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Spectroscopy is a crucial laboratory technique for understanding quantum systems through their
interactions with electromagnetic radiation. Particularly, spectroscopy is capable of revealing the
physical structure of molecules, leading to the development of the maser—the forerunner of the laser.
However, real-world applications of molecular spectroscopy [1] are mostly confined to equilibrium
states, due to computational and technological constraints; a potential breakthrough can be achieved
by utilizing the emerging technology of quantum simulation. Here we experimentally demonstrate
that a superconducting quantum simulator [2] is capable of generating molecular spectra for both
equilibrium and non-equilibrium states, reliably producing the vibronic structure of the molecules.
Furthermore, our quantum simulator is applicable not only to molecules with a wide range of
electronic-vibronic coupling strength characterized by the Huang-Rhys parameter [3], but also to
molecular spectra not readily accessible under normal laboratory conditions. These results point to
a new direction for predicting and understanding molecular spectroscopy, exploiting the power of
quantum simulation.

Quantum simulation represents a powerful and promis-
ing means to overcome the bottleneck for simulating
quantum systems with classical computers, as advocated
by Feynman [4]. One of the major applications for
quantum simulation is to solve molecular problems [5–
9]. In recent years, much experimental progress has
been achieved in simulating the electronic structures of
molecules using quantum devices. Particularly, the po-
tential energy surface of the hydrogen molecule was sim-
ulated experimentally [10–12]. However, it remains a
challenge to scale up this type of experiments for larger
molecules, as the phase-estimation method involved re-
quires an enormous amount of computing resources for
implementation.

An alternative and potentially more economical ap-
proach for quantum molecular simulation has been
achieved by using a quantum variational approach [13–
16] that aims to improve the eigenstate approximation
through local measurements of the Hamiltonians. So
far, most (if not all) of the molecular simulation exper-
iments performed are all confined to the study of static
properties of molecules. It is still an experimental chal-
lenge to utilize quantum simulators for studying molecu-
lar dynamics, in particular, molecular spectroscopy. Fur-
thermore, classical methods in predicting vibrationally-
resolved absorption spectra are mostly limited in the gas
phase. However, most chemical processes occur in so-
lution, where the molecular vibrational motion depends
heavily on the environment; predicting molecular spec-
troscopy for non-equilibrium states represents a major
challenge in quantum chemistry [17].

In this work, we develop and demonstrate a quan-
tum simulation approach for studying molecular dynam-
ics and absorption spectroscopy using a superconducting
simulator. Besides simulating molecules in equilibrium,

this approach of quantum simulation also allows us to
obtain non-equilibrium molecular spectra that are not di-
rectly accessible under normal laboratory conditions. In
addition, the problem of sampling the absorption spectra
of molecules [19] has been found to be related to the prob-
lem of Boson Sampling [20], which represents a promising
approach to justify that quantum simulators cannot be
simulated efficiently with any classical means. Our ap-
proach is complimentary with the existing approach [19],
where the absorption spectra are obtained by sampling
the transition probabilities for each pair of input-output
Fock states. The key difference is that we focus on the
dynamics of the phonons, instead of the structural shift
due to the Duschinsky transformation [21].

More specifically, our approach can be applied to ob-
taining the temporal correlation function of the electronic
transition dipole [3], which yields the information about
the absorption spectrum of the molecule, after applying
the Fourier transformation. In our superconducting sim-
ulator, there are many adjustable control knobs for simu-
lating the spectra for a variety of scenarios. In particular,
we are able to simulate molecules in a wide range of val-
ues of the Huang-Rhys parameter D, which characterizes
the electron-phonon coupling strength.

In this work, we focus on the model approximating
the electronic degrees of freedom by a two-level system
(Fig. 1a). This model has been applied to study vibronic
wavepacket dynamics, chemical reaction rate, Marcus
theory for non-adiabatic electron transfer, etc. For
molecular spectroscopy, the absorption spectra strongly
depend on the initial state of the phonon degree of free-
dom in the manifold of the electronic ground state. In our
experimental demonstration, we have performed simula-
tions by preparing the phonon mode in pure Fock states,
as well as simulations for a thermal state and a vacuum
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FIG. 1. Basic principle of the superconducting simulator. (a) Two identical energy surfaces of a molecule, with
one curve displaced from the other along a nuclear coordinate. Near the minimum, the energy surfaces can be approximated
by a harmonic potential, with an energy separation of ~ω0. Here ~ωeg is the 0-0 energy splitting; in most cases ωeg � ω0.
(b) The kernel quantum circuit diagram of our method. The circuit consists of an ancilla qubit and a bosonic system. The
bosonic system represents nuclear motion mode and is in an initial state |ψ〉. Similar to DQC1 [18], a composite evolution

gate U ≡ eiHgt/~e−iHet/~ is applied to the system following a Hadamard gate on the qubit. Finally, measurements along X
and Y axis are performed to obtain the correlation function Cµµ = 〈σx〉+ i 〈σy〉. (c) Device layout and pulse sequence for the
superconducting simulator. A “vertical” transmon qubit (dark blue in the enlarged device schematic) on a sapphire chip (light
blue) in a waveguide trench couples to two 3D Al cavities. The qubit is first prepared in the ground state |g〉 and the storage
cavity (the bosonic system in b) is initialized to different states for various simulations (see the main text for details). As shown
in b, the simulation scheme consists of three processes: a qubit rotation R−φ−π/2(π − γ), a controlled displacement Dg(α) of
the cavity conditional upon the qubit state |g〉, and finally a σx or σy measurement of the qubit. Here Rϕ(θ) represents a
θ−rotation along ϕ−axis in X-Y plane on Bloch sphere. Note that the rotation angle π− γ in our simulation is not limited to
π/2 (see the main text).

state with damping. In all cases, we are able to experi-
mentally observe the progression of absorption peaks sep-
arated by the vibronic frequency, which is a characteristic
feature of molecular spectrum due to vibronic transitions.
This flexibility of our superconducting simulator makes
it a useful tool for validating theoretical prediction when
scaled up (see Methods section).

