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Abstract
The success of Bitcoin and Ethereum has attracted many
efforts to build high-throughput blockchain systems. This
paper focuses on transaction dissemination — a rather over-
looked issue in these systems. We argue that efficient trans-
action dissemination is the key for a blockchain system to
sustain at high-throughput — usually thousands of transac-
tions per second — and the existing solutions fell short at
doing so.
This paper presents Shrec, a novel transaction relay pro-

tocol for high-throughput blockchain systems built around
a hybrid transaction hashing scheme that has a low hash
collision rate, is resilient to collision attacks, and is fast to
construct. Our experiments demonstrate that when propa-
gating transactions, Shrec utilizes network efficiently: com-
pared to alternative designs, Shrec reduces the bandwidth
consumption by 60% at modest CPU overhead and improves
the system throughput by up to 90%.
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1 Introduction
Originated from Bitcoin [42], blockchain powers distributed
transaction ledgers at Internet scale and has evolved to fuel
innovations in industries like financial systems, supply chains,
and health care [16, 17, 26]. To guarantee the security under
adversarial conditions in decentralized public environments,
blockchain systems with classical Nakamoto Consensus like
Bitcoin and Ethereum [1] have very limited throughput, e.g.,
7∼30 transactions per second (TPS), by applying low block-
generation rate or small block size restrictively.

To overcome the throughput bottleneck of Nakamoto Con-
sensus, many consensus protocols have been proposed in
recent years [5, 22, 24, 28, 29, 32–34, 38, 41, 46, 47, 51, 52,
56, 57]. These protocols explore alternative structures to or-
ganize blocks [5, 22, 33, 34, 46, 51, 52, 57], use Byzantine
Fault Tolerant to fully or partially replace Nakamoto Con-
sensus [24, 28, 38, 41, 47], or even partition the blockchain
state into multiple shards [29, 32, 56]. For example, both
Conflux [34] and OHIE [57] are able to process more than
5000 TPS, several orders of magnitudes faster than the origi-
nal Nakamoto Consensus. Such high consensus throughput
imposes a challenging but largely ignored requirement on
the peer-to-peer network: given the average size of a typical
Bitcoin transaction, ∼ 300 bytes, a consensus throughput of
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5000 TPS requires at least 10 Mbps network bandwidth for
transaction dissemination. Under 20 Mbps per-node avail-
able bandwidth configuration (which is the typical setup of
commodity public network links), there is little room left for
other protocol messages.
Disseminating transactions across the entire blockchain

network in a timely manner is crucial to the confirmation
latency of blockchain systems. In order for a transaction T
to be accepted by such systems, its author must broadcast
(or disseminate) the transaction to a group of participating
nodes via the peer-to-peer network and wait for one of them
to generate a valid block B containing T . The node which
generates B (the miner) will then broadcast the block across
the network, hoping that other nodes will accept B based
on the consensus protocol. If B is indeed accepted, all of
its transactions, including T , are confirmed. Because each
node generates block independently and probabilistically,
the more nodes a transaction reaches, the faster it will be
packed in a confirmed block. Although some sharding tech-
niques [56] limit the spread of transactions within each shard,
such systems sacrifice the security guarantee since the state
produced by execution of a transaction can only be verified
by the nodes in the same single shard.

Perhaps the most straightforward approach to propagate
transactions within a peer-to-peer network is by flooding,
i.e., every transaction received by a participating node is
transmitted to all of its neighbors. Because each node is
unaware of which transactions its neighbors have already
received, this naive approach leads to significant redundancy
rate in transactions each node receives, causing poor net-
work utilization. Bitcoin optimizes the network efficiency
via transaction announcements. A transaction announcement
(or digest) is an approximate representation of a set of trans-
actions. Instead of broadcasting transactions, each node in
Bitcoin only announces the digest of all the transactions it
is aware of. A node X will request a transaction T from its
neighbor Y if and only ifX does not knowT andT is present
in the digest sent from Y to X . Without false positives, using
transaction announcements completely eliminates redun-
dant transaction transmission.

However, recent work [43] has shown that disseminating
transaction digests could be expensive. In fact, in today’s Bit-
coin network, they have taken up 30-50% of the traffic. This
leads us to somewhat contradictory requirements upon the
digest design. On the one hand, the blockchain systems ben-
efit from long digests for low false-positive rate; on the other
hand, digests need to be extremely compact to save band-
width. Moreover, given our targeted transaction throughput,
these digests must also be fast to compute. Last but not least,
recent attacks on transaction censoring [8, 20, 50] renders
the necessity of robustness against collision attacks.

In this paper, we present the design, theoretical analysis,
and empirical evaluation of Shrec, a novel transaction re-
lay protocol for high-throughput blockchain systems. Shrec
encodes each transaction by using only 4 bytes. It adopts
a hybrid hashing scheme to reduce the false positive rate
and defend against collision attacks. We implemented Shrec
in Conflux, and our evaluation shows that compared to al-
ternative designs, Shrec uses up to 60% less bandwidth to
propagate transactions; Shrec improves the system through-
put by up to 90%.

2 Background and Problem Statement
Blockchain systems. Bitcoin [42] and Ethereum [1] are
the two prominent and representative peer-to-peer public
blockchain systems that account for over 70% of the total
market capitalization of cryptocurrencies. They both employ
Nakamoto Consensus, and apply low block-generation rate
(10 minutes an 1MB block in Bitcoin) or small block size (a
block about 100KB per 15 seconds in average in Ethereum) to
guarantee the security in decentralized public environments.
This leads to a very limited throughput of about 7∼30 TPS
that they can only achieve.
In these systems, nodes are connected and communicate

