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Abstract— Recent developments of smart devices and mobile
applications have significantly increased the level at which
human users interact with mobile systems. As a result, human
activities, usage behavior, and perceived experience of users
weigh increasingly on the performance of mobile networks, which
has created new challenges for system operation in various
aspects, such as increasing uncertainty, selfishness in operations,
and complicated performance evaluation. On the other hand,
the strong engagement of a large population of human users
makes it possible to take advantage of the unique features of
human behavior and to leverage the computing powers owned by
users. Due to these emerging features of mobile networks, their
design and evaluation require a hybrid view of human factor
and information technology, and a paradigm shift is required
for designing a new human-in-the-loop architecture by actively
learning, adapting, and steering user behavior, so as to exploit
the human factor in future ubiquitous mobile systems, and to
greatly enhance system efficiency and provide superior quality-of-
experience to users. The goal of this survey is to summarize recent
results that focus on understanding and exploiting the human
factor in mobile networks. In the tutorial, we summarize and
discuss novelties of these formulations, adopted methodologies,
and interesting results. We also point out some future research
directions.

Index Terms— Human-in-the-loop, mobile networks, optimal
control, prediction, online learning, crowdsensing, game theory.

I. INTRODUCTION

HE recent developments of smart devices and mobile

applications have significantly increased the level at
which human users interact with mobile systems and the
penetration of mobile subscribers exceeded 97% in 2015.
The popularity of smart mobile devices and social networks
such as Facebook stimulates a surge of mobile data traffic.
It is estimated that the monthly global mobile data traffic
will reach 49 exabytes by 2021 and represent 20 percents
of total IP traffic [1]. As a result, human activities, usage
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behavior, and user perceived experience weigh increasingly
on the performance of mobile networks.

This fast growing data traffic presents great challenges to
mobile network design, e.g., in spectrum efficiency, energy
efficiency, and computing capacity. On the other hand, unique
features of human behavior, e.g., repeating or semi-stationary
behavior, and the human computing power from the network
edge, make it possible to learn and predict user preferences and
needs, and to improve user experience by performing human-
aware system control through behaviorial data, as well as to
exploit human capacity for resolving large-scale distributed
computing problems.

Indeed, during the past decade, growing attentions have
been paid to monitoring, analyzing, and steering human behav-
ior in various human-in-the-loop systems, including cellular
networks, haptic communication systems, and E-commerce
sites. New techniques such as machine learning algorithms
are being developed and implemented to learn user pref-
erences and to exploit the discovered behavior properties,
with the objective of enhancing system performance and
improving user experience. For instance, content providers
such as Youtube pre-fetch video clips onto terminal devices,
e.g., small cells and smartphones, based on the learned user
preferences. Amazon pre-ships desired products to the closest
distribution center of customers based on predicted customer
purchase patterns. A haptic system can also deploy predictive
intelligent modules to provide quick response actions while
the actual actions are still in delivery. These examples show
how human behavior patterns can be exploited for performance
improvement. Another way to exploit the human factor is
demonstrated by Amazon Mechanical Turk, which efficiently
gathers human user intelligence, and facilitates solving hard
technical problems for machines by human workers. All these
techniques have been proven effective in practice in improving
system performance and enhancing user experience.

Despite such a strong industry effort and continuing success,
the human factor has not yet been fully understood and taken
into consideration in the current generation’s design of mobile
communication networks. As a result, we still do not have
a good understanding about the fundamental benefits of the
human factor to system performance. For instance, what are
the benefits of learning and predicting user behavior? How
to exploit human user behavior patterns in system control to
achieve performance gains and improve quality-of-experience?
How can we best incentivize human users to supplement a
computing infrastructure by changing their usage behavior?
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TABLE I
Toprics AND CATEGORY
[ Category | HULA Topic |
Human Sec.II: Crowdsensing applications and data assembly
intelligence Sec.III: Mechanism design for human-collaboration
Exploring Sec.IV: Human-system interaction for network management
human Sec.V: Network control with user demand prediction
factor Sec.VI: Learning-aided dynamic system control
Human data Sec.VII: Privacy of human-related data

Moreover, technology challenges regarding understanding
human behavior and human-aware system implementation also
call for new research efforts. For example, how to best identify
human behavior patterns? What are the most effective ways
to gather human user data? What are the key distinct features
of behaviorial data, and how to best protect privacy?

Addressing these questions in human-intense mobile net-
works requires an in-depth joint investigation from both theory
and systems, and a paradigm shift is required for design-
ing a new HUman-in-the-Loop Architecture (HULA) that
explicitly takes into account and explores the human factor in
such systems, by actively learning, adapting, and steering user
behavior. In this new architecture, we are able to exploit the
human factor in future ubiquitous mobile systems, e.g., 5G,
and to greatly enhance system efficiency and provide superior
quality-of-experience (QoE) to users.

In this tutorial, our objective is to provide a timely survey
of recent results on understanding and exploiting the human
factor in various contexts of mobile networks. We do not
intend to cover all related topics on human-in-the-loop mobile
networks. Instead, we narrow down our focus to the following
topics, and try to discuss related recent developments, with
an emphasis on novelties of the frameworks and new tech-
niques/methodologies adopted in the studies. The topics are
summarized in Table I.

These topics are chosen to demonstrate the collaborative
efforts undertaken in three key categories in the HULA
architecture, namely, collecting human intelligence, exploring
the human factor for performance improvement, and handling
human data, where the first two concern the fundamental
benefits of exploring human-in-the-loop characteristics and
the last concerns the technology aspect. In our presentation,
we also selectively present some results in more details based
on relevance and ease of elaboration.

The organization of this paper is as follows. In Section II,
we discuss crowdsensing and its applications. In Section III,
we discuss incentive mechanism design for mobile networks.
We then discuss network management with human users in
Section IV. After that, we consider network control with
prediction in Section V, followed by Section VI about joint
learning and optimization. Finally we discuss data privacy in
Section VII. We then provide an editorial for the accepted
papers in this special issue in Section VIII. We conclude the
paper and discuss possible future directions in Section IX.

II. CROWDSENSING APPLICATIONS AND DATA ASSEMBLY

Mobile personal devices with embedded sensors are becom-
ing increasingly popular. Nowadays, almost all smartphones
have built-in sensors including accelerometer, gyroscope and

magnetometer. High-end products also embed proximity sen-
sors, light sensors, barometers and humidity sensors. Besides
these built-in sensors, other components in smartphones can
also provide sensing capacity. For example, WiFi modules can
be treated as a signal strength sensor, and microphone as a
noise level sensor. Some manufacturers also tailor products
to specific needs of users. For instance, a Japanese manufac-
turer provided a smartphone with radiation sensor after the
Fukushima tragedy in 2011 [2]. Connected vehicles compose
another category of mobile sensing devices that enjoy more
stable power supplies and variety of sensors. Compared to
mobile personal devices, vehicles traverse the city and provide
larger and better coverage for the urban areas.

This wide availability of high performance sensors makes
it profitable to elicit the power of the crowd to accomplish
tasks that will otherwise be hard to accomplish. Indeed,
over the past few years, crowdsensing has received much
attention due to its wide applicability. Below, we first introduce
various applications of crowdsensing. Then, we explain how
to assemble the crowdsourced data from multiple sources, and
ensure the most trustworthy information.

A. Crowdsensing Applications

There have been many applications for crowdsensing, e.g.,
environmental sensing and social sensing. In the following,
we mainly focus on three applications: environment, trans-
portation and people.

1) Environment Sensing Applications: Citizens sharing
environment awareness and health concerns has been a very
popular application of crowdsensing. CommonSense [3] relies
on specialized hand-held air quality sensing devices that com-
municate with smartphones to measure various air pollutants,
e.g., COy or NO,. These devices, when deployed across a
large population, collectively measure the air quality of a
community or a large area. PiMi air community [4] makes a
progress on understanding influential factors to environment
with crowdsensing. Specifically, PiMi measures the indoor
PM2.5 concentration through a portable device connected to
volunteers’ smartphones, and asks users to label building
information and activities. With hundreds of hours indoor
air quality information labeled, it is capable to analyze the
impact factors for indoor air quality. Personal Environmental
Impact Report (PEIR) [5] is a system that allows users to
leverage their smartphones to determine their exposure to
environmental pollutants. A sensing module installed on the
phone determines the current location of the user as well as
information about the mode of transportation, e.g., bus or car,
and transmits this information to a central server. In return,
the server provides users with useful information about the
ambient impact of their traveling in terms of carbon and parti-
cle emissions. Additionally, the server estimates participants’
exposure to particle emissions generated by other vehicles and
fast food restaurants when commuting. A more recent work,
Gotcha [6], crowdsources air quality monitoring to electric-
taxi fleets, which enables fine-grained pollution mapping and
source identification in urban areas.