The architecture of the superconducting simulator is
constructed through a three-dimensional (3D) circuit
quantum electrodynamics (QED) system [22, 23], where
a “vertical” transmon qubit is dispersively coupled to
two 3D aluminum cavities for storage and readout, as
shown in Fig. 1c. The qubit with a transition frequency
ωeg/2π = 5.345 GHz is used to model the electronic
state {|g〉 , |e〉} of the molecule. The storage cavity (here-
after referred as the “cavity” for simplicity) is used to
model the quantization of the nuclear vibrational mo-
tion, i.e., phonons {|0〉 , |1〉 , |2〉 , ...}, with a frequency
ω0/2π = 8.230 GHz. Note that the energy gap of the
qubit is comparable with that of the cavity frequency, i.e.,
ωeg ∼ ω0. However, for a typical molecule, the phonon
frequency is much smaller than that of the electronic ex-
citation gap. Therefore, a direct analog molecular simu-
lation with superconducting qubits is not feasible; such a

challenge can be overcome by a digital approach of quan-
tum simulation covered in this work.

The working mechanism of our superconducting sim-
ulator is summarized as follows (see Figs. 1b and 1c).
First, the qubit is initialized to the ground state |g〉 while
the phonons (cavity) are prepared in certain given state
|ψ〉 for the purpose of simulating the molecular system
initially at different nuclear states. In our experiment, we
have prepared different phonon states: (i) a vacuum state
at zero temperature, (ii) a Fock state |1〉 at zero tempera-
ture, (iii) a thermal equilibrium state, and (iv) a vacuum
state with damping. As an example, the pulse sequence
for the case of a Fock state |1〉 is presented in the Sup-
plementary Materials. The qubit is then through a clas-
sical microwave pulse turned into a superposition state
(|g〉+|e〉)/

√
2, after applying a π/2 rotation (a Hadamard

transformation).

Next, a controlled-operation Uctrl is applied to the
qubit-phonon system, which drives the evolution of the
phonons only if the qubit is in |g〉, i.e., Uctrl = |g〉 〈g| ⊗
U + |e〉 〈e| ⊗ I, where the unitary operator, U(t) ≡
eiHgte−iHet, first evolves the phonons for a time inter-
val t with Hamiltonian He, followed by an inverse time
evolution with Hg for the same time interval. The oper-
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FIG. 2. Absorption spectrum of the nuclear system at vacuum (|ψ〉 = |0〉) at zero temperature. (a) Progress of
the absorption spectrum as a function of Huang-Rhys parameter D. Here we only present the real part of σabs. The x axis
represents the normalized spectral frequency of electronic transition, which describes the necessary energy for transitions from
the electronic ground state to the excited states. We compare experimental results (left) with theory (right) using the same color
scale which represents the transition probability. (b) The cross section at D=0, 1, and 4, and the corresponding schematics
of the electronic transitions (bottom row). As expected, the absorption peaks of zero-temperature molecular spectrum arises
from ωeg, separated by ω0 with a Poisson distribution of intensities. The experimental data are lower by a constant reduction
factor f = 0.83 than theory, as expected dominantly due to the decoherence of the qubit during the simulation process.

ation U can be simplified as follows: in the second quan-
tized form, we have the Hamiltonian, He = ω0b

†b+ ωeg,
describing a harmonic oscillator with an equilibrium
position shifted by d relative to Hg = ω0a

†a, where

b = D(−d̃)aD(d̃) = a + d̃ with d̃ = d
√
mω0/2~, and

D a displacement operator. Consequently, the opera-
tor U can be implemented as a displacement operator,
U = e−iφ(t)D(d̃(eiω0t − 1)), apart from a phase factor
e−iφ(t), where φ (t) ≡ ωegt + d̃2 sinω0t (see Supplemen-
tary Materials for derivation details).

Note that this phase factor cannot be ignored, as it
yields a relative phase instead of global phase with Uctrl.
Experimentally, the phase φ is realized in the previous
π/2 rotation as an azimuth angle in the X-Y plane on
the Bloch sphere (Fig. 1c). The controlled displacement
operation Dg(α), effective only when the qubit is at |g〉
state as indicated by an extra superscript g, is imple-
mented by a broad selective pulse with a Gaussian en-
velope truncated to 4σ = 1.34 µs (Fig. 1c). Here the
displacement vector α = d̃(eiω0t − 1). It is worth not-
ing that the decoherence of the system during this long
selective pulse lowers the subsequent qubit measurement

contrast by a factor of about 0.83 compared to the ideal
case.

Finally, as a result the dipole correlation function de-
fined as Cµµ(t) = 〈ψ|U(t) |ψ〉 is encoded in the off-
diagonal elements of the reduced density matrix of the
qubit, i.e., Cµµ (t) = 〈σx〉 + i 〈σy〉. 〈σy〉 and 〈σx〉 of the
qubit can be measured by applying an extra π/2 rota-
tions along X and Y axis (RXorY ) respectively followed
by a Z-basis measurement. This general procedure is
applicable for any initial state of the phonon, pure or
mixed. The absorption spectrum σabs is finally obtained
by a Fourier transform of Cµµ(t).

