channel model that is built by Brown
et al.(1993)[1]. They assumed that in translation between
English and French, English strings are generated according
to some stochastic process and then transformed stochasti-
cally into French strings. Thus to translate French to En-
glish, it’s needed to search for an English source string that
is mostly likely according to the English language model[7]
and the channel model. This kind of translation is called de-
coding. And usually a decoding process in statistical machine
translation is combined by two sub-process[2][6]: generating
the words or phrases of the target language and deciding the
right order of the words or phrases to get a right target lan-
guage sentence. For some language pairs, such as English and
Japanese, the word-replacing problem is really hard to solve

This work was supported in part by the National Natural Science Foun-
dation of China Grant 60553001, and the National Basic Research Program
of China Grant 2007CB807900,2007CB807901.

as the target word order differs significantly from the source
word order and we get little information about the target word
order from the source sentence.

Follow the result by Kevin[4] who studied the decoding
complexity in word-replacement, this paper focuses on the
word-replacement sub-process in machine translation with
the source language model. We assume that the words of the
target language is generated. However, as the grammar is
totally different of the two languages(for example, English
and Japanese), we need to replace all target words. We prove
that in bi-gram language model[7], the problem is NP-hard
using a reduction from the famous NP-complete problem[3]
Hamiltonian Path Problem. And then we apply an approxi-
mation algorithm for finding out the solution of Hamiltonian
Path Problem to our model and get a considerably good result
from the data set of 704 scrambling English sentences(from
http://www.nlp.org.cn).

Although, our experiment is done on the word-based re-
placement of a English sentence, however, our reduction and
solving method can also be applied in the statistical machine
translation whose working unit is phrase[6] if we replace the
word ”words” by ”phrases” in our model description, reduc-
tion proof and algorithm process.

2. THE WORD-REPLACEMENT MODEL
DESCRIPTION

In a word-replacement model, we have some (English) words
together with a bi-gram source model which figures the de-
pendency of the occurrence of words. Then, given any disor-
dered sentence, we rearrange the words to meet the bi-gram
source mode best so that we can approximately reconstruct
the original sentence. In a more theoretical sense, we can for-
malize this idea into a search problem as follows.

Word Replacement Problem
Input:

1. A set of k words U = {wi | 1 ≤ i ≤ k}.
2. A bi-gram source model with k2 + k parameters:

lm(wi | wj), 1 ≤ i, j ≤ n;

lm(wi | boundary), 1 ≤ i ≤ k.

27

978-1-4244-5076-3/09/$26.00 ©2009 IEEE

3. A set of words S ⊆ U without any order.

Output: An ordered tuple T = (si1 , si2 , . . . , sin
) such that

1. (i1, i2, . . . , in) is a permutation of {1, 2, . . . , n}.
2. The value

P (T) = lm(w1 | boundary) ·
n∏

i=2

lm(wi | wi−1)

achieves its maximum.

3. REDUCTION

We reduce the Hamiltonian Path Problem to the Word Re-
placement Problem[4]. It is well known that the search ver-
sion of the former problem is NP-hard[3].

Hamiltonian Path Problem (Search version)
Input:

1. A directed graph G = (V,E).

2. A weight function f : E → R

Output: A Hamiltonian path with minimum weight, where
the weight of a path is defined as the sum of weights of all the
edges in that path.

Now we describe the reduction. Given a digraph G =
(V,E) where V = {v1, . . . , vn}, and a weight function f , we
construct a set of n words U = {w1, . . . , wn} together with
the bi-gram source model as follows:

1. ∀1 ≤ i ≤ n, lm(wi | boundary) = 1.

2. ∀1 ≤ i, j ≤ n, lm(wi |wj) = 2−f((wj ,wi)).

Let the disordered set S be U itself. Now, we have con-
structed an instance of Word Replacement Problem. It suffices
to show that if a sentence T = (wi1 , . . . , wik

) achieves the
maximum probability according to our previous definition,
then the corresponding Hamiltonian path p = (vi1 , . . . , vin

)
has the minimum weight. Note that

P (T) = lm(wi1 | boundary) ·
n∏

i=2

lm(wij | wij−1)

=
n∏

i=2

2−f((wij−1 ,wij
))

= 2−
Pn

j=2 f((vij−1 ,vij
))

= 2−f(p)

So it follows straightforwardly from the fact that f(x) =
2−x is monotone decreasing. We have proved that the Word
Replacement Problem is NP-hard.