through a peer-to-peer gossip network where the block and
transaction-related information are disseminated. Specifi-
cally, each node can initiate several outgoing connections
and accept a number of incoming connections. The number
of both the outgoing and the incoming connections are lim-
ited through configurations. For example, a typical Bitcoin
node can have up to 8 outgoing connections and 117 incom-
ing connections [25], while an Ethereum node may have up
to 13 outgoing connections and up to 26 total peers [36].
Prior work [6, 14] has shown that the security of the sys-
tems depends on adequate network connectivity and rec-
ommended increasing the number of connections between
nodes to make the network more robust.
Flooding. In current Bitcoin and Ethereum implementa-
tion, transactions are disseminated among nodes using vari-
ations of flooding. Flooding is a protocol where each node
announces every transaction it receives to each of its peers.
Announcements can be sent on either inbound and outbound
connections. In Bitcoin, when a node receives a transaction,
it advertises the transaction to all of its peers except for the
node that sent the transaction in the first place and other
nodes from which it already received an advertisement. A
node injects a random delay before advertising a received
transaction to its peers, which helps reduce the probability of
in-flight collisions, i.e., two nodes simultaneously announce
the same transaction between them. To advertise a trans-
action, a node sends a hash of the transaction within an
inventory, or INV message. If a node hears about a transac-
tion hash for the first time, it will request the full transaction
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by sending a GETDATA message to the node that sent it the
INV message. The transaction hash is typically a big integer
with 32 bytes whose conflict rate is extremely low and neg-
ligible. In contrast, in Ethereum, a node floods the original
transaction rather than the hash to a fraction of its peers,
and maintains the information about which transaction has
already been sent for each peer.
Flooding is very inefficient since it introduces a lot of re-

dundant transaction announcements. To see how significant
this overhead can be on the network bandwidth consumption,
let us first consider the case in Bitcoin. Assuming each node
only maintains 8 peers and announces transactions through
all its peers. Even if each announcement only contains a
32-byte transaction hash, the total size of announcements
that will be propagated for each transaction is 32×8, i.e., 256
bytes. This is already similar to the size of a typical Bitcoin
transaction. Ideally and optimally, each node should only
receive each transaction exactly once without receiving any
other auxiliary information. That is, the transaction hash
announcements use almost the same network traffic needed
for effective transaction dissemination which may take a sig-
nificant portion of the overall system traffic. Some empirical
study [43] shows that transaction announcements account
for 30–50% of the overall Bitcoin traffic. In Ethereum, this
situation can be even worse, since a node floods the whole
transaction instead of its hash value.
Erlay. Erlay [43] tried to mitigate the bandwidth consump-
tion issues of flooding-based transaction dissemination pro-
tocol in Bitcoin. It combines a low-fanout flooding and a
set reconciliation mechanism. This is essentially a concrete
extension and application of the similar idea of epidemic algo-
rithms [18]. In the low-fanout flooding, each node announces
transactions only to a small subset of its peers. This reduces
the bandwidth consumption of transaction announcements
in flooding accordingly. To ensure all transactions reaching
the entire network, in the set reconciliation, nodes periodi-
cally conduct an interactive protocol with peers to discover
transaction announcements that were missed and request
missing transactions. The set reconciliation in Erlay employs
PinSketch algorithm [19] to encode a local transaction set
of each node for each one of its peers. The set consists of
short ids of transactions that the node has not sent to the
peer. Through exchanging the sketches of these transaction
sets between two connected peers, they can recover the sym-
metric difference of the sets that represent the transactions
missed from the two peers respectively.

However, although Erlay transaction relay protocol demon-
strates its effectiveness in Bitcoin network, it cannot be di-
rectly applied in high-throughput blockchain systems whose
expected throughput can be thousands of transactions per
second in practice. In Erlay, the period of initiating set rec-
onciliation is important for performance. If the period is

too short, the sketch transfer happens too frequently, which
harms the batching effect and reduces the bandwidth uti-
lization of transaction dissemination. On the other hand, if
the period is long, the size of the symmetric difference of
the transaction set sketches can be very large. For example,
empirically, given the 1 second set reconciliation period sug-
gested by Erlay, in a situation with 3000 tps, the size of the
difference set between peers can easily go beyond thousands
on average. This results in significant computation cost of
decoding the sketch which is quadratic with the difference
size. Furthermore, since a sketch of the symmetric difference
between the two sets is obtained by XORing the bit represen-
tation of sketches of those sets, the procedure is very likely
to fail if the size of the difference is too large and exceeds the
capacity of the original input sketches. As a result, the high-
throughput blockchain scenarios make the set reconciliation
period hard to be set appropriately.
Goals. In high-throughput public blockchain systems that
are bottlenecked at network bandwidth, an ideal transaction
relay protocol should have the following properties. First, the
transmission effectiveness should bemaximized. Ideally, each
node should receive each transaction exactly once, this is the
effective transmission. Any other transmitted information
related to transaction relay is auxiliary or redundant and
should be minimized. Therefore, the effectiveness is defined
as the size ratio of the effective transmission in the total
transferred data related to transaction relay. Secondly, the
transaction propagation latency should be maintained as
reasonably small. Low transaction transfer delay is essential
to user experience since it affects how fast a transaction can
be packed into a block. It also leads to better efficiency in
block relay with compact block [12] enabled. Thirdly, the
relay protocol should not introduce much computation cost
per transaction. Since the throughput is high, per-transaction
cost can easily accrue to be substantial to shift the system
bottleneck to computation and result in low utilization of
available network bandwidth, which in turn will negatively
impact the expected throughput that the system can finally
achieve. And fourthly, the relay mechanism should not incur
extra vulnerability to existing threat models, e.g., DoS, timing
analysis [45], eclipse [25, 36], or transaction censoring [8, 20,
50] attacks, etc.

3 Shrec Design
The goal of the design of Shrec is to achieve the best trade-
off among the above mentioned properties, which hinges on
how the transaction announcement is encoded and propa-
gated. The content of a transaction announcement serves
the following two purposes. First, for the node receiving the
announcement, it is used to check whether the transaction
has already been received and processed, and hence does not
need to be fetched again from the peer node and be relayed
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again to others. This can be achieved through a received
pool that maintains the set of received transaction announce-
ments. Secondly, the content of announcement is also used as
the key to fetch the corresponding transaction from the peer
and check to avoid duplicated fetching requests to peers, i.e.,
if an inflight request for a transaction has already been is-
sued to a peer, the node should not issue another request for
the same transaction to a different peer to avoid duplicated
transmissions of the same transaction. This often requires
to maintain an inflight pool that consists of the outstanding
transaction requests. In summary, the purpose of transaction
announcement is to minimize unnecessary and redundant
transaction transmissions.
However, the announcement itself consumes network

bandwidth. An encoding scheme is required to make a good
trade-off between the announcement size and the effective-
ness of the resulting transaction dissemination. Shrec en-
codes each transaction into a 4-byte short id and announces
it through a low-fanout flooding, i.e., the announcement is
broadcasted to a fixed number of peers (e.g., 8) no matter
how many total peers that a node connects to.
To better understand how Shrec encodes the transaction

announcement and why it employs such a scheme, we start
from describing a strawman approach and evolve it towards
our final solution.