Besides air quality, other environmental factors such as
noise, floods, water quality are also interesting crowdsensing
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objectives. Ear-Phone [7] and NoiseTube [8] leverage micro-
phones of smartphones to record ambient acoustic levels, and
infer noise levels in communities. CreekWatch [9] monitors
water levels and quality in creeks by aggregating reports from
individuals, such as pictures taken at various locations along
the creek or text messages about the amount of trash. These
information can be used by water control boards for tracking
pollution levels in water resources.

2) Transportation Applications: Transportation centric
crowdsensing applications focus on measuring traffic conges-
tion, road conditions, parking availability, etc. Pan et al. [10]
use crowdsensing for collecting two types of data, human
mobility and social media, to address the problem of detecting
and describing traffic anomalies. MIT’s Car-Tel [11] exploits
specialized devices installed in cars to measure the location
and speed of cars, and transmits measured values using public
WiFi hotspots to a central server, which can then provides
information such as the least-delay routes or traffic hotspots to
users via queries. Microsoft Research’s Nericell [12] utilizes
individuals’ smartphones to not only determine the average
speed or traffic delay, but also to detect honking levels and
potholes on roads. The pothole patrol in [13] uses the inherent
mobility of the participating vehicles, opportunistically gath-
ered data from vibration and GPS sensors, and data processing
to assess road surface conditions.

VTrack [14] is a system for travel time estimation using the
collected sensor data from drivers. It leverages less energy-
hungry but noisier sensors such as WiFi to estimate user’s
trajectory and travel time along the route, and then leverages
a hidden Markov model based map matching scheme and
travel time estimation method, to identify the most probable
road segments driven by the user and to attribute travel times
to those segments. This work addresses energy consumption
and sensor unreliability issues well. ParkNet [15] system
collects parking space occupancy information through dis-
tributed sensing from passing-by vehicles. PocketParker [16]
is also a crowdsensing system using smartphones to predict
parking lot availability. Unlike ParkNet [15], PocketParker
does not require new vehicle capabilities. MetroEye [17] uses
volunteers’ efforts and plural sensors on their smartphones
to track transfer and riding activities in subway system, and
analyzes the efficiency of the transportation system.

3) Health Application: CenceMe [18] integrates virtual
representations of participants’ current state and context in
social networks and virtual worlds. Based on multimodal
information, e.g., acceleration, audio samples, pictures, neigh-
boring devices, and location, captured by the smartphone,
context information is inferred in various dimensions, includ-
ing user mood, habit, and information about current activity
and environment. The inferred information is then posted as
status message in social networks or translated into irtual
representation of the participants in virtual worlds.

BikeNet [19] proposes a system for monitoring bicycling
experiences of participants. It draws a fine-grained portrait of a
cyclist by measuring his current location, speed, burnt calories,
and galvanic skin responses. The collected data from the crowd
can be used to develop live maps for the cycling community.
DietSense [20] assists participants who wish to lose weight by
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documenting their dietary choices through images and sound
samples. Participants take pictures of what they eat and share
within a community to compare their eating habits. A typical
use scenario for this is for a community of diabetics to watch
what other diabetics eat and control their diet and to provide
suggestions to others.

B. Data Assembly

As most participants in crowdsensing tasks are non-experts,
errors are inevitable. As a result, conflicting information
may be given to the same task. To obtain the final results
from these potentially inconsistent data, one important issue
is how to assemble the crowdsourced data from multiple
sources, and obtain the most trustworthy information. We now
discuss different methods that have been proposed in the
literature.

The most intuitive approach of data assembling is majority
voting [21], which selects the majority answers from all
sources as the final output. However, this approach fails to take
the reliability levels of different sources into consideration,
which may lead to poor performance when the number of
low quality sources is large. To solve this problem, numerous
techniques for multi-source aggregation have been proposed
to derive true answers from a collection of sources by con-
sidering source reliability. One classic approach is named
D&S [22], which leverages a confusion matrix for each user
and a class prior to model user expertise. ZenCrowd [23]
instead uses expectation-maximization (EM) to simultaneously
estimate true labels and user reliability. It assumes that users
act independently and simplifies the estimation of the full
confusion matrix per user.

Snow et al. [24] adopt the D&S approach but consider
the fully-supervised case of maximum likelihood estima-
tion with Laplacian smoothing to test the source reliability.
Venanzi et al. [25] introduce community-based Bayesian
aggregation model to estimate each user’s reliability and
true labels by using the community’s confusion matri-
ces and employing ground truth to improve accuracy.
Raykar et al. [26] propose a Bayesian approach to add work
specific priors for each class for binary labeling tasks. Simi-
larly, Welinder et al. [27] also added priors to each parameter
used in Bayesian approach. Zhou et al. [28] defined a separate
probabilistic distribution for each user-item pair and adopted
a minimax entropy principle to estimate true labels and user
reliability jointly. These methods are able to handle multiple-
choice question aggregation.

Pasternack and Roth [29] introduce a framework in which
sources invest their reliability uniformly on the observations
they provide, and collect credits back from the confidence
of those observations. In turn, the confidence of observations
grows according to a non-linear function based on the sum
of invested reliability from their providers. Li et al. [30]
propose an optimization framework to model different data
types jointly, and estimate source reliability and truth simul-
taneously. They also propose a different method in [31] to
automatically estimate truth from conflicting data with long-
tail phenomenon. FaitCrowd [32] proposes a novel proba-
bilistic Bayesian model to address the challenge of inferring
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fine-grained source reliability. By jointly modeling question
contents and collected answers, the proposed model learns the
topics of questions, topic-specific expertise of sources, and
true answers simultaneously.

III. MECHANISM DESIGN FOR HUMAN COLLABORATION

To prepare for future 5G mobile networks, there are
new wireless access structures such as heterogeneous net-
works [33], networked MIMO [34], and cloud-based radio
access networks [35] to improve system performance in many
aspects (e.g., spectrum, energy, and computing efficiency).
A large number of cooperative wireless access points will be
deployed close to users to serve their traffic in the vicinity,
which also helps monitor their activities and collect data. How-
ever, this dedicated network for data sensing and processing
is costly to deploy and operate, making it not scalable to
continued growth of real-time data traffic in the new era of
big data [36]. Moreover, it can only respond to existing data
and cannot actively interact with users to obtain useful data
beforehand.

To efficiently monitor users’ behavior and collect useful
data in a proactive way, mobile crowdsensing is proposed
as a promising approach on the network edge. It employs
human-centric mobile sensing and computing devices (such
as smartphones, smartwatches, and in-vehicle sensors) as well
as human intelligence to sense and transmit back the selected
data collectively to the mobile system’s central office. Given
millions of smartphones sold every year, mobile systems
recently started to utilize the power of crowd at the network
edge. For example, the mobile system can track users’ GPS
locations via their smartphones to obtain user mobility pat-
tern and predict traffic in spatial and temporal domains for
proactive resource allocation. Besides, the mobile system can
employ a large number of smartphones to build up a real-
time database to provide location-based services (e.g., ambi-
ent environment monitoring, public recommendation, smart
transportation, and indoor localization) whose global rev-
enue increased from US$2.8 billions to US$10.3 billions
between 2010 and 2015. For example, each smartphone can
transmit back the name, location, signal strength and con-
gestion level of any nearby WiFi networks, helping build
a live map of commercial WiFi networks. Another service
can be live map of auto traffic, where dynamics of users’
GPS location data on a highway tell whether there is a traffic
jam.

We also note that human intelligence is a good supplement
to machines and mobile devices in many tasks. In complex
tasks such as public recommendation (e.g. of spectrum chan-
nel, traffic, news and popular video files), image tagging and
natural language processing, solely developing or improving
algorithms is unable to ensure high accuracy, while human
participation efficiently covers the shortfall in current tech-
nologies [37], [38]. We can roughly categorize mobile crowd-
sensing tasks into device- and human-oriented tasks.

