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Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with
complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention
is paid to the unitary evolution of closed quantum systems, dissipation and noise are vital in understanding the
dynamics of practical quantum systems. In this work, we experimentally demonstrate a digital simulation of an
open quantum system in a controllable Markovian environment with the assistance of a single ancillary qubit.
By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively
realized, and its application in error mitigation is demonstrated by adjusting the simulated noise intensities.
High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy.
Our results represent a significant step towards hardware-efficient simulation of open quantum systems and error
mitigation in quantum algorithms in noisy intermediate-scale quantum systems.

Quantum computers and quantum simulators attract great
attentions for their unprecedented capability in information
processing tasks, such as executing quantum algorithms for
universal computation [1, 2] and solving dynamics of many-
body quantum systems [3, 4]. Over the past two decades, great
efforts have been dedicated to building quantum machines for
implementing these tasks [5, 6], and exciting progress has
been achieved. Recently, quantum processors composed of
a few dozens of qubits have been realized, and the demon-
stration of “quantum supremacy” [7] proves the advantage of
quantum computing.

However, quantum information is vulnerable to the noisy
environment. The behavior of practical quantum systems
deviates from the ideal model and their evolution follows
non-unitary quantum dynamics [8, 9]. Therefore, applica-
tions of noisy intermediate-scale quantum (NISQ) [10] de-
vices are limited. Quantum error correction techniques and
fault-tolerant quantum architectures have been proposed to
overcome this obstacle [11–14]. However, they demand quan-
tum hardware with high performance and consume a great
amount of quantum resources, making them impractical with
current technologies. Instead of eliminating noise, one can
also synthesize noise to explore the potential of NISQ de-
vices. For example, error mitigation (EM) has recently been
proposed as a promising approach to improve the accuracy
of quantum information processing by varying noise inten-
sity and extrapolating the results from a collection of experi-
ments [15–17]. Furthermore, quantum noise also plays a sig-
nificant role for the simulation of the non-equilibrium phase
transitions [18], driven-dissipative phase transitions [19, 20],
and non-Hermitian topological phenomena [21] that appear in
quantum many-body systems. Therefore, the ability to sim-
ulate an environment with controllable noise intensity is of
fundamental importance.

In this work, we propose and demonstrate a digital simula-
tion of the continuous evolution of an open quantum system
based on a Trotterization approach in a superconducting cir-
cuit. The Trotterization of the open quantum system dynam-
ics is implemented repetitively by resetting and coupling an
ancilla qubit to the data quantum system. We realize precise
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FIG. 1: (a) The schematic of open quantum system evolution with
a controllable environment. (b) The Trotter scheme for simulating
open quantum system dynamics, which consists of non-unitary jump
operators Lk and coherent unitary evolution due to Hamiltonian H j.
The jump operators can be realized efficiently by a unitary gate on
the combined system of the data quantum system and an ancillary
qubit followed by resetting the ancillary qubit.

intensity adjustments for different types of noise and present a
proof-of-principle EM demonstration for estimating the zero-
noise dephasing rate of the data system. Additionally, a 2nd-
order Trotterization is applied to the system and shown to
have higher precision. The approach to simulating open quan-
tum system dynamics demonstrated in this work would help
to understand and control quantum noise [22], realize univer-
sal digital quantum simulators [23], and pave the way towards
practical NISQ technologies [10].

The quantum dynamics of an open system [Fig. 1(a)] can
be described by the master equation [24, 25], which can be
written most generally in the Lindblad form [26] as dρ/dt =
∑ j L j(ρ)+∑k Lk(ρ), where ρ denotes the density operator of
the system, the coherent Liouvillian L j(ρ) =−i[H j,ρ] repre-
sents the evolution due to the j-th Hamiltonian component H j,
and the incoherent Liouvillian Lk(ρ) = 2LkρL†

k −{L
†
kLk,ρ}

describes the quantum jump evolution due to the k-th jump
operator Lk. Thus, the evolution of the open system can be
described as ρ(t) = e(∑ j L j+∑k Lk)tρ(0).

ar
X

iv
:2

10
8.

02
39

5v
1 

 [
qu

an
t-

ph
] 

 5
 A

ug
 2

02
1



2

Dephasing Damping Rotating

𝑋 𝜃1 R

𝑋 𝜃2 R𝑋 -𝜃2

𝑋 𝜃3

𝜌𝑖𝑛 𝜌out

| ۧ𝑔 | ۧ𝑔

⊗N

(a) (b)

(c) (d)

 exp data of 1

 exp data of 2

 exp data of Rabi rate

theoretical     with
gate error

 theoretical     with 
gate error

 theoretical Rabi rate  

theoretical     without
gate error

 theoretical     without 
gate error

T

T*

1T

2T*

1T

2T*

T

50
40

30

20

10

0

45
40

35

30

25

20

15

𝜃3  (degree)

R
abi rate (kH

z)

𝜃1=20◦

𝜃2=20◦

co
he

re
nc

e 
tim

e
(𝜇
s)

50

40

30

20

10

0
706050403020100

50

40

30

20

10

0
𝜃1  (degree)