Fig 1: The idea of reduction

4. THE REPETITIVE NEAREST NEIGHBOR
ALGORITHM FOR OUR PROBLEM

To search for the minimum Hamiltonian path, we can apply
the exhaustive search algorithm that requires O(k2n!) time,
where k is total number of the English words and n the size
of the graph constructed by the reduction. The complexity
to find out the correct order grows exponentially. Due to our
experimental result, when the number of words in a sentences
is larger than 10, the running time of the program to search
for a best ordered sentence is totally intolerable.

We introduce the repetitive nearest neighbor algorithm
into our program to efficiently search for a ”nearly-optimal”,
or an approximating solution. There are counter-examples
showing that the algorithm is not necessarily optimal.

4.1. The nearest neighbor algorithm

The nearest neighbor algorithm runs as follows: 1. Start from

Fig 2: The nearest neighbor algorithm

a certain vertex.
2. Whenever you are at a vertex, pick the nearest unvisited
vertex that is a neighbor of the current vertex. In case of a tie,

28

randomly pick one.
3. When all the vertex are visited, return the total path weight.
In figure(2), we start from A, pick E that is nearest to A, pick
D that is nearest to E, and then follows by B and C. The ap-
proximate path is marked with the boldface.

Algorithm 1 The Nearest Neighbor Algorithm
1: Input: start point i, current path p
2: CurrentPoint← i
3: set i to be visited
4: max← −100000 (just a sufficiently large value)
5: for j = 1 to n do
6: if j is unvisited AND the edge (i, j) is contained in G

AND max < weight(i, j) then
7: CurrentPoint← j
8: max← weight(i, j)
9: end if

10: end for
11: set j to be visited
12: p← p ∪ (i, CurrentPoint)
13: if all nodes have been visited then
14: return p
15: else
16: i← CurrentPoint
17: Recursively run the algorithm with input (i, p).
18: end if

4.2. The repetitive nearest neighbor algorithm

The repetitive nearest neighbor algorithm starts from every
node of the graph and applies the nearest neighbor algorithm.
And then return the best of all the hamiltonian path starting
differently as follows:

Algorithm 2 The Repetitive Nearest Neighbor Algorithm
1: max← −10000000 (a sufficiently small number)
2: maxPath← ∅
3: for i = 1 to n do
4: Apply the Nearest Neighbor Algorithm with in-

put (i, ∅) to get a result p
5: if max < weight(p) then
6: maxPath← p
7: max← weight(p)
8: end if
9: end for

10: return maxPath

5. EXPERIMENT

5.1. The bi-gram language model training

In order to build a reasonable bi-gram language model[7] to
complete the experiment, we download the 3rd version of the
Europarl corpus[5] which is extracted from the proceedings
of the European Parliament. This data set is usually used as a

base material in statistical machine translation contest or other
research projects involved European language. And the En-
glish part is used to train an bi-gram English language model.
There are about 0.307 million English sentences in the ma-
terial. Thus the bi-gram language model built by SRILM[8]
can reflect the properties of the English language.

5.2. The re-ordering experiment

How to test the accuracy of the algorithm is an key problem in
our research as we have no standard database to test the accu-
racy. The replacement of words in sentences is a subprocess
in statistical machine translation, especially in the decoding
step. However, all the existing testing method and standard
are designed to meet the test of the accuracy of the translation
result but not the single subprocess of words replacement.

Thus, we designed a testing principle and method for our
own purpose. First, we choose 704 English sentences from
the data set of 1500 English-Chinese sentence pairs(from
http://www.nlp.org.cn) as the standard answer as all the sen-
tences make sense. Then, we randomly generate a words
permutation to transfer the original sentences to the scram-
bling ones. For example, the original sentences is ”sometimes
you are overly frank” that has 5 words. We generate a per-
mutation of length 5 {1 3 2 5 4} to get a scrambling new
sentence ”sometimes are you frank overly” while the first one
is used as an standard answer.