3.1 A Strawman Encoding Approach
A naive encoding scheme is to simply assemble the trans-
action short id by arbitrarily picking 4 bytes (e.g., the last 4
bytes) from the 32-byte SHA-3 [21] hash of the transaction.
However, this simple approach confronts high collision rate
in a high throughput blockchain system. For example, con-
sider a systemwith throughput about 5,000 tps (e.g., Conflux).
Assume the system forgets transactions that were received
two minutes ago, then the received pool in each node may
constantly contain about 600,000 transactions on average.
Therefore, the probability of collision when receiving a new
transaction announcement is 600, 000/232, which leads to an
expectation about one collision per 7000 transactions. If the
collision happens, the transaction may only be propagated
to a few nodes since most of the nodes may have already re-
ceived the collided announcement and falsely think that this
is an already received transaction. In this case, the client that
generates the transaction has to resend it after the system
forgets it, which introduces much longer extra transaction
latency.

In addition, this strawman approach is vulnerable to hash
collision attacks that can be conducted in behaviors like cen-
soring transactions [8, 20, 50]. Specifically, an attacker may
generate forged transactions offline to collide all possible
short ids with 4 bytes, i.e., search for a set of transactions
so that it can readily produce one that matches any given

4-byte short id. This requires n × loд(n) times of transaction
signing and SHA-3 hashing in expectation, where n is 232.
In our experience, this would take less than 2 weeks with
an Intel Xeon E5-2673 processor. To generate the random
transactions, the attacker can simply randomly produce an
8-byte integer in the data field of each transaction. Therefore,
the major information that needs to be stored are these ran-
dom integers that consume the space about 32GB. To attack
an observed victim transaction, the attacker picks a trans-
action with colliding short id from the set of pre-generated
forged transactions and quickly disseminates it across the
entire network. This attack can be repeatedly applied for any
specific target transaction, so even resending at client side
cannot mitigate the issue.

3.2 Improved Encoding with Random
Nonce

In order to decrease the collision rate and defend against the
collision attack, a more advanced encoding approach is to in-
troduce a random nonce for communication with each peer.
Specifically, the 4-byte transaction short id is constructed
by taking the last 4 bytes of the SipHash [4] over the trans-
action SHA-3 hash. The SipHash is a fast pseudorandom
function and can be regarded as a keyed collision-resistant
hash function. It takes a short message and a nonce as inputs,
and outputs an 8-byte hash value. For each pair of peers, a
random nonce is first decided before the transfers of trans-
action announcements between them, and the nonce is used
together with the transaction SHA-3 hash to produce the
corresponding SipHash short id. A similar method is also
used in the compact block [12] mechanism of Bitcoin.

After introducing the random nonce, the collision becomes
independent for different peers. Since a transaction may only
be blocked from normal propagation if collisions happen for
its announcement from all the peers, the collision rate is
exponentially reduced with the number of peers compared
to the strawman approach and can be ignored. In addition, it
is impossible to attack specific transactions since the attacker
cannot predict the nonce used for the channel between a
pair of peers.

However, this improved approach introduces another prob-
lem. Due to the random nonce per peer, the same transaction
has different short ids for different peers. Therefore, for a
transaction announcement received from a peer, there is
no way to check in the inflight pool whether there is an in-
flight transaction request for the same transaction already
being sent to some other peer. This would introduce dupli-
cate requests for the same transaction and incur redundant
transaction transmissions. We evaluate the effect of such
duplication in Section 5.
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90340f fc94 73 … 1f01 9d 90

0      1       2       3       4       5    28     29      30     31

Transaction Hash:

SipHash(nonce)

8a78ea54df bbcd 23

1f8a 9d 90Short ID:

Random Byte Fixed Bytes

Figure 1: Transaction short id encoding in Shrec.

3.3 The Shrec Encoding Approach
To address the aforementioned issues in the previous two
solutions, Shrec employs a novel encoding scheme that com-
bines the values of SipHash and SHA-3 hash. Specifically,
to construct the 4-byte short id for a transaction, it takes 3
bytes (e.g., the last three) from the SHA-3 hash of the trans-
action and 1 byte (e.g., the last one) from the SipHash over
the transaction SHA-3 hash, and concatenates them together.
An example of this scheme is shown in Figure 1. The 1 byte
from the SipHash is called RandomByte and the other 3-byte
is called FixedBytes.
In order to check whether an announcement that is just

received from a peer refers to an already received transaction,
Shrec looks up in the received pool to see whether there is a
transaction whose 4-byte short id is the same as that in the
announcement. It does this lookup through 2-level indices. It
first searches for a set of transactions whose last 3 bytes are
same as the FixedBytes part in the received transaction short
id, and then, from the set, looks for the transaction that can
produce the same byte as the RandomByte in the short id
through applying the SipHash with the corresponding nonce
for the peer.

If there is no transaction in the received pool that matches
the received announcement, Shrec needs to check whether a
request for the transaction associating with the announce-
ment has already been issued to another peer by looking at
the inflight pool. To do this, the outstanding requests in the
inflight pool in Shrec are indexed with the FixedBytes part
of short id which has the same representation for different
peers. This can mostly get rid of the duplicated transaction
transmissions described in Section 3.2. In case of the collision
on the FixedBytes of short id when querying inflight pool,
Shrec does not immediately assume the transaction is be-
ing requested. Instead, it waits for the result of the in-flight
request and re-builds the entire short id of the responded
transaction with respect to the peer where the querying
short id was received. It then checks whether this re-built

1 struct {
// key_map groups the hashes of the received

transactions by short id FixedBytes.

