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Abstract. In this paper we study the problem of controlling the spread
of undesirable things (viruses, epidemics, rumors, etc.) in a network. We
present a model called the mixed generalized network security model,
denoted by MGNS(d), which unifies and generalizes several well-studied
infection control model in the literature. Intuitively speaking, our goal
under this model is to secure a subset of nodes and links in a network so
as to minimize the expected total loss caused by a possible infection (with
a spreading limit of d-hops) plus the cost spent on the preventive actions.
Our model has wide applications since it incorporates both node-deletion
and edge-removal operations. Our main results are as follows:

1. For all 1 ≤ d <∞, we present a polynomial time (d+1)-approximation
algorithm for computing the optimal solution of MGNS(d). This im-
proves the approximation factor of 2d obtained in [19] for a special
case of our model. We derive an O(log n)-approximation for the case
d = ∞. Moreover, we give a polynomial time 3

2
-approximation for

MGNS(1) on bipartite graphs.

2. We prove that for all d ∈ N ∪ {∞}, it is APX -hard to compute
the optimum cost of MGNS(d) even on 3-regular graphs. We also
show that, assuming the Unique Games Conjecture [13], we cannot
obtain a ( 3

2
− ε)-approximation for MGNS(d) in polynomial time.

Our hardness results hold for the special case GNS(d) in [19] as well.

3. We show that an optimal solution of MGNS(d) can be found in poly-
nomial time for every fixed d ∈ N ∪ {∞} if the underlying graph is
a tree, and the infection cost and attack probability are both uni-
form. Our algorithm also works for the case where there are budget
constraints on the number of secured nodes and edges in a solu-
tion. This in particular settles an open question from [21] that asks
whether there exists an efficient algorithm for the minimum average
contamination problem on trees.
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1 Introduction

During the recent years, much effort has been devoted to the study on the struc-
ture of various types of networks such as social networks, wireless sensor net-
works, computer networks, transportation networks, and the World Wide Web.
An important and active subject is to study the information diffusion process in
the situations where we want some news, topics, thoughts or products to spread
quickly in the network, such as viral marketing [8]. This idea is formalized by
Kempe, Kleinberg and Tardos [12] as a combinatorial problem called the influ-
ence maximization problem, which has since then been extensively studied under
various settings (see, e.g., [6,10,15,20]).

In contrast, another important line of research is to study how to prevent or
limit the spread of undesirable things through the network, such as the proga-
gation of computer viruses and worms over computer networks, the fast spread-
ing of malicious rumors through social networks, and the spread of infections or
epidemics (such as Swine Flu and H1N1) among groups of people. In all these cir-
cumstances we need to eliminate or at least control the evolution of the bad things
over the whole network, which is usually achieved by taking some preventive mea-
sures before the emergence of these undesirable things, and isolating or restricting
the behaviors of some individuals if the infection has already been spread through
the network. An important issue in real-world applications is the balance between
the cost spent on prevention and the expected loss caused by infection. For exam-
ple, installing anti-virus softwares on the computers is a natural response to the
possible virus attack, but it may cost a lot of money and bring inefficiency to the
protected computers due to high maintenance cost or memory requirement.