We follow the above procedure to simulate the molec-
ular system initially at a vacuum state and a Fock state
|1〉 at zero temperature. However, in order to simulate
molecular spectra with the phonon mode initialized in

a thermal state, ρ ≡ e−~ω0a
†a/kT /Tr(e−~ω0a

†a/kT ), it is
not practical to increase the physical temperature, as the
performance of the experimental system would decrease
significantly. To overcome this challenge, we can mod-
ify the above procedure at Step 1: instead of an equal
superposition (after a Hadamard gate), the qubit is ini-



4

0.3

0.2

0.1

0
3

6

0.3

0.2

0.1

0
3

6

0.1

0.3

0.2

-4
0

4
8

0.3

0.2

0.1

-4
0

4
8

E
x

p
e

ri
m

e
n

t
T

h
e

o
ry

a b c

Fock state Thermal Damping

T
ra

n
s

it
io

n

d e f

h ig

FIG. 3. Absorption spectrum of three different initial nuclear states in the molecular system vs different
parameters. The top diagrams depict the corresponding electronic transitions: (a) Fock state |1〉; (b) thermal state; (c)
damped vacuum state. The middle and bottom rows show the corresponding experimental results and theoretical expectations,
respectively. For clarity, here we only show the typical spectrums with the corresponding parameter next to each plot. For
both thermal state and damped vacuum state, D = 1. Except for a reduction of experimental peak values, the experimental
results show good agreement with theoretical expectation.
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tialized to e−iφ(t) sin γ(t)
2 |g〉+ cos γ(t)

2 |e〉, where the an-

gle γ(t) is chosen such that sin γ = e2d̃2n̄(cosω0t−1) and
n̄ = (e~ω0/kT−1)−1 (see Supplementary Materials). Sim-
ilarly, for the case of a vacuum state with damping, we
choose sin γ(t) = e−t/τ , where τ is the characteristic time
(also see Supplementary Materials). In both cases, fol-
lowing the same remaining procedure as described above,
one can obtain the correlation function Cthmµµ (t) for an
initial thermal state and the damped correlation function
Cdamp
µµ (t) = e−t/τCµµ (t), respectively.

Our experimental results are as follows. In our digital
simulation, we have set ∆t = 1, tmax = 900, ωeg = π/5,
ω0 = π/90. The spectrum lineshape of molecule illus-
trates the relative probability of electronic transition be-
tween different vibrational states in nuclear space. In
Fig. 2, we present the progression of absorption peaks for
the case where the phonon state is initialized at vacuum
and at zero temperature, |ψ〉 = |0〉, for various Huang-
Rhys parameter D = d̃2. When D = 0, there is only a
sharp peak located at the frequency ω = ωeg. This case
represents the limit where the electronic transition and
the nuclear motion are decoupled. In other words, the
molecule is essentially the same as a two-level atom, as
far as the spectrum is concerned. When D is increased
from zero to, e.g., D = 1, several peaks emerge, and
these peaks are equally spaced by the phonon frequency
ω0. When D is increased further to D = 4, we can ob-
serve more equally-spaced peaks. However, the ampli-
tude of the direct transition at ω = ωeg is no longer the
largest. In all experimental trials, except for a reduction
factor f = 0.83 mainly due to the qubit decoherence, the
spectral peaks are in good agreement with the expected
Poisson distribution (see Methods).

The absorption spectrum of the other three different
initial nuclear states in the molecular system are shown
in Fig. 3: (i) Fock state |1〉 with different D; (ii) ther-
mal equilibrium state at different temperatures charac-
terized by the occupation number n̄; and (iii) damped
vacuum state with different dissipation rates described
by the characteristic time τ . The corresponding elec-
tronic transitions for each case have been depicted in the
top diagrams of Fig. 3. For clarity, we only show the
typical spectra. Except for a reduction of experimental
peak values, the experimental results show good agree-
ment with theoretical expectation.

One of the key features of our quantum simulator is
that the parameters, such as Huang-Rhys parameter D,
can be varied continuously. To better illustrate the pro-
gression of the spectrum in Fig. 2 and Fig. 3 as a func-
tion of various parameters, we present the peak values at
ω = ωeg as an example in Fig. 4. Dots are experimen-
tal data by our quantum simulator while the solid curves
represent theoretical expectation. After taking into ac-
count the reduction of experimental peak values, again
mainly due to the system decoherence, by dividing a con-

stant reduction factor f (f = 0.83 for Figs. 4a, 4c, and
4d; f = 0.75 for Fig. 4b), the experimental results are
in good agreement with theoretical expectations. The
smaller f for the case of Fock state |1〉 is mainly due to
the finite Fock state preparation fidelity F = 0.94 (mea-
sured Wigner function shown in Supplementary Materi-
als) while all other three cases start from a nearly perfect
vacuum state.

To conclude, we demonstrated experimentally a new
method to simulate electronic absorption spectra of a
molecule, where the nuclear vibrational states may or
may not be in thermal equilibrium. Our quantum simu-
lator is based on a superconducting circuit QED architec-
ture with flexible parameter tunability. The simulation
results indicate that the resulting molecular spectra are
in good agreement with theoretical expectation. Finally,
we note that this method can be readily extended to other
quantum simulation platform, including photonic [24] or
trapped-ion [25] systems. Therefore, our experiment rep-
resents the beginning of a new approach of predicting
molecular spectroscopy using quantum simulators.

Device parameters.