2 HashMap<FixedBytes,List<TxHash> > key_map;
// Check whether there exists a transaction whose

short id corresponding to the nonce is same as

the shor t_id.
3 exist(short_id ,nonce)→ bool;

// True if the number of transaction hashes in the

group keyed on the FixedBytes of shor t_id
exceeds a configured threshold.

4 group_overflow(short_id)→ bool;
5 } ReceivedPool;
6 struct {

// Maintain the in-flight and pending transaction

requests indexed by the short id FixedBytes.

7 HashMap<FixedBytes,List<PendingTxReq> >
inflight_reqs;

// Add an in-flight request indexed by the

FixedBytes of shor t_id into inflight_reqs.

8 add_inflight(short_id);
// True if there exists an in-flight request indexed

by the FixedBytes of shor t_id.
9 is_inflight(short_id) → bool;

// Add pending request into inflight_reqs.

10 add_pending(pendinд_request );
11 } InflightPool;
12 struct {

// The id and nonce of the targeted peer that the

request is going to be sent to.

13 PeerId peer_id ;
14 Nonce nonce;

// The index of the to-be-requested transaction in

the SentPool of the targeted peer.

15 SentPoolIndex index;
// The short id of the to-be-requested transaction

associated with the targeted peer.

16 uint32 short_id ;
17 } PendingTxReq;

Figure 2: The definition of struct ReceviedPool, Inflight-
Pool, and PendingTxReq.

short id is same as the querying short id. If they are same,
Shrec thinks the transaction is already received, otherwise,
it issues the request then.
One issue of this encoding scheme is that merely relying

on this encoding scheme does not entirely fix the vulner-
ability to the hash collision attack which is similar to the
one targeting the strawman approach as described in Sec-
tion 3.1. Still consider the attacking strategy that prepares
many forged transactions offline for colliding the specific
observed transaction online later. The attacker may group all
the generated transactions based on the FixedBytes of their
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short ids. The total number of groups then is 224. As long as
there are enough number of transactions (e.g., several times
of 256, i.e., the number of values of a byte) in each group,
for an arbitrarily chosen transaction and nonce, the group
of transactions which has the same short id FixedBytes as
the chosen transaction may contain transactions that col-
lide with it on the RandomByte of their short ids with high
probability. The cost of this offline process would be a small
factor of the cost in attacking the strawman approach. When
attacking an observed transaction online, the attacker picks
the group of transactions with the same short id FixedBytes
as the victim one and quickly disseminates them across the
entire network.
To address this issue, Shrec uses transaction short id to

check whether a transaction was received before only when
a small number of transactions with the same FixedBytes of
their short ids co-exist in the received pool. The rationale is
that the transaction hashes should be uniformly distributed
in the normal case without such attack, so the number of
transactions in the set with same short id FixedBytes should
be small. For each received transaction announcement, if
Shrec observes, in the received pool, that the set of transac-
tions indexed by the FixedBytes of the short id in the an-
nouncement contains a larger number of transactions than
a threshold and there is a transaction in the set that matches
the announcement, it requires the peer to re-announce the
entire SHA-3 hash of the transaction. In our implementation,
we set this threshold as 9 so that the false positive rate of
this mechanism is less than 10−14.

3.4 Shrec System and Protocol
In Shrec, the major components in each node include a re-
ceived pool, an inflight pool, and a sent pool. The sent pool is
used to buffer the transactions whose announcements are
already sent to some other peers and to wait to serve their
requests for the transactions. The main data structures in
these components are shown in Figure 2. At line 7, the field
inflight_reqs of struct InflightPool tracks the outstand-
ing transaction requests and also the pending requests when
collisions happen. If the FixedBytes of some short id exists
in inflight_reqs, it means that an in-flight request for the
corresponding transaction has been issued. When some new
transaction is going to be requested and its short id Fixed-
Bytes collides with that of some in-flight request, a pending
request is created and inserted into the list associating with
the FixedBytes in inflight_reqs. The field index (at line 15) in
struct PendingTxReq is used to identify the transaction in
the sent pool of the peer that announces this transaction.

Figure 3 shows a visualized illustration on the data struc-
ture of sent pool and how the announcement and transac-
tion request messages interact with it. To better utilize the
network bandwidth in the transaction relay process, Shrec

Node A

…
…

…
…

…
…

Tx7

Tx6

Tx50

1

2

Sent Pool:
Batched Announcement

TX Request

TX Response

0

1

65

66

67

…

Id(Tx7)
Id(Tx6)
Id(Tx5)

66

66

2
0

Tx5
Tx7

batch_index

offsets

short_ids

batch_index

Node B

Figure 3: The normal flow of node interaction in
Shrec.

Input :received_pool , inflight_pool, the peer information
of the announcement sender including the peer_id
and nonce , and the batched announcement which
consists of batch_index and a list of short_ids .

1 if short_ids is empty then
2 return;
// Stores the SentPool offsets of to-be-requested

transactions in a batch.

3 request_offsets =[];
4 offset=0;
5 for s in short_ids do
6 if received_pool .exist(s ,nonce) then
7 if received_pool .group_overflow(s) then

// Request the announcement sender to

re-send the full hash of the transaction.

8 ...

9 offset=offset+1;
10 continue;

11 if inflight_pool.is_inflight(s) then
12 pendinд_request = PendingTxReq(peer_id , nonce ,

(batch_index , offset), s);
13 inflight_pool.add_pending(pendinд_request );

14 else
15 inflight_pool.add_inflight(s);
16 request_offsets.push(offset);

17 offset=offset+1;

18 request_transactions(peer_id ,batch_index , request_offsets);

Figure 4: The pseudo code for handling a batched an-
nouncement.

buffers newly received transactions and periodically batches
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Input : inflight_pool and a list of newly received
transactions .

1 to_request = [];
2 for tx in transactions do
3 fixed_bytes = get_fixed_bytes(tx );
4 inflight_reqs = inflight_pool.inflight_reqs;
5 pendinд_reqs = inflight_reqs.get(fixed_bytes);
6 if pendinд_reqs .is_empty() then

// There is no pending request. Remove the

in-flight transaction from inflight_reqs.