An elegant model that integrates both the security and infection costs has
been formalized by Aspnes, Chang and Yampolskiy [3]. In their model, we seek
for a subset of nodes on which we shall install the anti-virus softwares (call such
nodes secure). A virus-attack is initiated by choosing one node from the network
uniformly at random, and this node, if not secure, will infect all other nodes that
are reachable from it in the network with all secure nodes removed. The goal
is to minimize the cost for installing softwares (security cost) plus the expected
total loss caused by the virus (infection cost). They consider both centralized
(optimization) and game-theoretic settings. The model is substantially gener-
alized by Kumar et al. [19] by allowing individual security and infection costs
and arbitrary distribution of the virus-attack probability, and by introducing
a parameter d into the model that represents the distance within the network
that an infection can spread. This new model is called the generalized network
security model, denoted GNS(d). Thus, GNS(d) is able to capture networks with
less infection power or limited local information, such as ad hoc wireless net-
works. An issue with GNS(d) is that it lacks the power of modeling the action of
restricting the interconnections between individuals in the network (instead of
simply removing them from the network), which, in the graph language, corre-
sponds to blocking edges in the graph instead of deleting nodes. In spirit of such
consideration, the contamination minimization model where edges are supposed
to be blocked is raised by [16] and has been further studied in, e.g., [17,18,21].
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In this paper, we present a model for minimizing the spread of infection that
unifies and further generalizes the two aforementioned approaches, which we
call the mixed generalized network security model, denoted by MGNS(d). In our
model, each node has its own security cost and infection cost as in GNS(d), and
each edge has its own link-blocking cost that represents the lost caused by the
removal of the edge. The attack probability distribution can be arbitrary as in
GNS(d). The insecure node that is attacked initially will infect exactly those
nodes that are within distance at most d from it in the attack graph obtained
by removing all secure nodes and blocked edges from the original network. The
cost of a solution is equal to the total expected infection cost of the nodes plus
the cost for securing nodes and blocking edges in this solution. The goal is then
to find a solution with minimum cost. Our main results in this paper, some of
which improve on the previously best known results achieved for special cases of
our model, are given in the following.
1. For all 1 ≤ d < ∞, we present a polynomial time (d + 1)-approximation

algorithm for computing the optimal solution of MGNS(d) based on the
primal-dual method. This improves the approximation factor of 2d obtained
in [19] for GNS(d), which is a special case of MGNS(d). (We note that it is
possible to design a reduction from MGNS(d) to GNS(2d), which will give
us a 4d-approximation for MGNS(d) using the algorithm in [19]. However,
the reduction loses a lot of information about the topology of the underlying
network.) For the case d = ∞, we derive an O(log n)-approximation for
MGNS(∞) that matches the result of [19] for GNS(∞). Moreover, we give
a polynomial time 3

2 -approximation for MGNS(1) on bipartite graphs.
2. We prove that for all d ∈ N∪{∞}, it is APX -hard to compute the optimum

cost of GNS(d) even if the graph is 3-regular and all costs and probability
are uniform, thus ruling out the possibility of designing PTAS for the prob-
lem. We also show that, assuming the Unique Games Conjecture [13], we
cannot obtain a (3

2 − ε)-approximation for GNS(d) in polynomial time. To
our knowledge these are the first inapproximability results for GNS(d). Since
GNS(d) is a special case of MGNS(d), all the hardness results trivially apply
to MGNS(d).

3. We show that an optimal solution of MGNS(d) can be found in polynomial
time for every fixed d ≥ 1 or d = ∞ if the underlying graph is a tree, and the
infection cost and attack probability are both uniform. Our algorithm can
handle all d ≤ O(

√
log n) in polynomial time on bounded-degree trees. Our

algorithm also works for the case where budget constraints are put on the
number of nodes and edges that can be secured and blocked respectively in a
wanted solution. In particular, this settles an open question of [21] that asks
whether there exists an efficient algorithm for the minimum average con-
tamination problem on trees (which will be mentioned later in more detail).
We remark that the tree structure, despite being special, has applications in
hierarchically-organized networks such as company relationships.

Paper Organization. In the rest part of this section, we rigorously define our
model and compare it with some previous work. In Section 2 we present
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approximation algorithms for MGNS(d). Hardness of approximation results for
MGNS(d) are given in Section 3. Section 4 copes with tree instances of MGNS(d).
Finally, in Section 5 we conclude the whole paper and propose some open prob-
lems and future research directions.

1.1 Our Model for Infection Control

In this subsection we explain the mixed generalized network security model
MGNS(d) in more detail, where d ∈ N

+ ∪ {∞} is a parameter that, intuitively,
reflects the “degree of infectivity” within the network. Although we will de-
scribe our model in terms of preventing virus-spreading in computer networks,
one should keep in mind that the model is capable of many other situations
where we wish to minimize the propagation of undesirable things. Specifically,
our model MGNS(d) comprises the following ingredients:
Contact Graph, Costs and Strategy. The contact graph is an undirected
graph G = (V, E), where V = {1, 2, . . . , n} denotes the set of computers in a
connected network, and E ⊆ V 2 specifies the underlying topology of the network.
Thus, an edge {u, v} ∈ E indicates that nodes (computers) u and v are directly
connected, so that u can potentially affect v if it is infected by a computer virus
or worm, and vice versa. For each v ∈ V , let Cv denote the security cost of v
(for installing an anti-virus software on v), and Lv the infection cost of v (for
recovering it from a virus attack). For each e ∈ E, let C′