Such edge devices and human activities are expected to
lead to the evolution of mobile IoT [39], yet there are
two main challenges that hinder the development of mobile
crowdsensing:

Incentive for Smartphone Collaboration: To handle sensing
and computing tasks, users concern about the potential pri-
vacy loss, inconvenience and energy consumption. As some
sensed data (e.g., GPS location coordinates) are personal and
sensitive, a user may psychologically worry about privacy
loss or even property loss due to disclosure of bank account
information in data reporting [40]. He may also face dis-
comfort due to frequency annoyance from unwanted adver-
tising in using location-based services (e.g., [39], [41], [42]).
Besides privacy loss, users also concern about the resource
consumption (e.g., energy) and the resulting inconvenience to
own usage. Periodically sensing and transmitting data to the
system’s central office consume a user’s smartphone battery
energy. According to experiments and measurements done
by [43] and [44], the consumed energy depends on the detailed
specifications of data sensing tasks, involving the interaction
efficiency across different layers (e.g., user interaction layer,
application layer, transport layer, and radio channel state).

Human users are rational and take the potential privacy
loss or energy consumption in smartphones into account when
deciding whether to join the tasks. To understand and estimate
their behavior, we model them using the classical expected
utility or cost model to tell the effect of incentive design.
Depending on the assigned tasks, users are risk averse when
reporting sensitive data and are more risk neutral when han-
dling the other tasks like computing. Compared with risk neu-
tral users, risk averse users dislike average-preserving spreads
in the distribution of their final collaboration benefit [45].
It is natural to model their utility as a concave function
while risk neutral users’ utility is linear. Using game theory,
human users’ collaboration behaviors can be analyzed at the
equilibrium, and then it is feasible to design efficient incentive
mechanisms in the first place to stimulate desirable user
behavior.

Ho et al. [46] study the use of financial incentives to
encourage high quality crowdwork on Amazon Mechanical
Turk. Specifically, they focus on the use of performance
based payments (PBPs), bonus payments awarded to workers
for producing high quality work. Horton and Chilton [47]
design a labor supply model to estimate a worker’s reservation
wage, which is for balancing a company’s production cost and
its workers’ reservation wage. In CrowdSearch [48], crowd
sourcing and micro-payments are adopted to incentivize people
to improve automated image search. The human-in-the-loop
stages are added to the process of image search with tasks
distributed to the user population. Zhao et al. [49] focus
on online incentive mechanisms for mobile crowdsensing.
The authors have designed two online mechanisms under
different assumptions and proven that the mechanisms satisfy
the computational efficiency, individual rationality, budget
feasibility, truthfulness, consumer sovereignty and constant
competitiveness. Zhang et al. [50] propose online incentive
mechanism design for crowdsensing applications with Smart-
phones. They have designed three computationally efficient,
individual rational, profitable and highly competitive mecha-
nisms. Koutsopoulos [51] propose an incentive mechanism to
minimize the total cost of compensating participants, given the
quality constraint of sensing tasks.
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Quality of Information: To successfully build up a data-
base and keep it updated, the mobile system requires reli-
able data sources from users. When employing the public
crowd equipped with various smartphones for large-scale
sensing, the quality of sensory data/information varies signifi-
cantly among individuals. An individual’s quality of informa-
tion (Qol) is affected by various factors in handling a specific
task, e.g., the sensor quality, noise, and human intelligence.
Critical Qol metrics should be determined for different tasks
and the general goal is to obtain high quality data at the
minimum cost through system-human interaction [52]. In the
online process of learning massive datasets’ quality, we should
differentiate low and high quality labelers over time and
select the best set with performance guarantee [53]-[55].
Today’s mobile devices are similarly good in standard sensing
(e.g. GPS and WiFi signals), whereas human users’ perfor-
mances vary significantly in education and skill levels as well
as efforts to make. We expect more Qol diversity in human-
oriented tasks than device-oriented ones.

To incentivize enough collaborators and ensure high Qol,
there are increasingly more works for modelling of
device/human diversity (e.g., in collaboration cost and Qol),
and they aim to address the collaboration incentive and
quality management problems via mechanism design and
learning. We will introduce the detailed learning approach in
Sections V and VI, and now focus on incentive mechanism
design in this section. To model the relationship between the
mobile system and human users for the Qol-aware incentive
design, principal-agent models under information asymmetry
are widely used, and mechanisms like economic pricing,
contract and auction are proposed to motivate users’ collabo-
ration despite lack of information (see [52], [54], [56]-[58]).
To provide readers with more background knowledge,
we introduce some simple but typical mechanisms in [58] for
both device- and human-oriented tasks in the following.

1) Incentive Design for Device-Oriented Crowdsensing
Tasks: In these tasks, mobile devices are employed to sense
and report target data (e.g., GPS location and WiFi signal)
without continuous human intervention, and their owners/users
simply decide whether to collaborate at the beginning of a
sensing period (e.g., a month or a year), by comparing the
long-term collaboration benefit and cost. As the mobile devices
periodically sense and contribute similar amounts of data,
we consider a threshold-based model for the Qol control.!
Given a large number N of users in mobile networks, if the
mobile system attracts at least no users as collaborators for
sensing, it will successfully build the database with guaranteed
Qol and receive a revenue of V. Otherwise, it does not receive
any revenue. We assume a fixed collaboration cost for each
user (e.g., cost C; for user i) which is a private information
unknown to the system or the other users. The interaction
between the system and devices under asymmetric information
is modeled as a Stackelberg game:

o In Stage I, the system simply announces a total

reward R to be fairly shared among collaborators

1Through rigorous probabilistic analysis, this threshold-based model is
validated by [37] to provide certain Qol guarantee.
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and to all
users.

o In Stage II, each user decides to join the crowdsens-
ing or not by predicting its shared reward and the other
users’ costs and decisions.

Assume there are randomly n out of N users willing to
collaborate in Stage II, there are two models for determining
a collaborator’s payoff:

o Reward model for collaboration effort: By joining the

collaboration, user i’s expected payoff is?

R
(2 c)ie)

where 1{x) is the indicator function and equals 1 when
the event X happens, and the expectation is taken over all
N — 1 users’ cost and decision distributions. The crowd-
sensing starts only when there are sufficiently many
collaborators to meet the Qol requirement, and the user
of cost C; obtains the equally allocated reward R/n by
sharing with the other n — 1 collaborators.

o Reward model for successful collaboration: A collabora-
tor i’s expected payoff is

R
()

where the crowdsensing does not wait for enough users

to start. Here users take the risk for not being awarded.
In the two reward models above, the system receives an
expected profit of

f(R)=E(V - R)1{n>n0))>

where the expectation is taken over random variable n by
considering all users’ possible binary responses.

This dynamic game can be analyzed by backward induction.
We start analysis with users’ equilibrium decisions in Stage II
and then end up with the system’s reward decision in Stage I.
Though the second reward model (for successful collaboration)
seems easier to implement by the system, [58] shows that the
first reward model (for collaboration effort) outperforms in
motivating users’ collaboration and save the system’s budget
for compensating users’ costs. Now we focus on the first
model to explain the detailed analysis. Without much loss
of generality, we assume that users’ collaboration costs are
independent and identically distributed with a cumulative
probability distribution function F ().

Starting with Stage II, we can show that there is an identical
decision threshold y such that a user i will collaborate if and
only if C; < y. For the user with the cost equal to y, he is
indifferent to collaborate or not and has zero payoff. That is,

R
E((m——i—l - y)l{m+12n0}) =0,

and the expectation is taken over m which follows a binomial
distribution B(N — 1, F(y)). Note that m tells the collaborator
number among the other N —1 users. The above equation helps

the required collaborator number ng

2The linear utility in this payoff function tells the user’s risk neutrality.
We can extend to a risk-averse version by formulating a concave utility
function.
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Total reward R

Fig. 1. System’s expected crowdsensing profit f(R) as a function of total
reward R and total user number N in [58].

determine the value of y and the equilibrium y increases with
reward R to include more users.

Finally back to Stage I, there is a trade-off to decide
the optimal reward R: a larger R leads to a smaller net
value V — R for the system, but increases the collaboration
success probability E, (1{;>4,) to meet Qol requirement.
Note that random variable n follows a binomial distribution
B(N, F(y)). To illustrate such a trade-off, Figure 1 shows the
expected profit f(R) is first increasing and then decreasing
in R, and the optimal R* yields the maximum profit. As the
total user number N increases and more users are realized
to have small collaboration costs, the optimal reward R*
decreases and the optimal expected profit f(R*) increases.

2) Incentive Design for Human-Oriented Crowdsensing
Tasks: In many device-oriented crowdsensing tasks, users
report fixed and periodic data over time, and each contributes
similarly in the large scale network. Differently, users in
human-oriented tasks can flexibly decide how many efforts
to make. For example, an individual can decide how much
time to learn required skills via self-training or consulting
friends and how much time to directly contribute to handle the
tasks [37], [38]. Still, users are different in cost efficiency to
handle sensing tasks and we categorize N users into / types in
set I ={1,---,1}. Each type includes N; users and we have
>icr Ni = N. A user of type-i perceives a unit cost K; in
handling # amounts of tasks and expects to receive a reward r.
Its payoff function is thus u;(r,t) = r — K;t.