7 inflight_reqs.remove(f ixed_bytes);

8 else
// Filter out pending requests that match this

received transaction.

9 for r in pendinд_reqs do
10 if short_id(tx , r .nonce) != r .short_id then
11 to_request .push_back(r );

// Re-issue the first remaining pending request

and update the in-flight request status.

12 if not to_request .is_empty() then
13 req = to_request .pop_front();
14 idx = req.index ;
15 request_transactions(req.peer_id ,

idx .batch_index , [idx .offset]);
16 inflight_reqs.set(fixed_bytes, to_request );

// Process the received transaction.

17 ...

Figure 5: The pseudo code for handling transaction re-
sponse.

their short ids into a single announcement message to prop-
agate to a random set of peers. The sent pool therefore orga-
nizes the indices, which are used to associate the announce-
ments and the transactions, in a batched way. It is essentially
an append-only buffer with a 2-level index. The first level is
the batch index indicating which batch the announcement
of the transaction belongs to. The second level index is its
offset inside the batch. Similarly, all the transaction requests
(excluding the pending ones) corresponding to a batched
announcement are also batched in a single request message.
This 2-level index makes the announcement and request
messages compact. In these messages, the batch index only
appears once since all the transactions in a batched message
share the same batch index. Figure 4 shows the algorithm
handling the received batched announcement to generate the
corresponding transaction request packet. Figure 5 shows
the algorithm that processes the responded transactions to
consume colliding pending requests.

Note that both the data in received pool and sent pool are
managed in a time sliding window fashion to allow the sys-
tem to forget those information arrived long ago. In our
implementation, we set the time-to-live as 5 minutes which
is much longer than the latency for a disseminated transac-
tion to reach most of the nodes in the network. A previous
report [44] shows that it takes 18 seconds to propagate a
transaction to 90% nodes in Bitcoin.

4 Collision and Security Analysis

Our model in analyzing Shrec approach. We start our
analysis with finding the collision rate of sending one newly
generated transaction, with SHA-3 hash x as its original
identifier, tom peers that do not have such transaction in
their received pools. Usually, all the participants share similar
received pools. For simplicity, we assume all them peers share
the same and static received pool during the propagation of
this new transaction. Let S be the set of SHA-3 hashes of
transactions in received pool.
In Shrec, the short id of x consists of a 3-byte FixedBytes

and a 1-byte RandomByte. FixedBytes is extracted from x and
denoted by function E : {0, 1}256 → {0, 1}24. RandomByte is
computed from SipHash function with 128-bit key (random
nonce) over x and is denoted by function PRF : {0, 1}256 ×

{0, 1}128 → {0, 1}8. In the following part of this section,
FixedBytes and RandomByte of a SHA-3 hash refer to the
corresponding part of the short id. For any h ∈ {0, 1}24, let
Sh group the SHA-3 hashes in S with the FixedBytes h in their
short id.
Collision rate for a normal case. When announcing a
transaction to other peers, Shrec picks m different keys
ki (i ∈ [m]) randomly and sends different short ids to m
peers. The following analysis studies the collision rate which
refers to the probability that allm peers falsely consider the
newly generated transaction as received.
Section 3.3 describes that if S contains too many SHA-3

hashes with the same FixedBytes as x , all the participants
should request an announcement with its entire SHA-3 hash
of x . We denote the threshold by t . When |SE(x ) | > t , the
participant will forward the SHA-3 hash x instead of its short
id, and the collision rate will be 0.

When |SE(x ) | ≤ t , each peer will falsely skim the announce-
ment for short id of x only if it finds a hash in SE(x ) with the
same RandomByte as x . Due to the pseudo-randomness of
PRF, the RandomByte collision events under different SHA-3
hashes or nonce are independent. So the collision rate for a
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given fixed x can be estimated:

Pr
k1, · · · ,km

[∀i ∈ [m], ∃x ′
i ∈ SE(x ), PRF(x,ki ) = PRF(x ′

i ,ki )]

=
∏
i ∈[m]

(
1 −

∏
x ′
i ∈SE(x )

Pr
ki
[PRFki (x) , PRFki (x

′
i )]

)
=
(
1 − (1 − 2−8) |SE(x ) |

)m
Let p(s) := 1 − (1 − 2−8)s . We assume SHA-3 hash x is

picked uniformly random from {0, 1}256 and independent
with received pool S . So for any h ∈ {0, 1}24, Pr[E(x) = h] =
2−24. The previous equation claims that the collision rate
will be p(|Sh |)m if E(x) = h and |Sh | ≤ t . When taking into
account all the possible h, the collision rate for random x
will be

2−24 ×
∑

h∈{0,1}24∧|Sh | ≤t

p(|Sh |)
m .

In the following computation, we assume the shared re-
ceived pool contains less than 1, 500, 000 transactions (assum-
ing 5 minutes sliding window under 5000 tps throughput)
and each node announces the short id to m = 8 peers. In
normal case, we can assume S contains independent and uni-
formly random SHA-3 hashes of transactions. So each group
Sh will contain more than eight elements with a small proba-
bility (< 10−15). Since max1≤s≤8 p(s)

8/s < 2−43, the collision
rate can be upper bounded by

2−24 ×
∑

h∈{0,1}24∧0< |Sh | ≤t

p(|Sh |)
8

|Sh |
· |Sh | < 2−67 ×

∑
h∈{0,1}24

|Sh |

= 2−67 × |S |

This rate means one collision will take at least 600 years
to happen if 5000 transactions are processed per second.
Targeting transaction attack. Section 3.1 describes an at-
tack which prevents the propagation of a target transaction
with a pre-generated forged transaction pool. This attack
is modelled as follows. The attacker is allowed to generate
polynomial number of transactions with uniformly random
SHA-3 hashed id and store them. After that, the attacker is
given a victim transaction with a random SHA-3 hash x . It
picks several transactions from its storage based on x and
sends these transactions to all the full nodes in order to make
them falsely consider the victim transaction already received.
The SHA-3 hashes of these transactions are denoted by set
C .