e denote the link-blocking
cost of e (for the lost caused by the removal of e). All the costs are non-negative.
In a strategy (solution), we need to decide on which nodes to install anti-virus
softwares and which edges to block. A node with anti-virus software installed
on it is called secure, and otherwise is called insecure. Similarly we have blocked
and unblocked edges. A solution S is also identified with VS ∪ES , where VS ⊆ V
is the set of secure nodes in S and ES ∈ E is the set of blocked edges in S. The
attack graph of a solution is the graph obtained from G by removing all secure
nodes and blocked edges.

Infection Model and Social Cost. We assume that the virus is initiated at
exactly one node chosen from V according to the attack probability distribution
{wv | v ∈ V }, where

∑
v∈V wv = 1. Write w(S) :=

∑
v∈S wv for S ⊆ V . A

secure node will neither suffer from the virus nor transmit the virus to other
nodes (although it can be chosen as the attacked node), whereas an insecure
node, if chosen as the attacked node, will infect exactly those nodes at distance
at most d from it in the attack graph (including itself). For a strategy S, let
V ≤d

S (v) denote the set of nodes at distance at most d from v in the attack graph
of S. Then the social cost of S (denoted by cost(S)) is defined as:

cost(S) =
∑

v∈VS

Cv

︸ ︷︷ ︸
cost for

installing softwares

+
∑

e∈ES

C′
e

︸ ︷︷ ︸
cost for

blocking links

+
∑

v∈V \VS

Lv · w(V ≤d
S (v))

︸ ︷︷ ︸
expected cost for

recovering v from infection

.

Goal. In the centralized setting of MGNS(d), the goal is to find a strategy with
minimum social cost, or social optimum. We can also define the decentralized
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(game-theoretic) model, in which the user needs to decide whether to install
the anti-virus software on his/her computer and whether to disconnect some of
the links with other users in the network. In this paper we concentrate on the
centralized setting of MGNS(d), while leaving explorations of the decentralized
model to future work.

1.2 Related Work

As stated before, our model MGNS(d) incorporates and generalizes several infec-
tion prevention models that have been studied recently. We list some problems
considered in the literature that are either special cases of or related to the
problem of computing the social optimum of MGNS(d).

• Consider the instances of MGNS(d) where d = ∞, C′
e = ∞ for all e ∈

E, all nodes have the same security cost C and infection cost L, and the
attack probability distribution is uniform over nodes. When restricted on such
instances, MGNS(d) coincides with the model proposed by Aspnes, Chang
and Yampolskiy [3], who gave an O(log1.5 n)-approximation for computing
the social optimum, based on the sparsest cut algorithm of Arora, Rao and
Vazirani [1]. The approximation ratio is subsequently improved to O(log n)
independently by [5] and [19], which is also the currently best known result
for this problem.

• Restricted on the instances where C′
e = ∞ for all e ∈ E (i.e., all the edges

should remain unblocked in any reasonable solution), our model is equivalent
to the generalized network security model GNS(d) introduced by Kumar et al.
[19]. They present a 2d-approximation for computing the social optimum of
GNS(d) for all d < ∞ by rounding a natural linear program for the problem.
This result is subsumed by our (d + 1)-approximation for MGNS(d). They
also give an O(log n)-approximation for GNS(∞) based on a reduction to
the minimum weighted vertex multicut problem [9], improving the O(log1.5 n)
factor of [3] and matching the result independently obtained in [5].