Under asymmetric information about users’ types, contract
theory is widely used to study how the system decides contrac-
tual arrangements with users. The contract can be written as
{(ri, t;), Vi € I} by designing specific reward r; and task ¢; for
type-i users. To ensure users’ participation and their truthful
identity revelation, two properties should be satisfied for the
optimal mechanism design:

o Individual rationality (IR): A contract satisfies the indi-
vidual rationality or participation constraints if each
type-i user receives a non-negative payoff by accepting
its own contract item (r;, t;), i.e.,

wi(ri,t)=r; —Kit; >0, Viel

o Incentive compatibility (IC): A contract satisfies the
incentive compatibility constraints if each type-i user will

Rewards

0.05 0.1 0.15 0.2 0.25
Tasks

Fig. 2. Optimal contract {(r;,t;),Vi € I} for three types of users under
asymmetric information in [58].

truthfully choose the contract item for its own type, i.e.,
ui(ri,ti) > ui(rj,tj), Vi, j eI

Subject to these IR and IC constraints, the system aims to
maximize its profit in expected sense, i.e.,

Ew, vien(f ({N;t;, Vi € I}) — Z Niri),

iel

max
{(ri 1),Viel}

where function f(-) combines all user types’ efforts and may
follow a sigmoid or threshold-based structure to reflect the
Qol requirement.

Without loss of generality, we assume user types are
reordered according to increasing cost efficiency or decreasing
unit cost: K1 > K, > --- > K. Reference [58] shows that
the optimal contract {(r/,#"),Vi € I} should assign more
tasks to a user with higher type (better cost efficiency) and
reward it more. Fig. 2 shows the relationship between different
contract items in a three-type example to satisfy both IR and IC
constraints. A type-1 user’s tight IR constraint r{' — Ky ] = 0
is sufficient to ensure IC constraints, as this type of users
cannot afford the higher cost when choosing a higher contract
type (u1(r3,t3) < 0 and u1(r3,t3) < 0). Similarly, a type-2
user cannot afford the higher cost when choosing (5, £7) and
does not want to choose type-1 contract to get less reward.

We should note that the above crowdsensing contract in [58]
and some other works (e.g., [54], [57]) is in general a
screening contract with observable sensing efforts and the
system can perfectly pay according to users’ efforts. There
are also other contracts like moral-hazard with unobservable
efforts (see [59]), where the system cannot directly observe
users’ efforts or infer their sensing efficiencies from the noisy
crowdsensing outcomes. Such contract design may fit some
other crowdsensing tasks under the difficulty to tell sensing
quality of users or even determine the ground truth [38], [60].

Besides modelling the interaction between the system
and users as principal-agent problems and solving by con-
tract or other pricing mechanisms, there are some ways
other than economic rewards/payments to stimulate users’
crowdsensing efforts. For example, more and more users are
subscribing to the location-based services supported by mobile
crowdsensing and they act as both information contributors
and consumers in the market or social community [61].
The benefit of accessing the information database or the
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stations (BSs) [63].

supported services help motivate users especially those with
high information/service valuations to contribute to crowd-
sensing. Despite the help from this social effect, [62] shows
that incentive mechanisms like side-payment are still needed
to ensure heterogeneous users’ high participation.® Instead of
using complicated economic payment, [62] also designs novel
content-restriction mechanisms to restrict information content
to be accessed by the low contributors as potential penalty and
incentivize users even with low valuations to contribute in the
first place.

IV. HUMAN-SYSTEM INTERACTION
FOR NETWORK MANAGEMENT

Provided with massive useful data obtained via mobile
crowdsensing, how to best use such information for prepar-
ing for and improving network management is a question.
Users’ ever-increasing demands in high-throughput or low-
delay traffic services challenge the limited capacity of wireless
networks. In the following, we show to leverage such infor-
mation to improve the system efficiency.

A. Traffic-Aware Dynamic Communication Cooperation

With knowledge of users’ data traffic distribution in time
and space domains, we can proactively reshape their demands
to better fit the regional resource distribution in the limited-
capacity networks. We seek dynamic communication coopera-
tion between users and mobile networks and between different
mobile networks for proactive operation.

In the time domain, a traditional cellular network needs
to over-provision capacity for traffic demand at peak times
of the day. After sensing and learning users’ traffic behavior

3Besides IR and IC properties, when applying side-payments on users, some
other property like budget balance should be ensured for the mechanism
design.

(d) Communication cooperation in CoMP

An illustrative example of conventional resource management and three new communication cooperation schemes for two neighboring base

over time, [64] presented a price-based feedback control
loop between the cellular network and users to smooth out
temporal demand fluctuation. In such cooperation, users are
willing to reschedule their demands to less congested periods
to save money. Reference [65] studies how to learn users’
social activities to estimate and control network congestion.
To further reduce severe traffic overloads in cellular networks,
delayed traffic offloading is proposed by exploiting user
mobility data and opportunistically offloading cellular data
through WiFi or small-cell [66]-[68]. Users inside or close
to WiFi or small-cell coverage are provided with economic
benefits to roam and connect to the under-utilized access
points, by taking their limited-capacity backhaul into account.

In the space domain, the mobile networks continuously
sense users’ locations and applications’ QoS, and estimate
varying wireless traffic over cellular networks. Given unevenly
distributed traffic, it is desirable for neighboring base sta-
tions (BSs) of the same or different cellular networks to
cooperate [63].* As shown in Fig. 3, there are three new
cooperation schemes on the demand side that exploit the
broadcast nature of wireless channels and employ resource
sharing to reshape BSs’ load and reduce energy consump-
tion [63]. Before the cooperation, the two BSs exchange with
each other the communication information (e.g., traffic types
and user locations) and energy information (e.g., renewable
harvesting rates). According to their load, spectrum and energy
information, they apply one out of three cooperation schemes,
namely, traffic offloading, spectrum sharing, and coordinated
multi-point (CoMP). The first scheme shifts traffic of the
heavily loaded BS to the lightly loaded one [71], [72],

4In practice, according to [69] and [70], three major mobile networks (i.e.,
China Mobile, China Unicom and China Telecom) in China have agreed to
jointly deploy shared tower infrastructures and share resources to enable the
co-location of individually deployed BSs by different networks.
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to-device (D2D) communications in [76]. Here, all users ¢, ¢» and c¢3 are
interested in the same video streaming.

the second scheme reallocates idle spectrum resource from
lightly loaded BS to heavily loaded one [73], and the last
scheme implements coordinated baseband signal processing
to jointly serve multiple mobile terminals over the same time-
frequency resource [74]. If the two BSs belong to different
selfish entities, fairness (e.g. in proportional or symmetric
sense) in sharing cooperation benefits should be ensured to
make their cooperation feasible and sustainable [71], [73].

B. Content-Aware Cognitive File Delivery

Given a transmission protocol, each BS in the cellular
networks can further improve its transmission efficiency by
examining and comparing the content of users’ requested files.
For example, a traditional BS communicates with users via
their cellular links independently, though a number of users
within the cell are interested in the same Internet content (e.g.,
news, football matches and popular movies) at the same time.
Such content interests overlap more and more frequently due
to growing attentions of mobile social networks [75]. Aware
of users’ common interests, Hsu and Duan [76] proposes the
content-aware BS to leverage such common interests by broad-
casting files over BS-to-device medium (see Fig. 4). Due to
the unreliable wireless channels, users may not receive target
files simultaneously. Reference [76] investigates the efficiency
of B2D broadcast and further employs D2D broadcast for
the physically neighboring users to locally repair files. Online
scheduling algorithms are proposed to cope with the case of
dynamic content arrivals.

Awareness of users’ requested content, mobile networks
can also identify popular files and proactively download such
files to BSs’ caches [77]. This saves the download time from
content providers’ remote servers and achieves high through-
put via the last-mile B2D delivery only. As popular files are
downloaded in off-peak hours, the BS-caching helps alleviate
the traffic congestion during the peak hours. With further
knowledge of users’ locations, multiple BSs can cooperatively
serve users to achieve diversity gain, and a user can also
choose BSs dynamically to adaptively adjust transmission
quality (e.g., [78]-[80]). Besides local caching at BSs, popular
files are also cached on the user side. Mobile users exploit
their mobility profile to share files via D2D communications
during peak hours. Reference [81] derives the power scaling
law of network capacity by considering the range of D2D
communications and [82] further investigates the resulting
outage in file sharing. To motivate selfish users to cache
and share files useful to the whole system, [83] investigates
their diverse caching preferences and the impact of selfish

behavior on system performance (e.g., average delay of file
delivery).