In Shrec solution, only the SHA-3 hash with the same
FixedBytes as x may have a colliding short id with x . So we
assume C only contains the SHA-3 hashes x ′ with E(x ′) =

E(x). Further, C should contain no more than t transactions,
in order to avoid triggering the mechanism making all the
nodes require entire SHA-3 hash in the announcement.
The effort of this attack is measured by the collision rate

that a random picked nonce k has a colliding short id with a

SHA-3 hash in C . Applying the Boole’s inequality and our
assumptions for C , this collision rate is bounded by the sum
of RandomByte collision rate with x for each individual SHA-
3 hash in C , a.k.a.∑

x ′∈C

Pr
k
[PRF(x,k) = PRF(x ′,k)]

The collision rate Prk [PRF(x,k) = PRF(x ′,k)] will be
1/256 for a random SHA-3 hashx ′. Due to pseudo-randomness
of PRF, the attacker can not find a transaction with SHA-3
hash x̄ ′ in polynomial time such that x̄ ′ has non-negligible ad-
vantage in this collision rate compared with random picked
x ′. So in the best effort, the collision rate with one peer will
be t/256. The sender has 1 − (t/256)8 probability in sending
out this transaction to at least one out of 8 peers.
Propagation coverage under targeting attack. We care
more about how many full nodes will receive a transaction
under targeting attack. Let the network contain n full nodes
and we study the propagation coverage of transaction Tx.
When focusing on one transaction, the low-fanout for-

warding policy is approximately equivalent to make each
node choose m peers randomly among all the full nodes
and send the transaction with failure probability t/256 (the
best effort of attacker in targeting attack). Our model for
propagation process initials with a forwarding plan list A of
n ·m items. Each item inA consists of a receiver node picked
randomly from n nodes and a successful bit which will be
set with probability 1 − t/256. The model also maintains a
receiving queue which is initialized with one random node.

In each round, the model pops the first node from receiving
queue. If this node has never been popped from receiving
queue before, it receives transaction Tx. At this time, the
model simulates process for forwarding transaction to peers
by poppingm elements from listA, filtering out the receivers
with unset successful bit, and pushing the others to receiving
queue. The propagation terminates when the receiving queue
is empty.
If the propagation terminates when exactly i nodes have

received transaction Tx, the firstm ·i elements inAmust con-
tain no more than i unique successful receivers. We estimate
the probability of this event as follows. For a random list A,
the number of set successful bits in the firstm · i element is a
random variable in binomial distribution B(m · i, 1 − t/256),
which is denoted by Z . Given Z = z, z random nodes picked
randomly with replacement from n nodes will contain no
more than i unique nodes with probability at most

(n
i

)
(i/n)z .

Taking on all the possible z, the probability that the propaga-
tion terminates when i nodes received transaction is upper
bounded by

q(n, i) :=
m ·i∑
z=0

Pr[Z = z] ·

(
n

i

)
·

(
i

n

)z
.
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Thus, transaction Tx will be propagated to at least u nodes
with failure probability

∑u−1
i=1 q(n, i), which equals to 1.22 ×

10−8 whenm = 8,n = 5000,u = 4980, t = 9. It implies that
transaction Tx will be propagated to 99.6% full nodes even
under targeting attack.

5 Evaluation
We implemented Shrec transaction relay protocols in Con-
flux [34] with Rust. We also implemented three other differ-
ent transaction propagation mechanisms on the same code
base for comparison, including BTCFlood, Erlay [43], and
the SipHash protocol described in Section 3.2. BTCFlood and
SipHash protocols are flooding-based solutions. BTCFlood
takes SHA-3 hash of a transaction as its id to announce,
while SipHash scheme uses the last 4 bytes of SipHash over
transaction hash as the id in announcement.

Note that Erlay combines the low-fanout flooding and pe-
riodic set reconciliation. In our setup, each node propagates
sketches to all its peers for reconciliation in every second. To
be consistent with the setup reported in Erlay paper [43], we
use the 8-byte SipHash of transaction SHA-3 hash as its id.
The ids of the received transactions in a one-second period
are encoded by PinSketch [19] algorithm with a parameter l ,
which generates an 8×l bytes sketch. When a node receives
a sketch, it decodes the sketch with its own local one to ex-
tract the symmetric difference. If the symmetric difference is
less than l , the decoding process will always be successful,
otherwise, it fails. Because of this, choosing a proper l is
difficult. If l is too big, it does not save the bandwidth as
expected. On the other hand, if l is too small, the failure
of the decoding provides no information on which transac-
tions a node should request. In addition, decoding sketches
is computationally expensive, as it is quadratic to the size of
maximum symmetric difference. Therefore, in order to find
the best trade-off, we gradually increase the variable l so that
PinSketch achieves at least 99% of success rate without over
consuming the CPU.

5.1 Experiment Setup
We evaluate all the protocols using 1,000 m5.2xlarge vir-
tual machine instances on Amazon EC2. Each instance has
4 cores and 16GB memory. In the experiments, we run 1
Conflux full node on each of the instances. Conflux adopts
account model. Before each experiment, onemillion accounts
are created in the system in advance. Each account is given
sufficient amount of fund for transferring. During the ex-
periment, simple payment transactions are randomly gener-
ated as the workload under a specified global throughput in
the entire network, where each node contributes evenly to
the transaction generation process. The average transaction
size is 110 bytes, and each node produces and propagates a

batched announcement every 0.2 seconds. The global work-
load throughput is adjusted in every experiment to reach the
performance capacity of each protocol.