• Under the case where d = ∞, Cv = ∞ for all v ∈ V , wv = 1/n for all
v ∈ V , and both the infection costs and link-blocking costs are uniform,
the problem of computing the social optimum of MGNS(d) is similar to the
minimum average contamination problem studied by Li and Tang [21], which
originates from a (stochastic) link-blocking model initiated by Kimura, Saito
and Motoda [16]. The difference between our setting and theirs is that they
put a budget constraint K on the number of edges that can be removed from
the network. In [21], a (1 + ε, O( log n

ε ))-bicriteria approximation algorithm
and a (5

3 − ε)-inapproximability result are given for the minimum average
contamination problem. Note that their problem is harder than ours (with
an additional budge constraint) and thus their hardness factor is stronger
than ours. However, they only consider the case d = ∞, while our hardness
result applies to all d. Also, our polynomial-time algorithm for tree instances
of MGNS(d) holds for the budgeted case as well.
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• Another related problem that has mainly been studied in the operations
research forum is the critical node problem [2,4,7] defined as follows: given
a node-weighted graph G = (V, E), a connection cost c(u, v) for each pair
of nodes {u, v} ∈ V 2, and a parameter K, the goal is to find a subset of
nodes whose total weight does not exceed K such that the total connection
cost (counted for all connected pairs of nodes) is minimized. This problem is
similar to MGNS(∞) with C′

e = ∞ for all e ∈ E and wv = 1/n for all v ∈ V ,
but with additional budget constraints and more general cost functions. The
problem is NP-complete on general graphs with unit costs and unit weights
[2], and on trees with unit weights [7]. For the unit-cost case (which makes
the problem fit in our model with d = ∞) in a tree of size n, Di Summa et
al. [7] show that the problem is solvable in O(n7) time. Our polynomial-time
algorithm for (budgeted) MGNS(d) on trees substantially generalizes their
result to all fixed d.

2 Approximation Algorithm for MGNS(d)

In this section we concern with the computation of the social optimum of
MGNS(d). As the problem is NP-hard, we focus on the perspective of approxi-
mation, and obtain the following results.

Theorem 1. For any d ≥ 1, there is a polynomial time (d + 1)-approximation
algorithm for computing the social optimum of MGNS(d). (Here d need not be a
constant.)

Theorem 2. There is a polynomial time O(log n)-approximation for the social
optimum of MGNS(∞).

Theorem 3. There is a polynomial time 3
2 -approximation algorithm for com-

puting the social optimum of MGNS(1) with bipartite contact graphs.

We only prove Theorems 1 and 2 here. The proof of Theorem 3 will appear in
the full version of this paper.

First consider the case 1 ≤ d < ∞. Let I be an instance of MGNS(d) with
contact graph G = (V, E) where V = {1, 2, . . . , n}. If Ci < wiLi for some i ∈ V ,
then clearly i should be secured in any optimum solution. Thus, we assume in
what follows that Ci ≥ wiLi for all i ∈ V . We write an integer program to
formulate the social optimum of I. For each k ∈ V ∪ E, let xk be a binary
variable that is 1 if and only if k is secure (or blocked, depending on whether k
is a node or an edge). For a path p, let Vp and Ep denote the sets of nodes and
edges on p, respectively. For all 1 ≤ i < j ≤ n, let P d

i,j denote the collection of
all simple paths from i to j of length at most d (note that P d

i,j can be empty and
can also be of exponential size), and yi,j be a binary variable that is 1 if and only
if there exists at least one path p ∈ P d

i,j on which all nodes are insecure and all
edges are unblocked. Thus, yi,j = 1 iff i and j can infect each other in the attack
graph. Then the following integer program IP1 characterizes precisely the social
optimum of I:
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IP1: Min
∑

i∈V

Cixi +
∑

{i,j}∈E

C′
{i,j}x{i,j} +

∑

i∈V

Li

⎛

⎝wi(1− xi) +
∑

j∈V \{i}
wjyi,j

⎞

⎠

subject to: yi,j +
∑

k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P d
i,j

yi,j = yj,i ∀1 ≤ i < j ≤ n

xk ∈ {0, 1} ∀k ∈ V ∪E

yi,j ∈ {0, 1} ∀1 ≤ i, j ≤ n, i �= j .

We write C′
i = Ci −wiLi for each i ∈ V (with a little abuse of notation since C′

is originally defined for edge costs), Li,j = wiLj + wjLi for all 1 ≤ i < j ≤ n,
and C =

∑
1≤i≤n wiLi. Note that C′

i ≥ 0 for all i ∈ V by our assumption
before. Rearranging terms, unifying the first two summations, and combining
the occurrences of yi,j and yj,i in the objective function of IP1, we get a simpler
yet equivalent formulation IP2 as follows:

IP2: Min
∑

k∈V ∪E

C′
kxk +

∑

1≤i<j≤n

Li,jyi,j + C subject to:

yi,j +
∑

k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P d
i,j

xk ∈ {0, 1} ∀k ∈ V ∪E

yi,j ∈ {0, 1} ∀1 ≤ i < j ≤ n.