As the mobile networks become more heterogeneous and
decentralized, we note that human users are playing more
active roles in shaping the HULA architecture. There are more
and more user-initiated or controlled networks (e.g., D2D,
WiFi offloading, and small cells) and the involved network-
edge devices are more powerful.

and this will be strengthened in the future considering the

C. Human-Human Interaction for Resource Sharing

The file caching and D2D sharing among users on the
network edge leverage their mutual interaction in mobile
networks. More generally, it is desirable for the mobile net-
works to motivate and manage the human-human interaction
to establish a new sharing economy among users in a societal
scale. To reach a win-win situation, users can cooperate with
each other in cooperative communications or pooling personal
resources. As users are selfish and they are sensitive to their
resource consumption, how to provide sufficient incentives to
users for motivating sharing is a question.

1) User-Initiated Cooperative Communications in Short
Term: Most users report only two days of battery life during
smartphone active use and they have to charge smartphones
more frequently due to the heavy data usage and limited
battery capacity [84], [85]. This is one of the biggest customer
complaints for smartphones. As such, it is important to resolve
phones’ energy shortage problem and improve the connectivity
of the whole wireless network. User-initiated cooperative
communications provide an efficient way for smartphones’
energy saving [86], where a user short of energy in the
uplink can first forward data to another in the vicinity via
short-range communications (e.g., D2D) and the latter user
will transmit to the BS. However, most work overlook the
fact that users are selfish and are only willing to help when
they can benefit from the cooperation [87]. By modelling the
transmission energy consumption and battery storage of smart-
phones, [88] exploits the diversity of smartphones’ battery
levels and channel conditions to propose a pricing scheme to
incentivize the cooperative communications. Optimal traffic-
dependent pricing is designed for source users to submit
to helping users (if any) without knowing the latter party’s
battery levels, channel conditions and even stay time in D2D
range. After a data transmission, a smartphone stays in high-
power state in cellular interface and [89] further proposes
the traffic aggregation of multiple smartphones for energy
saving.

User-initiated cooperative communications not only address
energy issue for users but also help serve users in poor
signal coverage. For example, in a cognitive radio network,
primary users in poor coverage can opportunistically discover
neighboring secondary users to relay traffics, while secondary
users also gain dedicated spectrum access time for trans-
mitting their own traffic. Reference [90] motivates dynamic
spectrum sharing between a primary user and multiple sec-
ondary users, and [91] further extends the cooperation mech-
anism to a large-scale network including multiple primary
users.
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2) User-Initiated Service Networking in Long Term: Other
than cooperative communications for short-term energy saving
and signal coverage, users can further collaborate with each
other in long term to share networked services. Differently,
here users share upper-layer WiFi or wireless data services
with each other instead of physical-layer relay helps. Users
own and operate devices like the femtocell/WiFi access points
at home and personal hotspots in their smartphones, yet they
are unwilling to share with other people even if such devices
are not used. The development of user-initiated device sharing
and resource trading for enabling such a new sharing economy
of user-provided networks is still at its infancy, and recently
there are some preliminary work to promote this research
direction. Reference [92] and [93] encourage host users to
share home-deployed femtocell/WiFi access points to guest
users, by providing host users with economic return or roaming
benefit to access the other users’ access points.

As all the shared access points are fixed and only cover
a small area, it is difficult for such a static network to
serve many moving users in the future mobile networks.
Differently, [94] proposes a personal hotspot market by moti-
vating users with data-plan surplus to form a mobile WiFi
network for serving the others in data deficit. Under the
existing two-part tariff data plans (each including a lump-sum
fee and a per-unit price charge), some users use up monthly
data quota easily and pay for expensive data over-usage, while
some other users cannot use up all the data quota. By setting
up the personal hotspot in its smartphones, a user with data
surplus can share the cellular connection to another user with
data deficit or a foreign tourist in the vicinity. By taking users’
diverse data usage behavior and random mobility into account,
[94] develops a market-clearing price for opportunistic data-
plan trading between data sellers and buyers to realize a
win-win situation.’> Given this user-initiated secondary service
provision, the traditional data services face direct competition
as traditional over-usage charge or roaming fee is lost. The
operators’ counter-measures are also investigated in [94].

V. NETWORK CONTROL WITH USER
DEMAND PREDICTION

In this section, we consider another important aspect about
how the human-in-the-loop feature can be exploited for
improving system performance, namely, predictive service.
This is a unique opportunity enabled by the human factor for
providing superior quality-of-service to customers by proactive
service, an opportunity not present in causal systems, i.e., Sys-
tem only reacts to user demand after they enter the system.

Let us start with a few examples. The first example is
streaming online videos. In this case, an online video site,
e.g., Youtube, serves users’ video demand. Instead of taking
a passive approach and waiting for a user to click on video
clips before transmission, in which case the user may need
to wait for the video to load and suffer significant delay,
the server can “guess” what the user may want based on

SNote that there are some system-coordinated secondary data-plan trading
work (e.g., [95]), yet the market is still operated by the network operators
without using personal hotspots.
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observed user ativities, and pre-load part of the videos to the
user’s device beforehand to reduce delay. The second example
scenario is prefetching in computing systems, e.g., [96], [97].
Here, data or instructions are preloaded into memory
before they are actually requested. Doing so enables faster
access or execution of the commands and enhances system
performance. Indeed, this unique potential extends to general
computing systems, where each user can represent a software
application and the server represents a workload management
unit. Then, according to application needs, the managing
unit pre-computes certain information in case some later
applications request them, e.g., branch prediction in computer
architecture [98], [99].

In order to provide high level quality-of-service and effi-
ciently utilize future information, it is critical to understand
human behavior features and to utilize such information to
guide system control algorithm design. Therefore, various
studies have been conducted to learn and predict human
behavior patterns, e.g., online social networking [100], online
searching behavior [101], and online browsing [102]. It is
important to note that problems in systems where prediction
is possible are significantly different from those in causal
systems, for instance, [103]-[108], in that prediction pro-
vides additional information for decision making, and should
intuitively bring performance gain. Incorporating user behav-
ior prediction into network control is non-trivial. The main
challenges include (i) uncertainty in prediction, (ii) efficient
incorporation of prediction into algorithm design, and (iii)
rigorous analysis of predictive control algorithms. These chal-
lenges pose new requirements on both system modeling and
analytical method. Below, we survey several recent results
that try to develop deeper understanding about predictive
control. These results provide us with new insights on the
fundamental benefits of predicting user behavior and how to
design efficient predictive control algorithms. Notice that in
these formulations, user behavior prediction is often abstracted
as demand prediction. This is an important step that facilitates
analysis and understanding without losing generality.

A. Proactive Service for Delay-Intolerant Service

The general setting in this thread is as follows. Consider a
system operator providing delay-intolerant service to a set of
users. The system operates in slotted time. In every time, users
generate requests that must be fulfilled in the same timeslot.
The operator get access to a demand prediction module that
outputs the demand distribution in future slots, often assumed
to be cyclostationary. Then, at every time, the system can
decide whether to proactively serve demand in future timeslots,
so as to minimize the overall cost incurred serving user
requests. Under this formulation, recent works [109]-[111]
characterize the benefits of prediction for both asymptotic and
finite user cases.

B. Predictive Scheduling in Queueing Systems

In the second research thrust, the impact of prediction
on queueing system is investigated. The general setting in
this direction is as follows. Consider a single-server queue-
ing system. Arrivals enter the system according to certain
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Fig. 5. A single-server multi-queue system where a server is serving
workloads for different users/applications.

stochastic process. The system is assumed to have prediction
power, in the form of a prediction window that contains future
arrival information. In this formulation, the queueing aspect is
explicitly modeled.

There are two settings considered under this formulation.
Work [112] considers the power of prediction in delay reduc-
tion based on a continuous-time M/M/1 queue. They show
that with future prediction, the system delay under a diversion
rate constraint can be made bounded from the unbounded case
without prediction, given that the prediction window size is
O(—In(1 — 1)), where A is the arrival rate of the queue.
Reference [113] further shows that the required prediction
power is also the lower bound.