Conflux supports much higher block generation rate than
Bitcoin and Ethereum. Similar to Bitcoin, it also employs
compact block to avoid transferring transactions through
block other than transaction dissemination protocol. Com-
pact blocks may contain information of duplicated transac-
tions which may introduce other bandwidth and execution
overhead. However, this overhead is orthogonal to the im-
pact of transaction relay protocols. In the experiments, we
configure the global block generation rate as 4 blocks per
second and the block size limit as 3000 transactions. This
setup can satisfy the workload throughput in our experi-
ments and introduce minimal overhead caused by duplicate
transactions in blocks.
When a new Conflux node is initialized, it must discover

at least one other existing node in the network to partici-
pate. Each node will issue 8 outbound connections and it
can receive up to 32 inbound connections. In order to avoid
isolated subgraphs, the initialization of network topology is
partially randomized: the nodes are connected in a circular
manner for their first outgoing connection, then each node
further initialize 7 extra outgoing connections to randomly
selected peers. This leads to about 13 total connections per
node on average. Shrec is evaluated by setting low-fanout to
4 and 8 peers, represented with SR-4 and SR-8 respectively,
and also flooding to all connected peers, noted as SR-Flood.
For all the other protocols, we set the flooding fanout as 8.
We emulate the network environment as in real deployment
by limiting the maximum available network bandwidth of
each node and injecting a 0∼300ms random delay in the
communication between each pair of nodes. We evaluate the
systems with the bandwidth limitation at 10 Mbps and 20
Mbps, respectively, to better understand the trade-offs under
different network resource constraints.

In the experiments, we are aiming to answer the following
questions:

(1) How does Shrec perform compared to alternative pro-
tocols with respect to system throughput under differ-
ent network constraints?

(2) How effective is Shrec on reducing bandwidth con-
sumption of required announcement information and
redundant transactions?

(3) What is the impact of the low-fanout mechanism in
Shrec on transaction packing latency?

5.2 Overall System Performance

In this experiment, we compare the best achievable through-
put of the system under different transaction relay protocols.
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We also measure the per-node network bandwidth consump-
tion of total outgoing messages.
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Figure 6: System throughput and bandwidth consump-
tion.

Figure 6(a) shows the results under 10 Mbps bandwidth
limit. Shrec significantly outperforms all the other alterna-
tive solutions. BTCFlood and SipHash are clearly bounded
at network bandwidth. BTCFlood already consumes 80% net-
work bandwidth at throughput 1108 TPS, while SipHash
saturates the bandwidth at 3639 TPS. In contrast, Erlay can-
not sufficiently utilize the network bandwidth because its
sketch encoding and decoding are computation intensive,
which makes it CPU-bounded.

Shrec achieves the highest throughput at 6894 TPS when
flooding fanout is 4. The throughput decreases when fanout
grows since the announcement propagation takes more net-
work bandwidth. This indicates that, under constrained net-
work environment, lower fanout should be used to achieve
higher throughput.

To understand how Shrec performs under relatively uncon-
strained network environment, we also evaluate the system
with 20Mbps bandwidth limit. BTCFlood and SipHash sig-
nificantly improved their throughput since they are heavily

bounded at network bandwidth. However, 20Mbps is still
too constrained for them, so their throughput are still signif-
icantly lower than Shrec. Erlay does not gain any improve-
ment on its throughput with such higher bandwidth limit
since it is bounded at CPU processing.

Interestingly, Shrec with different fanouts achieve similar
throughput because the system is not bounded at bandwidth
anymore under 20Mbps limit. According to our investiga-
tion, the system is bounded by the transaction execution
throughput in this case. Prior work has shown that there
exist many potentials to further improve the execution effi-
ciency of Ethereum-like transactions which is bounded at the
merkle tree[40] access, e.g., Ponnapalli et. al.[48] proposes
a solution to improve the merkle tree access for 100x more
efficient than Ethereum implementation. In this case, the
throughput of the system with Shrec would be bottlenecked
at network bandwidth again under 20Mbps limit.

5.3 Bandwidth and CPU Consumption
Breakdown

To prove that the performance improvement of Shrec is
achieved by reducing the CPU and network resource con-
sumption, we conducted more detailed evaluations on these
factors.

To understand the transmission effectiveness of these pro-
tocols, we rerun the experiments under 500 TPS workload
throughput which can be supported by all the protocols, and
analyze their bandwidth usage.
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Figure 7: Bandwidth consumption breakdown at 500
TPS workload throughput and 20Mbps bandwidth
limit.

Figure 7 breaks down the bandwidth usage among an-
nouncements, transactions, and other block-related mes-
sages. For BTCFlood and Erlay, where the total bandwidth
consumption is 3.5 Mbps and 2.8 Mbps respectively, the
announcements consume the most bandwidth as they are
composed of 32-byte transaction hashes. In comparison, by
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utilizing 4-byte short ids and the low-fanout design, SR-4
achieves 75% transmission effectiveness, and reduces the to-
tal bandwidth consumption to only 0.5 Mbps under the same
throughput.
Although SipHash uses the most portion of bandwidth

for transaction transmission, it still costs more bandwidth
compared with Shrec because most transmitted transactions
in SipHash are duplicated as discussed in Section 3.2. Fig-
ure 8 compares the transaction throughput received at the
network level and the actual deduplicated throughput in
the experiments with 20Mbps bandwidth limit. SipHash re-
ceives more than twice the transactions as it is supposed
to be, wasting these bandwidths for redundant data. Shrec
improves over SipHash by utilizing inflight pool to prevent
duplicate fetching request and did not waste any bandwidth
on duplicated transaction transmission. However, SipHash
does not support inflight pool because its short ids of the
same transaction provided by different peers are completely
different.

To understand the CPU cost of all the protocols, we run the
logic of announcements generation and handling as bench-
mark on a single thread node. This experiment is driven by
transactions as input. We run the experiments with differ-
ent numbers of transactions. For each experiment, we run
multiple times to measure the average CPU time. Figure 9
shows the results. The running time of all the protocols, ex-
cept for Erlay, increases almost linearly with the number
of transactions. As the figure shows, the computation cost
of Erlay is significantly larger than other protocols as it is
quadratic to throughput. When input transaction number
is about 800, it consumes 3.52 seconds to decode sketches
with 16 peers. Consider the case with its best achievable
throughput (826 TPS), this would exhaust a huge portion of
CPU resources on an EC2 m5.2xlarge instance. This confirms
that Erlay protocol is bounded at CPU computation rather
than network bandwidth. In contrast, the computation cost
of Shrec is very low. Running with 9000 transactions only
costs 109ms and 172ms CPU time for SR-4 and SR-8 to prop-
agate transactions, which is quite affordable for a common
4-core machine and leaves sufficient CPU budget for other
part logic of the system.