Observe that IP2, with the constant part C discarded, can be regarded as an
instance of the weighted set cover problem when treating the length-at-most-d
paths as the elements to be covered. When d is fixed, the instance of set cover is
constructible in polynomial time. Also, in this set cover instance, every element
appears in at most 2d + 2 sets, because each constraint in IP2 involves at most
2d + 2 variables (note that each p ∈ P d

i,j consists of at most d + 1 vertices and d
edges). Therefore, a polynomial time (2d + 2)-approximation exists for IP2 (see,
e.g., [11]) and thus also for MGNS(d). Notice that, by reducing the problem
to set cover, we can only handle constant d, and cannot hope for a poly-time
(2d + 2− ε)-approximation due to the (k− ε)-hardness of k-uniform hypergraph
vertex cover [14], assuming the Unique Games Conjecture [13].

We next show that we can obtain an approximation factor of d+1 for all d (not
necessarily fixed) by utilizing the special structure of IP2, thus saving a factor of
2 from the set cover approach. To achieve this, we relax the last two constraints
of IP2 to xk ≥ 0 and yi,j ≥ 0 respectively, and ignore the constant part C in
the objective function. This gives us a linear programming relaxation (which
might still have super-polynomial size) of the original instance, which we call
LP. (We do not state LP explicitly since it is very similar to IP2.) Obviously,
OPT (LP ) + C ≤ OPT (IP2) = OPT (IP1), where OPT (P ) is the optimum
objective value of the mathematical program P .

We now write the dual formulation of LP. Let P d = ∪1≤i<j≤nP d
i,j . For each

p ∈ P d, introduce a dual variable zp, which corresponds to the constraint
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yi,j +
∑

k∈Vp∪Ep
xk ≥ 1 in LP (where i and j are the endpoints of p). The

dual program DU can be written as follows:

DU: Max
∑

p∈P d

zp subject to:

∑

p∈P d
i,j

zp ≤ Li,j ∀1 ≤ i < j ≤ n

∑

p∈P d

k∈Vp∪Ep

zp ≤ C′
k ∀k ∈ V ∪E

zp ≥ 0 ∀p ∈ P d.

By the strong duality theorem, OPT (DU) = OPT (LP ). We now find a solution
to IP2 by Algorithm 1, which basically consists of a primal-dual procedure and a
“pruning” phase. Since the number of variables in DU can be super-polynomial
in n for non-constant d, the näıve implementation of Algorithm 1 may not run
in polynomial time. Nevertheless, we will show later that the running time can
be reduced to nO(1) regardless of d; stating the algorithm in its current form
is just to simplify the analysis of its performance guarantee. Let S denote the
solution to IP2 returned by Algorithm 1, and Z = {zp | p ∈ P d} be the solution
to DU obtained in Algorithm 1 (which is not explicitly returned). Let value(S)
denote the objective value of the solution S.

Algorithm 1. Constructing a feasible solution for IP2
1: xk ← 0, ∀k ∈ V ∪ E; yi,j ← 0, ∀1 ≤ i < j ≤ n.
2: zp ← 0, ∀p ∈ P d; also, set all zp to be “unfrozen.”
3: while there are still unfrozen variables do
4: Choose any unfrozen variable, say zp, that appears in some constraint of DU.

Raise the value of zp until some constraint in DU, say c, becomes tight. (Pick
an arbitrary one if there are more than one tight constraints.)

5: if c is “
∑

p∈P d:k∈Vp∪Ep
zp ≤ C′

k” for some k ∈ V ∪ E then
6: xk ← 1
7: else if c is “

∑
p∈P d

i,j
zp ≤ Li,j” for some 1 ≤ i < j ≤ n then

8: yi,j ← 1
9: end if

10: Freeze all variables that occur in some (newly appeared) tight constraint.
11: end while
12: for all 1 ≤ i < j ≤ n do
13: if xi = 1 or xj = 1 then
14: yi,j ← 0; x{i,j} ← 0 if {i, j} ∈ E.
15: end if
16: end for
17: return {xk | k ∈ V ∪ E} ∪ {yi,j | 1 ≤ i < j ≤ n}.
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Lemma 1. Z is a feasible solution to DU, and S is a feasible solution to IP2.