In the discrete time setting, [114] considers a general single-
server multi-user system as shown in Fig.5. In this system,
the operator gets access to information about future arrival
{A®),...,A(t + w)}, where w is the prediction window
size. In addition, the operator can also try to pre-serve future
demand requests, with the objective of minimizing the average
power usage for stabling the queues. This is a challenging
problem. Firstly, the network state changes over time. Sec-
ondly, the prediction, though perfect, evolves according to
a sliding window process. Existing results with prediction
typically only handle frame-based prediction.

To tackle this problem, [114] first shows a result that, under
general fully-efficient scheduling policies (equivalent to work-
conserving in non-predictive systems), we have:

(Dn)
ﬂn,O

Dy
=> dux and 70 = Fpsip,, k=1 (D)
k=0
Here 7, denotes the probability for packets in queue n
to experience delay k and ﬂlngk”) denotes the counterpart in
the non-predictive system. That is, the delay distribution is
“shifted-to-the-left.” Then, based on a novel notion of predic-
tion queue, [114] develops a predictive backpressure (PBP)
algorithm, which at every time, chooses a scheduling action
to solve the following problem:

min: ~ £(S@), P©) ~ Y O™ Oun(S0), P0) @)

n

s.t. P(t) € PSSO, (3)

Here f(S(¢), P(¢t)) is the resource cost with S(#) being the
vector of service link condition and P (¢) is the vector of power
allocation, Q;"™(z) denotes the sum of the actual queue size
and the predicted arrivals, and u,(S(t), P(t)) is the service
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Fig. 6. Packet Delay distribution under PBP with FIFO and LIFO schedul-
ing (1/e =100 and D, =5 for all n). The arrows show the shift-to-the-left
phenomenon. In the LIFO case, a large fraction of the packets now experience
zero delay under PBP and this fraction is shown with the number 71:6’ (Dp).

rate queue n obtains under channel condition S(¢) and P(¢).
It is shown that PBP achieves an O(1/¢€) close-to-optimal util-
ity performance (compared to offline optimal). Moreover, for
first-in-first-out (FIFO) scheduling, delay reduction is linear
in the window size, whereas the reduction can be exponential
in the last-in-first-out (LIFO) case. The key idea to overcome
the aforementioned challenges is to incorporate the sliding-
window prediction in a proper way into the queue values
for decision making. Doing so enables one to design low-
complexity algorithm based on the Backpressure controller
for dynamic networks. Fig. 6 shows the delay reduction
performance of PBP with FIFO and LIFO scheduling. From
the results, we see that if as the prediction power increases,
system delay can be pushed arbitrarily close to zero while
keeping the utility performance. The PBP methodology is also
applied in the follow-up work [115] to study the power-delay
tradeoff in cellular networks.

While the above works in predictive control assume exact
prediction, the recent work [116] quantifies the impact of
predictive scheduling on delay reduction with prediction error.
In particular, there now two types of errors, mis-detection
and false-alarm. Based on an M/M/1 queueing model and
an i.i.d. prediction error model, it shows that queueing delay
decays exponential in the prediction power, i.e., the length
of the window within which the operator can see the future
arrivals and serve them, to a lower bound (can be nonzero) that
is determined by the mis-detection rate. The intuition is that
when the mis-detection rate is non-zero, the system will not
be able to preserve the subset of arrivals that are not predicted,
resulting in a delay lower bound.

C. Online Algorithm With Filter-Based Prediction

Another interesting framework in this thrust is online algo-
rithm design. Problems in this category does not assume any
statistical model of the underlying dynamics. Instead, control
algorithms must be designed to be robust for any condition
that can show up during algorithm implementation.

In the perfect prediction regime, works [117] and [118] have
also shown that prediction necessarily reduces the competitive
ratios of the proposed algorithms, which are defined to be
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the ratio between the algorithm performance over the optimal
cost in the offline setting, i.e., complete future conditions are
known. In the imperfect prediction region, [119] and [120]
propose a general filter-based prediction model for study-
ing algorithm performance. Specifically, in this formulation,
no stochastic model is assumed. Instead, arbitrary input can
happen and the question we face is how to design our
algorithm so that it performs well on arbitrary input (compared
to an offline optimal algorithm that knows the entire future
system conditions). However, it is assumed that a filter-based
prediction model predicts the future states with error being
characteried by a convolution of errors over time, i.e.,

Errori(t +s) £ y(t +5) — $:(t +5)
I+s
> fle+s—kels). 4)

k=t+1

Here y;(t 4 s) is a vector in an Euclidean space and specifies
the state the system will be in. Errors(t +s) is the prediction
error when predicting the state for time ¢ 4 s at time f,
f(t) is the impulse function that characterizes the predictor
and e(s) are i.i.d. random variables. This predictor model is
general and includes the widely used Kalman filter and Wiener
filter [119].

Under this general prediction model, the
papers [119] and [120] analyze the performance of an
onlie algorithm called average fixed horizon control (AFHC)
proposed in [121] and [122], and show that with prediction,
it is possible to simultaneously achieve good performance in
regret and competitive ratio.

VI. LEARNING-AIDED DYNAMIC SYSTEM CONTROL

The previous sections have discussed the settings where
prediction or other relevant information are given a-priori.
In this section, we turn to the case where such information
may not be available beforehand. As a result, an explicit
learning phase is required and the system has to go through
a “transient” period before reaching an optimal state. Note
that this learning requirement is recently made possible by
rapid developments in sensing and data analytical tools. Hence,
real-time monitoring and learning have now been enabled
and implemented in various information systems, for instance,
drivers observing real-time road congestion on map applica-
tions, operator tracking web server traffic in data centers, and
system monitoring user usage in power grid. The objective
of this thrust is to efficiently utilize these capabilities in
learning important statistics about the system, and incorporate
the learned information into network control. Results in this
section will help provide a deeper understanding about the
benefits of learning system dynamics.

Below, we present several recent developments. Note that
the human behavior learning component is also abstracted into
learning the environment and can be made explicit in learning
human behavior.

A. Online-Learning Based Control
In the first thread in this topic, stochastic models are
assumed and online-learning based algorithms were developed.
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Specifically, the following general formulation is considered
in these works. Consider a general discrete-time stochastic
network with r queues. In every timeslot, the network con-
dition changes (called state), and the operator observes the
network state and chooses a control action. The control action
incurs a cost, generates traffic into network queues and serves
workload from them. The objective is to find an optimal policy
to minimize the time average cost subject to queue stability.

This is a classic setting that has been studied in the net-
work control literature, e.g., [123]-[126]. However, most prior
results try either to develop approaches based on given statis-
tics, or to rely on techniques such as stochastic approximation
and waive the requirement of statistics. Both approaches do
not investigate the potential impact learning can make to
control. Recent works [127]-[130] instead explicitly consider
the impact of online learning in control.

The work [127] proposes an online learning method by
combining the Backpressure method [125] and online learn-
ing. It develops two algorithms called online learning-aided
control (OLAC) and OLAC?2, which work by (i) first accu-
mulating state statistics, and then (ii) solving an empiri-
cal optimization problem to learn an approximate Lagrange
multiplier, and finally (iii) incorporating the multiplier into
the Backpressure algorithm for realtime control. OLAC and
OLAC?2 remain greedy control algorithms and do not require
any a-priori network statistics for implementation. In addi-
tion, the authors show that both algorithms achieve an
0(¢), O(log(1/€)?) utility-delay tradeoff, and a provable
faster O (e ~2/%) convergence time that is strictly better than
the existing ®(1/¢) bounds. Fig. 7 shows the performance of
OLAC and OLAC2 compared to the well-known Backpressure
algorithm.

This framework was later applied to provide efficient
resource allocation in virtual mobile operator network [131].
A more recent work [130] also explicitly applies the technique
in learning human behavior patterns and tries to understand
factors that affect the intelligence level perceived by human
users in human-in-the-loop information systems. The method-
ology was also extended in [129] to resolve underflow prob-
lems in matching in stochastic queues, a setting that models
various human-intense scenarios including ride-sharing plat-
form matching and crowdsourcing. Reference [128] and [132]
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further extend the results to handle non-stationary network
state distributions, by incorporating a change-detection module
and carefully integrating the detection and learning compo-
nents.

B. Machine Learning Aided Network Control

Another very interesting line of work is on improv-
ing network control with machine learning. Recent results
include [133]-[135]. Specifically, [133] develops a resource
allocation problem based on logistic regression. Here the
training instances are first used to obtain a classifier. Then,
the classifier is then combined with a network optimization
framework to guiding network resource allocation. Based
on real-world data set, it is shown that this learning-aided
approach achieves a significant performance improvement
compared to baseline algorithms.