5.4 Transaction Packing Latency
We have shown that Shrec can achieve better throughput
by consuming less bandwidth. Now we further analyze its
latency performance when it reaches its best achievable
throughput.

Figure 10 describes the transaction packing latency of SR-
4 and SH-8 under 20 Mbps bandwidth cap. The system is
not bounded on the bandwidth in this setup. The packing
latency includes the time of transaction propagation, the
wait time to be selected among all unpacked transactions,
and for generating a block with Proof-of-Work. Over 80%
transactions can be packed within 20 seconds for both cases.
On average, reducing the number of fanout peers from 8 to
4 only increases the latency from transaction generation to
packing from 10.79 seconds to 12.24 seconds, which only
increased by 1.45s. We believe it is reasonable to choose
fanout 4 over 8 for less bandwidth consumption, because
the latency increase is almost negligible compared with the
transaction confirmation time at the consensus layer, i.e., 1
hour for Bitcoin and 23s for Conflux.
Large scale simulation.To better understand the low-fanout
effects in Shrec, we measured the transaction propagation
and packing latency on 20,000 nodes with simulations. The
block generation rate is set to 4 blocks per second. In the
simulation, transactions are generated from a source node
and propagated in iterations where one iteration represents
one hop of transaction broadcast. The time of an iteration is
set to 1 second and the size of the transaction pool is set to
100,000, same as the value we measured in the experiments
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Figure 11: The average transaction propagation and
packing latency of different fanouts.

of 20 Mbps bandwidth limit. Figure 11 plots the average
propagation latency and packing latency, and shows that
increasing the fanout becomes less and less beneficial. For
example, doubling fanout from 8 to 16 only reduces the pack-
ing latency from 13.2s to 12.3s, but increases the bandwidth
consumption by about 18%. This is because the number of
hops required for broadcasting a transaction across the en-
tire network is O(loдdN ) where d is the average degree (i.e.,
the fanout) and N is the number of nodes in the network.

6 Related Work
Transaction propagation in blockchain. Bitcoin [42] and
Ethereum [1] pioneered decentralized public blockchain sys-
tems. One of their major functions is to provide secure trans-
action ledgers at internet scale in a trustless way. In such
systems, transactions are needed to be disseminated across
the entire network timely so that they can be packed into the
newly generated blocks and get processed with low latency.
Both of the systems employ variants of flooding mechanism
to fulfill the transaction propagation. Since these systems can
only achieve very low transaction processing throughput,
which is mainly bottlenecked at their consensus protocols,

the available network bandwidth typically has enough bud-
get to tolerate the inefficiency of the naive flooding-based
transaction transmission schemes.
One problem of transaction flooding in Bitcoin is that it

cannot scale with the increasing number of the connected
peers per node. Erlay [43] observes this issue and proposes
a combination of low-fanout flooding and sketch-based set
reconciliation to reduce the bandwidth consumption and
keep the bandwidth use almost constant as the connectivity
increases.

More recently, many new consensus protocols and ledger
structures [5, 22, 24, 29, 32–34, 38, 41, 46, 47, 51, 52, 56, 57]
have been proposed and applied in public blockchains to
significantly improve the system throughput to thousands
of transactions per second. These systems are typically not
bottlenecked at the consensus protocol anymore but at the
available network bandwidth. Although Erlay is effective
in Bitcoin scenarios, it cannot be applied in these more ad-
vanced systems since the computation cost of its set sketch
mechanism is too high and the success rate is low when the
target transaction throughput is such high. In addition, with-
out careful design of the transaction announcement encod-
ing, even low-fanout flooding can easily consume substantial
scarce network bandwidth, and hence significantly limit the
achievable throughput. In contrast, Shrec optimizes the en-
coding of the short transaction id to achieve the best balance
between the effectiveness of the transaction announcement
and its overhead.
Security effects of connectivity. Many network-related
security issues in Bitcoin and Ethereum have been scruti-
nized with the corresponding attacks [2, 3, 6, 7, 13, 15, 23, 25,
27, 30, 36, 39] published. These attacks attempt to increase
the probability of double-spending or denials of service, or
violate the user privacy. Many of them assume the victim
nodes having limited number of connected peers. This causes
repeated recommendations from recent literatures [6, 14]
on increasing the number of connections between nodes to
make the network more robust. Shrec sticks to a low-fanout
flooding on its transaction announcement mechanism, and
therefore will not introduce more transmission overhead
when network connectivity increases.
Structured peer-to-peer networks. Unlike the peer-to-
peer gossip networks employed in decentralized blockchain
systems, structured peer-to-peer networks are also exten-
sively used in another series of systems that leverage topol-
ogy information to make efficient routing decisions, includ-
ing tree-based multicast protocols [9, 10, 54] and Distributed
Hash Tables (DHTs) [11, 37, 49, 53, 55]. However, these de-
signs make the protocols leak information about the struc-
ture of the network and introduce security vulnerabilities in
adversarial environments. For example, Ethereum employs
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Kademlia DHT [37] to maintain its network topology, and
hence suffers from a low-resource eclipse attack [36].
A typical trade-off in these DHT systems is between the

bandwidth consumption in routing table maintenance and
the query latency which relies on the number of required
lookup hops. Kumar et. al. identify and formalize this trade-
off [31], and Li et. al. propose a DHT design that can auto-
matically optimize the trade-off according to the available
network bandwidth budget [35]. Similarly, Shrec can also
allow the full node to adjust the number of peers to flood
transaction announcement based on the network bandwidth
budget.

7 Conclusion
Recent development of public blockchain systems has re-
sulted in significant improvement on throughput, bringing
much higher requirement and more challenges on trans-
action transmission efficiency. Shrec helps blockchain sys-
tem to achieve high transaction transmission efficiency with
strong security guarantee through its novel hybrid hash-
ing scheme for transaction announcement encoding. This
leads to much higher system throughput by significantly
mitigating the network bandwidth bottleneck.
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