The transmon qubit has an energy-relaxation time
T1 = 13 µs and a pure dephasing time Tφ = 16 µs. The
storage cavity has a lifetime τ0 = 80 µs. The readout
cavity has a transition frequency ωm/2π = 7.291 GHz
and a lifetime τr = 42 ns. Together with a Joseph-
son parametric amplifier [26, 27] operating in a double-
pumped mode [28, 29], the fast readout cavity is used
for a high fidelity and quantum non-demolition detection
of the qubit state (see Supplementary Materials for de-
tails). Experimental setup details can also be found in
Ref. [30]. The qubit-state-dependent frequency shift of
the storage cavity is χqs/2π = −1.44 MHz, allowing for
the qubit-controlled operation on the cavity state as used
in our experiment.

Molecular Hamiltonian.

Under the standard Born-Oppenheimer framework,
the Hamiltonian Hmol of a molecule depends on the nu-
clear configuration (i.e., position coordinates) q as pa-
rameters, Hmol(r, q) = Ke + Uee (r) + UeN (r, q), where
Ke is the kinetic-energy term for the electrons, Uee (r)
and UeN (r, q) are the electron-electron interaction term
and electron-nuclei interaction term respectively. In the
low-energy sector, the molecule typically contains an elec-
tronic ground state |g〉 and an excited state |e〉, where the
molecular Hamiltonian becomes:

Hmol(q) = Hg(q) |g〉 〈g|+He(q) |e〉 〈e| , (1)
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with Hg = KN + Vg(q) and He = KN + Ve(q). Here KN

is the nuclear kinetic energy, Vg(q) and Ve(q) are the po-
tential energies, which are typically approximated as har-

monic functions (Fig. 1a), i.e., Hg = 1
2mp

2 +
mω2

0

2 q2 and

He = 1
2mp

2 +
mω2

0

2 (q − d)2 + ~ωeg. Here ωeg is the elec-
tronic gap between the minima of both potentials (i.e.,
0-0 energy splitting).

Franck-Condon approximation.

The coupling strength between the electronic tran-
sition and the nuclear motion is characterized by the
Huang-Rhys parameter, D = d̃2, where d̃ = d

√
mω0/2~.

Similarly, the electronic transition dipole operator is
given by µ(q) = µeg(q) |e〉 〈g| + µge(q) |g〉 〈e|. However,
the dependence of electronic transition moment on nu-
clear is usually insensitive to the nuclear motion; one
can therefore approximate (known as Condon approxi-
mation) it with a constant, i.e., µeg(q) = µge(q) = 1 for
simplicity.

Absorption lineshape.

The absorption line shape, σabs (ω) =∫∞
−∞ dt eiωt Cµµ (t), can be obtained by the Fourier

transform of the dipole correlation function Cµµ (t) ≡
〈µ (t)µ (0)〉, where µ (t) = eiHmolt/~µ(0) e−iHmolt/~. In
order to mimic the effects on the molecular spectra
due to the influence of the environment [1], one can
append a damping factor e−t/τ to the above corre-
lation function, i.e., Cdamp

µµ (t) = e−t/τCµµ (t), which

yields a spectrum with line broadening σdamp
abs (ω).

Our main task is to apply our superconducting sim-
ulator to obtain the correlation functions for the
molecules to be simulated. For example, if the ini-
tial state is a vacuum state, the correlation function
Cµµ (t) = e−iωegteD(e−iω0t−1). The absorption lineshape

is σabs (ω) = e−D
∫∞
−∞ dt eiωt e−iωegteDe

−iω0t

. By

expanding eDe
−iω0t

=
∑∞
j=0

1
j!

(
De−iω0t

)j
, the lineshape

becomes σabs (ω) = e−D
∑∞
j=0

Dj

j! δ (ω − ωeg − jω0).
Thus the spectral peaks are separated by ω0 with a
Poisson distribution of intensities.

Scalability.

Our approach can be scaled up for molecules
with multiple vibronic modes. In this case, the
dipole correlation function comes from the contribu-
tions of the individual modes, i.e., for n modes,
Cµµ (t) = |µeg|2e−i(Ee−Eg)t/~Fn (t), where Fn (t) =
Tr
(
eiHgt/~e−iHet/~ρ1 ⊗ ρ2 · · · ⊗ ρn

)
. In other words, the

superconducting qubit needs to be coupled with multiple
cavity modes. This direction has been realized experi-
mentally [31]. There, a superconducting qubit is coupled
to two cavity modes to realize an entangled pair of single-
cavity cat states. With a similar geometry, the supercon-
ducting qubit can easily be extended to couple to more
cavity modes.
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[2] A. A. Houck, H. E. Türeci, and J. Koch, Nat. Phys. 8,

292 (2012).
[3] S. Mukamel, Principles of nonlinear optical spectroscopy

(Oxford University Press on Demand, 1999).
[4] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[5] A. Aspuru-Guzik, Science 309, 1704 (2005).
[6] I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H.

Yung, and A. Aspuru-Guzik, Annu. Rev. Phys. Chem.
62, 185 (2011).

[7] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Mol.
Phys. 109, 735 (2011).

[8] N. Cody Jones, J. D. Whitfield, P. L. McMahon, M.-H.
Yung, R. V. Meter, A. Aspuru-Guzik, and Y. Yamamoto,
New J. Phys. 14, 115023 (2012).

[9] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik,
and N. Wiebe, Phys. Rev. A 91, 022311 (2015).

[10] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E.
Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte,
M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik,
and A. G. White, Nat. Chem. 2, 106 (2010).

[11] J. Du, N. Xu, X. Peng, P. Wang, S. Wu, and D. Lu,
Phys. Rev. Lett. 104, 030502 (2010).

[12] Y. Wang, F. Dolde, J. Biamonte, R. Babbush,
V. Bergholm, S. Yang, I. Jakobi, P. Neumann,
A. Aspuru-Guzik, J. D. Whitfield, and J. Wrachtrup,
ACS Nano 9, 7769 (2015).