Reference [134] further proposes a closed-loop control
approach, where a neural network is applied to learning user
preference as a function of the resource allocation decisions,
and a dual decomposition based scheme for deciding resource
allocation. Reference [135] adopts a similar methodology for
mobile systems. The work first analyzes user usage patterns
of an android system. Then, personal context classification is
done with unsupervised learning methods. With these learned
information, the paper then proposes a context-aware schedul-
ing algorithm for unloading and preloading background
applications.

With the fast growing advances in machine learning and
deep learning tools, it is expected that more efficient learning-
based control schemes will be developed.

VII. PRIVACY FOR HUMAN-RELATED DATA

In this section, we discuss an important technology aspect in
designing the HULA architecture related to handling human-
related data, and focuses on data privacy. As we know, many
applications in mobile networks require possession of large
amount of user-generated data for user experience improve-
ment. For instance, in order to build an accurate human
behavior model, it is important to acquire enough user activity
records. In crowdsensing, it is critical to have enough reported
data to enable reliable aggregation. Hence, large amount of
user behavior data is the foundation for designing “intelligent”
system control to meet the increasingly stringent quality-of-
experience requirements of human users in mobile networks.
The strong need for privacy thus naturally arises from the
fact that data can reveal much information about human
users. Indeed, it has been observed that even a slight leakage
of location information will enable identifying users from
data [136]. Moreover, any disclosure of data to malicious
users or misuse will immediately ruin users’ trust in the
system, resulting in poor long-term performance.

The privacy issue has received increasing attentions in
recent years, and various aspects of privacy have been inves-
tigated. We divide them as follows according to their focuses.

The first set of results try to identify key factors that
affect user privacy. In [137]-[139], Christin et al. identified
the privacy threats in sensing applications, and outlined how

privacy aspects were addressed in existing sensing appli-
cations. Typical countermeasures, such as anonymous task
distribution, spatial cloaking, and access control, were also
discussed. Note that applications such as crowdsensing can
often be regarded as a type of data mining applications. Hence,
solutions proposed for privacy issues in data mining can also
be applied to crowdsensing applications, e.g., [140], [141].
In [140], Xu et al. identify four different types of parties
involved in data mining applications, namely, data provider,
data collector, data miner, and decision maker. For each type
of parties, the authors discussed the privacy concerns and the
methods that can be adopted to protect sensitive information.

The second set of results focus on anonymization-based
schemes, which is a popular approach to preserve privacy
by removing any identifying information from the sensor
data before sharing it with a third party. Several different
anonymization schemes are proposed. Works [142], [143] hide
the participant locations by specific router/relay organization
instead of directly anonymizing their names. For instance,
the TOR-based routing scheme applied in [144] anonymizes
the connections to the tasking server by multiple relays
and onion routing to hide the IP address. The participating
devices receive broadcast beacons including the sensing tasks
without having to register or authenticate themselves to a
central entity. For example, users in AnonySense system,
e.g., [144], [145] periodically download all available tasks
from a Tasking Service when they are in public locations. The
Tasking Service only learns that some users in some public
location downloaded tasks. Krontiris and Dimitriou [146]
propose a mechanism to protect the privacy of the mobile users
by the cloud-based agents, which obfuscates user location and
enforces the sharing practices of their owners. Shin et al. [144]
show that the high density of people at such locations makes
the identification of the participants by the server difficult,
and hence conceals their identities. Secure multiparty compu-
tation [147] is another approach for preserving privacy. This
method leverages cryptographic techniques to transform the
data and preserve privacy.

The third set of results focus on designing incentive mech-
anisms discussed in Section III for privacy protection. These
studies consider privacy as a factor that may prevent indi-
viduals from participating and address the privacy and incen-
tive issues in a separate manner. Recent works [148]-[151]
propose several privacy-aware incentive mechanisms. In [150],
Xu et al. assumed that the data collector sign contracts
with individuals who may provide private data. The privacy
protection level is explicitly formulated as a contract item,
so that the derived optimal contract can assist the data collector
to make a wise decision on privacy protection. In their later
work [151], Xu et al. studied how to pay individuals where
the data collector sequentially buys data from individuals.
The sequential decision-making problem of the collector was
formulated as a multi-armed bandit problem, and several
learning policies were proposed to assist the collector to
make optimal decisions. How individuals value their privacy
also plays an important role in aforementioned studies [152].
Finding an appropriate way to determine the value of privacy
is also an important question that needs further investigation.
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VIII. EDITORIAL

In this section, we provide an editorial for the papers
that are accepted to the JSAC Special Issue on “Human-in-
the-loop Mobile Networks.” Specifically, we first group the
papers into four main categories, including crowdsensing and
crowdsourcing, game and mechanism design, mobile system
optimization, and mobile technologies. Then, within each
category, we provide a brief summary for each accepted paper.
Notice that the papers in this special issue are published in two
separate issues. Papers in the first two categories are contained
in the first issue, and the other papers are in the second issue.

A. Mobile Crowdsensing and Crowdsourcing

The paper On Designing Data Quality-Aware Truth
Estimation and Surplus Sharing Method for Mobile Crowd-
sensing considers the problem of crowdsensing and designs
an unsupervised learning approach for data quality and repu-
tation quantification. The user surplus sharing is formulated
as a cooperative game and a Shapley value-based scheme
is adopted for computing user payments. Experiments are
conducted and the results demonstrate the effectiveness of the
proposed solution.

The paper Crowd Foraging: A QoS-oriented Self-organized
Mobile Crowdsourcing Framework over Opportunistic
Networks proposes the crowd foraging framework for
opportunistic ~ crowdsourcing. Under this framework,
the worker recruitment problem is formulated as an online
multiple stopping problem and an optimal recruitment policy
is designed based on dynamic programming. Data-driven
case studies are also conducted to demonstrate the superior
performance of the algorithm.

The paper Tack: Learning Towards Contextual and
Ephemeral Indoor Localization With Crowdsourcing designs
a mobile application framework called Tack for identifying
contexts during events. Tack combines a set of signals for esti-
mating user locations. Its performance is extensively evaluated
with real-world experiments with iOS and is proven efficient.

In the paper Incentive Mechanism for Mobile Crowdsourc-
ing Using an Optimized Tournament Model, the authors inves-
tigates the problem of designing crowdsourcing tournament for
maximizing principle’s utility. A mathematical formulation is
first proposed, with the constraint that each user optimizes its
own utility by choosing the effort in the crowdsourcing com-
petition. Numerical experiments are conducted to evaluate the
impact of parameters. It is shown that the tournament scheme
optimizes principal’s utility and incentives user participation.

The paper Incentivize Multi-class Crowd Labeling under
Budget Constraint considers the problem of incentivizing
crowd workers for multi-class labeling, subject to budget con-
straints. It formulates the problem with a sequential Bayesian
approach. The paper then shows that the platform utility
maximization objective can be intractable, and a polynomial
time algorithm is developed. Through analysis and extensive
simulation, the paper shows that the mechanism achieves high
platform utility.

The paper Privacy Management and Optimal Pricing
in People-Centric Sensing studies the privacy issue in
people-centric services. A metric is proposed to quantify
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the correlation between service quality and privacy level,
based on which closed-form solutions are derived. Several
interesting properties of interrelated people-centric services
are derived and carefully studied.

The paper An Exchange Market Approach to Mobile Crowd-
sensing: Pricing, Task Allocation and Walrasian Equilib-
rium looks at the problem of mobile crowdsensing from the
exchange economy standpoint. The paper first characterizes
the supply-demand pattern for given price vectors. Walrasian
equilibrium existence is then established. The paper also devel-
ops a polynomial-time algorithm for finding the equilibrium
for an interesting practical setting, and an efficient search
algorithm for the general settings.

B. Game and Mechanism Design for Mobile Networks

In the paper Spectrum Allocation and Bitrate Adjustment
for Mobile Social Video Sharing: A Potential Game With
Online QoS Learning Approach, the authors present a
general framework for modeling video diffusion among
mobile users and user QoS. The problem is decomposed
into two subproblems, for which a decentralized algorithm
is proposed to find the Nash equilibrium. Both analysis and
trace-driven simulations are conducted to demonstrate the
good performance of the algorithm.

The paper Customized Data Plans for Mobile Users:
Feasibility and Benefits of Data Trading examines the
secondary data market where users can trade leftover data
caps from others. It derives users’ optimal behavior and
develops an algorithm for ISPs to match buyers and sellers.
Conditions under which the secondary market performs better
for the ISP are derived. The results are also validated via
usage data from mobile users.