To test the distance between our answer and the standard
sentence seems to be the same problem of determining the
distance between two ordered array, while the inversion pairs
that is used to measure the distance between two ordered array
is brought into our experiments.
A pair of integers (i,j) is an inversion pair of some permutation
σ

if i < j but σ(i) > σ(j) (1)

For instance, from the correct sentence is ”sometimes you
are overly frank” we get a total order of the words that ”some-
times” = 1, ”you” = 2, ”are” = 3, ”overly” = 4, ”frank” = 5.
The output sentence by our program is ”sometimes you are
frank overly” = {1 2 3 5 4} which has only one inversion pair
(5,4).

On this way we can calculate the number of inversion
pairs to measure the degree of disordering. By comparing the
number of inversion pairs in the randomly scrambling sen-
tences and the partially ordered sentences by our algorithm,
we can see the effect of words replacement.

By contrast, we both test the approximate algorithm and
the non-efficiency exhaustive search Hamiltonian algorithm
to get an exact sentences with the maximum language model
score.

The result of the two algorithms are listed in the table. To
illustrated the result of our experiments, we randomly picked
15 sentences to illustrate the result of our approximate algo-
rithm. The chart below shows the number of inversion pairs in

29

Table 1: Inversion pairs drop

the randomly disordered sentences pairs and the output sen-
tences of the approximately minimum Hamiltonian path. By
our reduction, along the points in the minimum Hamiltonian
path we can reconstruct the sentence with a maximum lan-
guage model score.

Fig 3: Approximate algorithm
(the number of inversion pairs in contrast)

The non-efficiency exhaustive search Hamiltonian algo-
rithm performs better as the chart shown below

Fig 4: Exact algorithm
(the number of inversion pairs in contrast)

The exact algorithm performs better than the approximate
algorithm, as it searches for the maximum Hamiltonian path.

We also randomly choose some example sentences to
show the words replacement result.

6. CONCLUSIONS

In this paper, we study the problem of word replacement in
decoding process in statistical machines translation. We im-
plement the existing approximate algorithm for Hamiltonian
path under the model and after experiment, the algorithm is
proved to be reasonable and performs well in re-ordering the
words to form a logical sentences.

However, the language model we used is bi-gram model.
Which is more easier than the popular tri-gram model that
better evaluate the sentence itself. In future, we want to ap-
ply the tri-gram model into the words replacement sentences.
What’s more, our algorithm and experiments are done inde-
pendently from the decoding process, such as the target lan-
guage words or phrases generating. We are about to combined

Table 2: Examples

the two part: predicting the collection of words and deciding
the correct order of the target sentences together to design and
test new decoding algorithms.

7. REFERENCES

[1] Peter F. Brown, Stephen Della-Pietra, Vincent Della-
Pietra, and Robert Mercer “The mathematics of statistical
machine translation: Parameter estimation,” in Computa-
tional Linguistics. 19(2): 263-311, 1993.

[2] Pi-Chuan Chang, Kristina Toutanova, “A Discriminative
Syntactic Word Order Model for Machine Translation,”
in Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics. pp. 9-16, Prague,
Czech Republic, June 2007.

[3] Richard M. Karp, “Reducibility Among Combinatorial
Problems,” in Complexity of Computer Computations.
pp. 85-103, New York: Plenum, 1972.

[4] Kevin Knight, “Decoding Complexity in Word-
Replacement Translation Models,” in Computational
Linguistics. 25(4): 607-615, 1999.

[5] Phukuoo Koehn, “Europarl: A Parallel Corpus for Statis-
tical Machine Translation,” MT Summit, 2005.

[6] Philipp Koehn, Franz Josef Och, and Daniel Marcu 2003.
“Statistical Phrases-Based Translation,” HLT/NAACL,
2003.

[7] J M. Ponte and W B. Croft, “A Language Model Ap-
proach to Information retrieval,” Research and Develop-
ment in Information Retrieval: 275-281, 1998.

[8] Andreas Stolcks, “SRILM – An Extensible Language
Modeling Toolkit,” in Proceedings of the International
Conference on Spoken Language Processing. vol. 2, pp.
901-904, Denver, 2002.

30