[13] M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean,
L. Lamata, A. Aspuru-Guzik, and E. Solano, Sci. Rep.
4, 3589 (2014).

[14] A. Peruzzo, J. McClean, P. Shadbolt, M.-h. Yung, X.-q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,
Nat. Commun. 5, 4213 (2014).

[15] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung,
and K. Kim, arXiv preprint arXiv:1506.00443 , 1 (2015).

[16] P. O?Malley, R. Babbush, I. Kivlichan, J. Romero, J. Mc-
Clean, R. Barends, J. Kelly, P. Roushan, A. Tranter,
N. Ding, et al., Physical Review X 6, 031007 (2016).



7

[17] R. Improta, V. Barone, and F. Santoro, Angew. Chemie
Int. Ed. 46, 405 (2007).

[18] E. Knill and R. Laflamme, Physical Review Letters 81,
5672 (1998).

[19] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean,
and A. Aspuru-Guzik, Nat. Photonics 9, 615 (2015).

[20] S. Aaronson and A. Arkhipov, Theory Comput. 9, 143
(2013).

[21] Q. Peng, Y. Yi, Z. Shuai, and J. Shao, J. Am. Chem.
Soc. 129, 9333 (2007).

[22] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature 431, 162 (2004).

[23] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair,
G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor,
L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. De-
voret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501
(2011).

[24] A. Aspuru-Guzik and P. Walther, Nature Physics 8, 285
(2012).

[25] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. Ed-
wards, J. Freericks, G.-D. Lin, L.-M. Duan, and C. Mon-
roe, Nature 465, 590 (2010).

[26] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and
I. Siddiqi, Phys. Rev. B 83, 134501 (2011).

[27] T. Roy, S. Kundu, M. Chand, V. A. M., A. Ranadive,
N. Nehra, M. P. Patankar, J. Aumentado, A. A. Clerk,
and R. Vijay, Appl. Phys. Lett. 107, 262601 (2015).

[28] A. Kamal, A. Marblestone, and M. H. Devoret, Phys.
Rev. B 79, 184301 (2009).

[29] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi,
Nature 502, 211 (2013).

[30] K. Liu, Y. Xu, W. Wang, Z. Shi-Biao, R. Tanay,
K. Suman, C. Madhavi, A. Ranadive, R. Vijay, Y. P.
Song, L.-M. Duan, and L. Sun, arXiv:1608.04908 (2016).

[31] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek,
K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa,
L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H.
Devoret, and R. J. Schoelkopf, Science 352, 1087 (2016).



Supplementary Information“Simulating Molecular Spectroscopy with Circuit
Quantum Electrodynamics”

L. H∗,1 Y. C. Ma∗,1 Y. Xu,1 W. Wang,1 Y. Ma,1 K. Liu,1 M.-H. Yung†,2, ∗ and L. Sun†1, †

1Center for Quantum Information, Institute for Interdisciplinary
Information Sciences, Tsinghua University, Beijing 100084, China

2Institute for Quantum Science and Engineering and Department of Physics,
South University of Science and Technology of China, Shenzhen 518055, China

ar
X

iv
:1

70
3.

03
30

0v
1 

 [
qu

an
t-

ph
] 

 9
 M

ar
 2

01
7



2

CONTENTS

Key ideas of the molecular spectroscopy simulation 3

Temporal Correlation function 3

Harmonic approximation 4

Correlation function of Fock states 4

Evolution Process in experiment 4

Simulating correlation function with damping 5

Device and Readout properties 5

Measurement pulse sequence 6

Calibration of driving amplitude 7

References 7



3

KEY IDEAS OF THE MOLECULAR SPECTROSCOPY SIMULATION

The main idea of this work is related to the problem of simulating the absorption spectrum of molecules associated
with the Huang-Rhys factor D. The molecular spectrum can be obtained by applying the Fourier transformation on
the temporal correlation function of an electronic transition dipole operator. Therefore the key part of the experiment
involves a simulation of the correlation function through a quantum circuit.

As shown in Fig. 1b in the main text, the core of the quantum circuit consists of three components:

1. Hadamard gate,

H ≡ 1√
2

(|g〉+ |e〉) 〈g|+ 1√
2

(|g〉 − |e〉) 〈e| , (1)

applied to the ancilla qubit at the beginning of our quantum circuit. Here |g〉 represents the ground state and
|e〉 the excited state of the qubit.

2. A controlled unitary operation

Uctrl = |g〉 〈g| ⊗ U + |e〉 〈e| ⊗ I, (2)

where U ≡ eiHgt/~e−iHet/~ is the “Forward and Reversal” time-evolution operator and I is the identity operator.

3. σy and σx measurements through π/2 rotations along X and Y axis:

RX ≡
1√
2

(|g〉 − i |e〉) 〈g|+ 1√
2

(|e〉 − i |g〉) 〈e| , (3)

RY ≡
1√
2

(|g〉+ |e〉) 〈g|+ 1√
2

(|e〉 − |g〉) 〈e| . (4)

Similar to DQC1, We get the real and imaginary part of the correlation function Cµµ(t) = 〈ψ|U(t) |ψ〉 =
〈σx〉 + i〈σy〉, where |ψ〉 is the phonon initial state. Then the absorption spectrum of the molecule can be
obtained by a Fourier transformation of Cµµ(t).