The proof of Lemma 1 is easy and thus omitted.

Lemma 2. value(S) ≤ (d + 1)OPT (IP2) .

Proof. For each variable v of IP2, let c(v) denote the constraint in DU that corre-
sponds to v. Call a constraint c(v) active if v = 1 in the solution S. By Line 4 of
Algorithm 1, every active constraint c(v) (say) is tight, and hence the contribution
of this v to value(S) (which is the coefficient of v in the objective function of IP2)
equals to the sum of zp’s contained in c(v). Therefore, value(S) =

∑
p∈P d tpzp,

where tp is the number of active constraints containing zp.
Now fix an arbitrary p = (i0, i1, . . . , it) ∈ P d, t ≤ d. The set of constraints in

which zp appears is {c(yi0,it)}∪{c(xij ) | 0 ≤ j ≤ t}∪{c(x{ij ,ij+1}) | 0 ≤ j ≤ t−1},
which can be partitioned into the following t + 1 subsets:

{c(xi0), c(x{i0,i1})}, {c(xi1), c(x{i1,i2})}, . . . , {c(xit−1), c(x{it−1,it})}, {c(xit), c(yi0,it)}.

Due to the function of the FOR loop, at most one constraint from each subset
is active. Thus zp appears in at most t + 1 ≤ d + 1 active constraints. Recalling
that the objective function of IP2 embraces an additional part C, we have

value(S) ≤ C + (d + 1)
∑

p∈P d

zp ≤ C + (d + 1)OPT (DU)

= C + (d + 1)OPT (LP ) ≤ C + (d + 1)(OPT (IP2) − C)
≤ (d + 1)OPT (IP2),

completing the proof of Lemma 2. 	

Lemmas 1 and 2 ensure that S is a (d + 1)-approximate solution to IP2. We
next explain how to make Algorithm 1 run in poly-time for all d. Consider the
following two operations:

(1) Find an unfrozen variable of DU if there exists at least one.
(2) Given a variable zp, find all the constraints in DU that contain zp.

Lemma 3. If operations (1) and (2) can be done in polynomial time, then Al-
gorithm 1 can be implemented to run in polynomial time.

Proof. Suppose (1) and (2) can be done in polynomial time. Since DU has at
most

(
n
2

)
+n ≤ n2 constraints and each time only one variable raises its value, we

can keep the current LHS and RHS values of each constraint, and are thus able
to know which constraints are tight. Hence Line 10 can be realized implicitly
since a variable is frozen iff it appears in some tight constraint. To implement
Line 4, we first apply (1) to find an unfrozen variable (say zp) if there exists
one, and then use (2) to find a constraint containing zp that has the smallest
difference between RHS and LHS values; this difference is exactly the amount
that zp can be raised. The other steps in Algorithm 1 can clearly be implemented
to run in poly-time. The lemma is thus proved. 	
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Lemma 4. We can accomplish (1) and (2) in polynomial time.

Proof. We use c(v) to denote the constraint in DU that corresponds to the vari-
able v of IP2. First note that (2) is easy to implement: For each variable zp where
p has endpoints i and j, zp appears exactly in the constraints corresponding to
yi,j or xk for some k ∈ Vp ∪ Ep. Thus we focus on (1). As shown in the proof of
Lemma 3, we know the set of tight constraints in DU, and a variable is unfrozen
if and only if it does not appear in any tight constraint. For p ∈ P d, the variable
zp does not appear in c(xk) (where k ∈ V ∪ E) iff k �∈ Vp ∪ Ep, and zp does not
appear in c(yi,j) (where 1 ≤ i < j ≤ n) iff p is not a path between i and j. We
do the following: Construct a graph G′ from G by deleting all k ∈ V ∪ E from
G for which c(xk) is tight. Then, for every 1 ≤ i < j ≤ n such that c(yi,j) is not
tight, check whether there exists a path p from i to j in G′ of length at most d;
if so, then the corresponding variable zp must be unfrozen due to our previous
analysis. Also, by this procedure we will find an unfrozen variable if there exists
at least one. Clearly this process can be finished in polynomial time. 	