The authors of the paper Coexistence Between Wi-Fi and
LTE on Unlicensed Spectrum: A Human-Centric Approach
propose a human-centric approach for understanding the
coexistence between WiFi and LTE. It is shown that static
partitioning of unlicensed spectrum between the two does
not provide any advantage for user satisfaction maximiza-
tion, while adaptive partitioning does bring benefits. A semi-
adaptive algorithm is proposed in the paper and shown to
achieve good performance.

In the paper On Consideration of Content Preference and
Sharing Willingness in D2D Assisted Offloading, the authors
consider the optimal content pushing scheme for D2D net-
works. The problem is formulated into an optimization with
the objective of maximizing the offloading gain. Despite the
non-convexity, the optimal closed-form solution is derived and
a group optimization algorithm is proposed for solving the
general problem. Simulation results are presented to demon-
strate the efficiency of the scheme.

The paper Mobile Data Trading: Behavioral Economics
Analysis and Algorithm Design presents a brokerage-based
market for trading mobile data, based on prospect theory.
It then designs an algorithm to estimate user’s risk preference
and to give recommendations for trading. Then, the paper
derives several useful results on understanding how risk pref-
erence affects the market via simulations.
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C. Mobile System Optimization and Control

The paper CAS: Context-aware Background Application
Scheduling in Interactive Mobile Systems tries to design
context-aware scheduler for mobile systems. It first discov-
ers several interesting patterns from Android experiments.
Then, the paper proposes a scheduling framework, CAS,
to adaptively load background applications. Through trace-
driven simulations and practical implementation, the paper
shows that CAS outperforms existing algorithms.

The paper Small Cell Transmit Power Assignment Based
on Correlated Bandit Learning investigates base station trans-
mit power setting in ultra dense network. The problem is
addressed with the stochastic bandit theory, taking advantage
of human user behavior. An algorithm is proposed to exploit
the correlation structure and to consider power switching
penalties. Through comprehensive system-level simulations,
the algorithm is shown to achieve significant gains.

The authors of the paper Caching in the Sky: Proactive
Deployment of Cache-Enabled Unmanned Aerial Vehicles
for Optimized Quality-of-Experience consider the problem
of proactive deployment of cache-enabled UAVs for QoE
optimization. A machine learning algorithm is proposed based
on conceptor-based echo state networks. Simulations results
with real mobility patterns and actual content transmission data
show that the algorithm achieves significant QoE improvement
compared to benchmark algorithms.

The paper From Prediction to Action: Improving User Expe-
rience with Data-Driven Resource Allocation develops a data-
driven resource allocation framework to perform prediction
and guide resource allocation. A case study is conducted to
reduce the number of complains in cellular networks, and
a DualHet algorithm is developed to tackle the problem.
Numerical results show that the algorithm can achieve up to
2x performance improvement compared to existing solutions.

The authors of the paper Understanding Performance of
Edge Content Caching for Mobile Video Streaming use real-
world datasets to understand request patterns and user behavior
in mobile video streaming. Then, several strategies of edge
content caching are compared. It is discovered that content,
location and mobility factors all affect caching performance.
An efficient strategy is proposed and shown to improve hit
rate by 30%.

D. New Technology Development

The paper R-TTWD:Robust Device-Free Through-The-Wall
Detection of Moving Human with WiFi tries to design
through-the-wall human detection with commodity devices.
The scheme takes advantage of subcarrier correlations. It first
performs a PCA-based filtering and fuses the detection results
for accuracy improvement. The scheme is prototyped on
commodity WiFi devices and evaluation results show that it
accurately detects moving human and human absence.

The paper Stride-in-the-Loop  Relative  Positioning
Between Users and Dummy Acoustic Speakers proposes and
implements a position system called WalkieLokie. The scheme
relies on computing the relative position from a smart device
to a target and only requires simply devices. An algorithm is

designed to enable accurate positioning. Experimental results
over noisy environment validate the robustness of the scheme.

The paper Device-Free Human Activity Recognition Using
Commercial WiFi Devices designs CARM, a channel state
information based human activity monitoring system. The
scheme is based on the CSI-speed model and the CSI-activity
model. It is then implemented on commercial WiFi devices
and shown to achieve high recognition accuracy.

The paper Pervasive Floorplan Generation Based on Only
Inertial Sensing: Feasibility, Design, and Implementation
conducts study on addressing the low quality problem of
crowdsourced data for floorplan generation. A scheme called
SenseWit is proposed and implemented. Real-world experi-
ments in different spaces show its efficiency for obtaining
high-quality structure from low-quality data.

The authors of the paper Peer-to-Peer Indoor Navigation
using Smartphones design a P2P navigation system, ppNav,
to enable fast-to-deploy navigation services. The scheme uti-
lizes WiFi fingerprints, and tracks user mobility and alerts
potential deviations. The authors implement ppNav on com-
modity mobile devices and validate the performance in real
environments. Results show that the scheme achieves good
performance.

The paper Martian: Message Broadcast via LED Lights
to Heterogeneous Smartphones designs a modulation scheme
and a link-layer protocol, Martian, for improving visible light
communication data rate. Through implementation, the paper
shows that Martian can achieve a data rate of about 1.6kbps
even with NLOS-light. Moreover, Martian is able to achieve
a stable and small delay for broadcasting to random receivers.

In the paper Device-Free Counting via Wideband Signals,
the authors propose a mathematical framework for designing
device-free counting systems. An MAP algorithm is first
developed for counting based on model order selection. Then,
a method is designed to lower computational complexity.
Sample-level simulations are conducted to compare its per-
formance with existing solutions.

The problem of keystroke recognition is studied in the paper
Recognizing Keystrokes Using WiFi Devices. It is shown that
WiFi signal can also be exploited to recognize keystrokes.
In particular, a WiFi based recognition system called WiKey
is proposed, which consists of two commercial WiFi devices.
The system is implemented and shown to achieve a detection
rate higher than 97.5%. In real-world experiments, it is also
shown to recognize 93.5% keystrokes in continuously typed
sentences and 85% words in a sentence.

IX. CONCLUSION AND DISCUSSION

In this paper, we survey recent results that investigate
three key aspects in human-in-the-loop information systems,
i.e., collecting human intelligence, exploring the human factor
for improving performance, and handling human data, where
the first two concern fundamental benefits of exploring the
human-in-the-loop characteristics and the last concerns the
technology aspect. The topics range from human data pri-
vacy and assembly (the data aspect), crowdsensing, network
management and sharing (the game-theoretic aspect), predic-
tion and learning-aided network control (the control aspect).
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We can see from the results that the human factor in mobile
networks has brought more challenges for system operators,
but at the same time provided unique features that can be
exploited for performance improvement and user experience
enhancement.

Note that there are many important open problems that
remain to be understood and solved, both in theory and
systems. Here we highlight three directions that are important
and still require further investigations. (i) Understanding the
fundamental benefits of learning and prediction. Although the
current results have provide new insights on how learning and
prediction can benefit the system, they provide only upper
bounds in terms of what improvements can be achieved. How-
ever, it is not clear whether these bounds are tight. Obtaining
tight lower bounds can help provide a better performance
evaluation criteria for prediction-based and learning-based
schemes. (ii) Optimal control with strategic users in repeated
settings. The strategic aspect of users is often considered and
tackled in a one-shot setting with game-theoretic formulations.
Though being insightful, the results do not capture the com-
mon scenario where users interact with the system repeatedly
and the system can learn about users over time. The challenge
here is that the learning component will now be affected by
user behavior, which can itself be strategic. How to jointly
design good mechanisms that allow both efficient learning and
optimization of the system in this case remains an important
open problem. (iii) Developing a secure and efficient system
infrastructure for human data. As discussed in the paper, one
key ingredient for exploiting the human factor is the collection
of human data, either learned behavior data or collected
responses for crowdsensing tasks. While efficiently utilizing
these data is important, the privacy aspect is also critical when
it comes to human users. Thus, a computing infrastructure that
is both efficient in data collecting and process, and secure in
privacy preserving is an important building block for better
exploiting the benefits of the human factor.

Resolving these challenging questions requires investiga-
tions from various directions including stochastic modeling,
network control, machine learning, human behavior study,
to systems. Indeed, an increasing attention has been paid
to solving human-in-the-loop system control questions by
combining network control techniques and machine learning
tools. It is expected that we will see more such results.

Finally, the interdisciplinary nature of the human-in-the-
loop theme brings new formulations into various fields, and
results developed for solving these problems will likely also
facilitate further developments in existing methodology and
tools, in particular, queueing theory, game theory, learning and
optimization.
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