TEMPORAL CORRELATION FUNCTION

Under the Condon approximation, the dipole operator is given by,

µ = |e〉 〈g|+ |g〉 〈e| = σx , (5)

where |g〉 and |e〉 represent the ground and excited electronic wave function. Given a molecular Hamiltonian,

H = Hg |g〉 〈g|+He |e〉 〈e| , (6)

the time-correlation function Cµµ(t) for the dipole operator is given by

Cµµ(t) ≡ Tr(〈g|σx(t)σx(t = 0) |g〉) , (7)

where σx (t) = eiHt/~σxe−iHt/~, and σx (t = 0) = σx. Since σx |g〉 = |e〉, we can write

Cµµ(t) = Tr(〈g| eiHg/~|g〉〈g|tσxe−iHe/~|e〉〈e|t |e〉)
= Tr(eiHgt/~e−iHet/~). (8)

Here Tr(·) represents the expectation of the operator in the nuclear space. For simplicity, Tr(·) is replaced by 〈·〉
hereafter.
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HARMONIC APPROXIMATION

In terms of the creation and annihilation operators,

p = i
√
m~ω0/2(a† − a) and q =

√
~/2mω0(a+ a†) . (9)

The Hamiltonians of the ground and excited electronic states are given by

Hg = ~ω0a
†a , (10)

He = ~ωeg + ~ω0a
†a+ d̃(a+ a†) + ~ω0d̃

2

= ~ωeg + ~ω0D(−d̃)a†aD(d̃) . (11)

Here D(d̃) = ed̃a
†−d̃?a is the displacement operator for a single mode. The Huang-Rhys parameter D is defined as

D = d̃2.
With D(−d̃)aD(d̃) = a+ d̃, we have

Cµµ(t) = e−iωegt 〈eiω0a
†atD(−d̃)e−iω0a

†atD(d̃)〉
= e−iωegt 〈ed̃(a†eiω0t−ae−iω0t)D(d̃)〉
= e−iωegt 〈D(d̃eiω0t)D(−d̃)〉
= e−iωegt−id̃

2 sinω0t 〈D(d̃(eiω0t − 1))〉 . (12)

CORRELATION FUNCTION OF FOCK STATES

The states in the nuclear space can be written as linear superpositions of |n〉 , n = 0, 1, 2, · · · . Note that

e−α
∗a |n〉 = |n〉+

√
n(−α∗) |n− 1〉+

√
n(n− 1)(α∗)2/2! |n− 2〉+ · · ·+

√
n!(−α∗)n/(n!)2 |0〉 .

Therefore, for Fock states, if we define α = d̃(eiω0t − 1), we have

Cµµ(t) = e−iωegt−id̃
2 sinω0t 〈n| D(α) |n〉

= e−iωegt−id̃
2 sinω0t 〈n| e− |α|

2

2 eαa
†
e−α

∗a |n〉

= e−iωegt−id̃
2 sinω0te−

|α|2
2

n∑

j=0

(−1)j
n(n− 1) · · · (n− j)

(j!)2
|α|2j (13)

For |n〉 = |1〉,

Cµµ(t) = e−iωegted̃
2(e−iω0t−1)(1− 4d̃2 sin2(ω0t/2)). (14)

For |n〉 = |0〉 (the equilibrium state at zero temperature),

Cµµ(t) = e−iωegted̃
2(e−iω0t−1). (15)

EVOLUTION PROCESS IN EXPERIMENT

Our quantum simulator simulates the absorption spectra of a molecule in which electronic states (initialized at
the ground state |g〉) coupled with a single nuclear mode (denoted by |ψ〉). In the controlled unitary gate Uctrl =
|g〉 〈g| ⊗ U + |e〉 〈e| ⊗ I, we have

U ≡ eiHgt/~e−iHet/~ = e−iωegt−id̃
2 sinω0tD(d̃(eiω0t − 1)). (16)

The standard state evolution steps of our quantum simulator are

|g〉 |ψ〉 Hadamard−−−−−−→ 1√
2

(|e〉 |ψ〉+ |g〉 |ψ〉)

Uctrl Gate−−−−−−→ 1√
2

(|e〉 |ψ〉+ e−iωegt−id̃
2 sinω0t |g〉D(d̃(eiω0t − 1)) |ψ〉) .
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By measuring the expectation of Pauli operators σx and σy, we get

〈σx〉 = Re(e−iωegt−id̃
2 sinω0tD(d̃(eiω0t − 1))) , (17)

〈σy〉 = Im(e−iωegt−id̃
2 sinω0tD(d̃(eiω0t − 1))) . (18)

In order to simulate molecular spectra with the phonon mode initialized in a thermal state, ρ ≡ e−~ω0a
†a/kT /Tr(e−~ω0a

†a/kT ),
it is not practical to increase the physical temperature, as the performance of the experimental system would de-
crease significantly. To overcome this challenge, we can modify the above procedure at the first step: instead of

an equal superposition (after a Hadamard gate), the qubit is initialized to e−iφ(t) sin γ(t)
2 |g〉 + cos γ(t)

2 |e〉, where

φ (t) ≡ ωegt+ d̃2 sinω0t, the angle γ(t) is chosen such that sin γ = e2d̃2n̄(cos(ω0t−1), and n̄ = (e~ω0/kT − 1)−1.
Then we can re-calculate 〈σx〉 and 〈σy〉 to get Cthmµµ (t) = 〈σx〉+ i〈σy〉 as follows.