Now Theorem 1 follows directly from Lemmas 1, 2, 3 and 4.

We next turn to the case d = ∞ and prove Theorem 2. We reduce MGNS(∞)
to GNS(∞) as follows: Construct a graph G′ by subdividing each edge e ∈ E
with a new vertex ve. Let w(ve) = 0, Cve = C′

e and Lve = 0 for all e ∈ E.
It is easy to argue that the problem of finding the social optimum of GNS(∞)
on this new instance is equivalent to that of MGNS(∞) on the original one.
Now, applying the poly-time approximation algorithm for GNS(∞) given in
[19], we get a solution for MGNS(∞) with approximation ratio O(log |V (G′)|) =
O(log n). This finishes the proof of Theorem 2.

We remark that a similar reduction can reduce an instance of MGNS(d) to that
of GNS(2d). Using the approximation algorithm in [19], we obtain a solution for
MGNS(d) with approximation factor 4d, which is nearly four times larger than
the ratio guaranteed by Theorem 1. This is in part due to the fact that such a
reduction loses some information of the graph topology, which is important to
our algorithm.

3 Hardness of Approximation for GNS(d)

In this section we present inapproximability results for GNS(d), a special case of
our model MGNS(d). Thus, all the hardness results trivially apply to MGNS(d).
The proof of the following two theorems will appear in the full version of this
paper.

Theorem 4. For every d ∈ N∪{∞}, computing the social optimum of GNS(d)
is APX -hard, even if the contact graph is 3-regular and all types of costs as well
as the attack probability distribution are uniform.

Theorem 5. Assuming Unique Games Conjecture, for any d ∈ N ∪ {∞} and
any fixed ε > 0, we cannot approximate the social optimum of GNS(d) to a factor
of 3

2 − ε in polynomial time.
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4 Polynomial Algorithm for MGNS(d) on Trees

In this section we consider a special class of instances of MGNS(d), in which
the underlying contact graph of the instance is a tree, and the infection cost
and attack probability are both uniform. Our main results are as follows, whose
rigorous proofs will appear in the full version of this paper.

Theorem 6. For every fixed d ≥ 1 or d = ∞, we can find in polynomial time an
optimal solution of a tree-instance of MGNS(d) with uniform infection cost and
attack probability, even if there are budget constraints, i.e., given two integers K
and K ′, a solution can secure at most K nodes and block at most K ′ edges.

Theorem 7. For all d ≤ O(
√

log n), we can find in polynomial time an optimal
solution to (budgeted) MGNS(d) if the instance has uniform infection cost and
attack probability, and its contact graph is a tree of bounded degree.

Theorem 6 in particular settles an open problem from [21] that asks if there is
a polynomial time algorithm for the minimum average contamination problem,
which corresponds to the special case of budgeted MGNS(d) on trees where every
node has security cost ∞ and all other costs as well as the attack probability
distribution are uniform.

5 Conclusions and Future Research

We propose in this paper the mixed generalized network security model MGNS(d),
which generalizes several other models for infection control. We present approxi-
mation and inapproximability results for the problem of computing the optimum
solution of MGNS(d), and exact polynomial-time algorithms for tree instances
with uniform infection cost and attack probability distribution. Some of our re-
sults lead immediately to improvements upon the previously best known results
achieved for some special cases of our model.

There are many interesting questions left that deserve further explorations.
Regarding the optimization of social cost, a big open question is whether we
can break the O(log n) factor for MGNS(∞) or GNS(∞), or there is a matching
hardness of approximation result. Also for MGNS(d) where d < ∞, there remains
a large gap between the upper bound of d+1 and the lower bound of 3

2 −ε on the
approximation ratio. Another research issue is the formulation and investigation
of the decentralized or game-theoretic counterpart of our model, where a user
can decide whether to install an anti-virus software, and might also be able to
block some of the links to other users. Finally, incorporating other propagation
models (e.g., the independent cascade model, or the linear threshold model) into
MGNS(d) may lead to more accurate modeling of some applications.
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