〈σx〉 = sin γRe(e−iωegt−id̃
2 sinω0t−|d̃(eiω0t−1)|2/2)

= sin γRe(e−iωegt+d̃
2(e−iω0t−1))

= Re(e−iωegt+2d̃2n̄(cosω0t−1)+d̃2(e−iω0t−1))

= Re(e−iωegt+d̃
2[(n̄+1)(e−iω0t−1)+n̄(eiω0t−1)]) (19)

〈σy〉 = Im(e−iωegt+d̃
2[(n̄+1)(e−iω0t−1)+n̄(eiω0t−1)]) (20)

This result is consistent with the correlation function for a real thermal equilibrium state (also see [1])

Cthmµµ (t) = e−iωegt+d̃
2[(n̄+1)(e−iω0t−1)+n̄(eiω0t−1)]. (21)

SIMULATING CORRELATION FUNCTION WITH DAMPING

The method to mimic the influence of the environment is similar to the case of a thermal equilibrium state except
for sin γ(t) = e−t/τ , where τ is the characteristic time which describes the decay time of the correlation function. This
method works for any nuclear state |ψ〉

|g〉 |ψ〉 ⇒ cos
γ(t)

2
|e〉 |ψ〉+ e−iωegt−id̃

2 sinω0t sin
γ(t)

2
|g〉 |ψ〉 (22)

It is easy to verify that

Cdamp
µµ (t) = 〈σx〉+ i 〈σy〉 = e−t/τCµµ(t) (23)

where Cdamp
µµ (t) (Cµµ(t)) is the correlation function with (without) damping.

DEVICE AND READOUT PROPERTIES

The transmon qubit in our experiment is fabricated using the standard Dolan technique [2] with a double-angle
evaporation of aluminum after a single electron-beam lithography step on a c-plane sapphire substrate. The experiment
is performed in a cryogen-free dilution refrigerator with a base temperature of about 10 mK. A Josephson parametric
amplifier (JPA) [3, 4] is connected to the output of the readout cavity at the base temperature as the first stage of
amplification before the high-electron-mobility-transistor amplifier at 4K. The JPA is operated in a pulsed double-
pumped mode [5, 6] to minimize pump leakage to the readout cavity. The readout pulse is calibrated to contain only
a few photons (see the calibration session below), enough for a high-fidelity single-shot readout of the qubit state.
The schematic of the measurement setup can be found in Ref. 7.

The readout property of the qubit is shown in Fig. 1. The readout histogram is clearly bimodal and well separated.
A threshold Vth = 0 is chosen to digitize the readout signal to +1 and −1 for the ground state |g〉 and the excited
state |e〉, respectively. The qubit has an excited state population of 3.9% in the steady state, presumably due to
stray infrared photons or other background noise leaking into the cavity, although the exact source remains unknown.
We use measurement-based post-selection to purify the qubit to |g〉 state. This requires the measurement to be high
quantum non-demolition (QND). Inset of Fig. 1 shows the qubit readout matrix with the cavity left in vacuum and
the corresponding experiment sequence. After the first measurement and post-selection of |g〉, the subsequent qubit
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FIG. 1. Qubit readout property. Histogram of the readout with (the blue dashed line) and without (the red solid line)
purification. The ground state |g〉 and the excited state |e〉 are well-separated and a threshold Vth = 0 is chosen to digitize
the readout result. Without purification, |e〉 takes up to 3.9% occupation in the steady state, presumably due to stray infrared
photons or other background noise leaking into the cavity. Inset is the basic qubit readout matrix and the corresponding
experimental protocol with the storage cavity left in vacuum. After the purification to |g〉, the subsequent qubit measurement
has 99.9% probability of measuring |g〉 again, demonstrating the high QND nature of the qubit readout. If |e〉 state is post-
selected, the subsequent qubit measurement has 95.3% probability of measuring |e〉 again. The errors dominantly come from
the T1 process during the waiting time after the initialization measurement (250 ns) and during the readout time (240 ns).
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FIG. 2. Properties of non-selective qubit π pulses with a coherent state |α〉 in the cavity. (a) Calibration protocol. The
absence or presence of a π pulse at the beginning together with M1 is used to prepare the qubit’s initial state |g〉 or |e〉 by a
post-selection. (b) Readout matrix. The numbers outside the parenthesis correspond to a π pulse with σ = 6 ns for α = 1
(n̄ = 1). The numbers inside the parenthesis correspond to a π pulse with σ = 2 ns for α = 4 (n̄ = 16).

measurement shows that the probability of the qubit being populated in |g〉 is as high as 0.999 (dashed histogram),
demonstrating the high QND property of the qubit readout. If we post-select the qubit at |e〉 state, the subsequent
measurement finds that the qubit remains in |e〉 with a fidelity of 0.953. These errors dominantly come from the T1

process during the waiting time after the initialization measurement (250 ns) and during the readout time (240 ns).
Figure 2 shows the properties of non-selective π pulses with a coherent state |α〉 in the cavity. In our simulation,

there is always a coherent state presented in the storage cavity (see Fig. 3). The associated measurement pulses are
shown in Fig. 2a. The absence or presence of a π pulse at the beginning together with a measurement M1 is used to
prepare the qubit’s initial state |g〉 or |e〉 by a post-selection. The numbers outside the parenthesis correspond to a
π pulse with σ = 6 ns for α = 1 (n̄ = 1) in the storage cavity. The numbers inside the parenthesis correspond to a
π pulse with σ = 2 ns for α = 4 (n̄ = 16) in the storage cavity. The fidelity loss mainly comes from two parts: the
qubit T1 process during the measurement time and the waiting time between the two consecutive measurements, and
the qubit frequency shifts due to photon number occupations in the cavity.

MEASUREMENT PULSE SEQUENCE

The pulse sequence for the experiment is shown in Fig. 3a. Here we use the case of the nuclear state in a Fock
state |1〉 as an example. The whole experiment can be divided into three main parts: 1) initialization of the system to
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|g, 0〉 by post-selecting results of the qubit measurement and the cavity parity measurement; 2) creation of |1〉 state
by first displacing the cavity to a coherent state |α = 1〉, then applying a selective π rotation (σ = 360 ns) of the qubit
corresponding to N = 1 photon in the cavity, and finally post-selecting the excited state of the qubit; 3) simulation
as described in the main text.

The classical microwave pulse to displace the cavity state has either a square envelope with a width of 100 ns or
a Gaussian envelope with σ = 335 ns. The amplitudes have been calibrated carefully as shown in the section of
“calibration of driving amplitude”. All qubit drive pulses have a Gaussian envelope pulses truncated to ±2σ. To
eliminate the possible qubit leakage to higher qubit levels, we also apply the so-called “derivative removal by adiabatic
gate” technique [8] for pulses with σ =2, 4, and 6 ns.

Figure 3b shows the Wigner tomography of the created |1〉 state and Fig. 3c shows the moduli of the reconstructed
density matrix ρ by least-square regression using a maximum likelihood estimation [9, 10]. The measured fidelity of
this state is F = 〈1| ρ |1〉 = 0.94. The Wigner tomography of the cavity state is performed by a cavity’s displacement
operation D(−β) followed by a parity measurement [7, 11–14]. The parity measurement is achieved in a Ramsey-type
measurement of the qubit with a conditional cavity π phase shift C(π) sandwiched in between two unconditional
qubit rotations RY (π/2) followed by a projective measurement of the qubit.

CALIBRATION OF DRIVING AMPLITUDE

To have a high-QND and high-fidelity single-shot readout is essential for any experiment that requires post-
selections. There should be enough readout photons for a high signal-to-noise ratio of the readout, but not too
many to take a long time for those readout photons to leak out, otherwise slowing down the subsequence operations.
In Fig. 4, the readout photon number is calibrated through a measurement-induced dephasing process. Figure 4a
shows the measurement pulse sequence which is a Ramsey-type measurement of the qubit inserted by a readout pulse
with various amplitudes at a fixed width Tm. Figure 4b shows the decaying signal, coming from the dephasing due
to readout photons, as a function of the measurement pulse amplitude. An exponential fit gives a calibration of the
readout pulse. In our experiment, we typically readout the qubit with about n̄ = 5 photons in the cavity and wait
for nearly six times the photon decay time to make sure the average remaining photon number in the readout cavity
is only about 1%.

The calibration of the controlled cavity displacement Dg(α) (Gaussian envelope with σ = 335 ns) is critical for our
simulation scheme. This calibration is realized by measuring the probability of the first nine Fock states N = 0, 1, 2, ...8
through a selective π pulse (Gaussian envelope with σ = 360 ns) as a function of the displacement pulse amplitude,
as shown in Fig. 5. A nearly perfect global fit to the measurement results with a Poisson distribution not only gives
the required calibration of the cavity displacement amplitude, but also indicates good control of the coherent state
in the cavity. The calibration of the displacement D(1) with a 100 ns square envelope is performed by measuring the
photon number parity instead as a function of displacement pulse amplitude (inset of Fig. 5).

Figure 6 shows the typical spectral peak values for the nuclear system at vacuum and at zero temperature (Fig. 2
of the main text). The peaks are all normalized by dividing a constant reduction factor f = 0.83 (mainly due to the
system decoherence), and are in good agreement with the expected Poisson distribution.

∗ yung@sustc.edu.cn
† luyansun@tsinghua.edu.cn
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FIG. 4. Calibration of n̄ in the readout pulse. (a) A Ramsey-type measurement sequence for the qubit inserted by a readout
pulse with various amplitudes at a fixed width Tm. The second π/2 pulse has a rotating phase relative to the first one in order
to have an oscillating interference signal. (b) The probability of the qubit at the ground state as a function of the measurement
pulse amplitude. The Ramsey amplitude A ∼ e−TmΓm gives a calibration of n̄ in the readout pulse, where the measurement-
induced dephasing rate Γm = 2n̄κsin2(tan−1(χqr/κ)), κ is the readout cavity’s decay rate, and χqr is the dispersive frequency
shift between the readout cavity and the qubit.
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FIG. 5. Calibration of the controlled cavity displacement Dg(α) (Gaussian envelope with σ = 335 ns). The probability of
the first nine Fock states N = 0, 1, ..., 8 is measured as a function of the displacement pulse amplitude through a selective π
pulse (σ = 360 ns) on the qubit at each resonant transition frequency corresponding to a specific photon number N in the
cavity. There is no normalization of the measurement data and the loss of probability dominantly comes from the T1 process

in the long duration of the π pulse. Lines are from a global fit with a Poisson distribution P (|α〉 , N) = A|α|2Ne−|α|2/N !,
where A is a scaling factor accounting for the probability loss. The excellent agreement indicates good control of the coherent
state in the cavity, giving a calibration DAC level=326 corresponding to α = 1. Inset: calibration of the displacement D(1)
with a 100 ns square envelope. This calibration is performed by measuring the photon number parity instead as a function of
displacement amplitude, giving DAC level=2649 for α = 1. The loss of parity measurement contrast mainly comes from the
qubit decoherence during the parity measurement.



10

1.0

0.8

0.6

0.4

0.2

0.0

 N
or

m
al

iz
ed

 P
ea

k 
V

al
ue

s

1086420
 Peak Number

 D=0 
 D=0.6 
 D=1 
 D=2 
 D=4 
 Global Fit

FIG. 6. Poisson distribution of spectral peaks for the nuclear system at vacuum and at zero temperature. Dots are typical
spectral peak values in Fig. 2 of the main text, all normalized by dividing a constant reduction factor f = 0.83. Lines are from
a global fit with a Poisson distribution. The experimental peaks are nearly perfectly Poisson distributed.