R
abi rate (kH

z)𝜃2=20◦

𝜃3=51.4◦co
he

re
nc

e 
tim

e
(𝜇
s)

120

80

40

0
706050403020100

60

50
40

30
20

10
0

𝜃2  (degree)

R
abi rate (kH

z)

𝜃1=20◦

𝜃3=38.6◦

co
he

re
nc

e 
tim

e
(𝜇
s)

504540353025

FIG. 2: (a) Experimental sequence for simulating the continuous evolution of an open quantum system by repetitively implementing
dephasing, damping and rotating Liouvillians. The detailed schemes for realizing these Liouvillians with the assistance of an ancillary qubit
are shown in the dashed boxes. (b)-(d) Experimentally extracted results of energy relaxation time T1 (blue), phase relaxation time (Ramsey
time) T ∗2 (red), and Rabi oscillation rate Ω (green) for varying control parameters θ1, θ2, and Ω of the Trotterized Liouvillians. For all
experiments, the Trotter step number N = 13 and, except for the variable, the other two parameters are fixed: θ2 = 20◦, θ3 = 51.4◦ for (b);
θ1 = 20◦, θ3 = 38.6◦ for (c); θ1 = 20◦, θ2 = 20◦ for (d).

For the unitary evolution of a closed quantum system, the
implementation of the Hamiltonian H = ∑H j could be ap-
proximated by the Trotter approach, i.e. the target unitary
evolution with a duration t is discretized into N steps and each
step is decomposed into unitary gates eiH jt/N that are imple-

mented alternatively [23, 27, 28]: limN→∞

(
∏ j eiH jt/N

)N
=

eiHt . Such a digital approach has been widely adopted in quan-
tum simulations with complicated Hamiltonians both exper-
imentally and theoretically [29–32]. The generalization of
Trotterization to the open quantum system shares the same
spirit as that for a closed system

lim
N→∞

(
∏

j
eL jt/N ∏

k
eLkt/N

)N

= e(∑ j L j+∑k Lk)t . (1)

It is worth noting that there are different choices in the or-
dering of Liouvillian superoperators and some (such as the
2nd-order Trotterization demonstrated in the following) might
have a better precision for finite N. The deviation of the dis-
cretized temporal evolution from the target quantum evolution
can be suppressed to O

[
(t/N)m+1

]
for the m-th order Trotter-

ization (see Ref. [33]). Each Trotter step consists of an in-
coherent elementary process eL jt/N corresponding to a quan-
tum channel [8, 38] that realizes a linear completely-positive
trace-preserving mapping, and a coherent elementary process
eLkt/N that is a unitary gate. Therefore, this scheme of dig-
ital quantum simulation of open quantum systems could be
carried out by experimentally implementing elementary chan-
nels on the data quantum system, which can be efficiently im-
plemented by discarding the ancilla as the environment after
a unitary gate on the composite ancilla-data quantum system
(Fig. 1b).

We verify the proposed Trotterization approach in a cir-
cuit quantum electrodynamics architecture [39–45]: the first
two Fock states |0〉 and |1〉 of a microwave cavity consti-
tute the data qubit undergoing open system evolutions; a dis-
persively coupled transmon qubit serves as the ancilla qubit.
The device parameters can be found in Ref. [33]. Figure 2(a)
shows the experimental sequence for simulating the continu-
ous evolution of the data qubit in an environment with control-
lable noise intensity. We mimic the dephasing (jump operator
L=

√γ1
2 σz) and the damping (L=

√γ2σ−) environment for the
data qubit under continuous on-resonance drive, with the cor-
responding channels being realized with measurement-based
adaptive control [38]. Here, γ1 and γ2 are the jumping rates.
We first initialize the data qubit into a specific state ρin and
the ancilla to the ground state |g〉, then repetitively implement
dephasing, damping, and rotating channels alternatively for N
times, and finally measure the output state of the data qubit
by mapping its information to the ancilla through a decoding
unitary, followed by the ancilla measurement [33].

When repeating the quantum circuits [Fig. 2(a)] with a
period of τ0 = 3.56 µs, the equivalent environment noise
strength can be tuned by the dephasing parameter θ1, corre-
sponding to a dephasing rate γ1 =−ln([2cos2(θ1/2)−1])/τ0,
and the damping parameter θ2, corresponding to a damping
rate γ2 = −ln(cos2θ2)/τ0. Then, the resulting coherence
times of the data qubit are 1/T1 =−ln(cos2θ2)/τ0+1/T1

0 and
1/T2 =− ln([2cos2(θ1/2)−1])/τ0− ln(cos2θ2)/2τ0 +1/T2

0.

Here, T 0
1 and T 0

2 are the intrinsic coherent times of the data
qubit. The on-resonance drive is implemented by the rotating
gate X(θ3), which is equivalent to a Rabi rate Ω = θ3/360◦τ0
on the data qubit. In order to evaluate the simulation on
the open quantum system dynamics, we initialize ρin into
|0〉, (|0〉+ |1〉)/

√
2, (|0〉+ i |1〉)/

√
2, and |1〉 separately, and
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FIG. 3: (a) Experimentally extracted T1 (blue) and T ∗2 (red) with
varying θ2 while keeping θ1 = 20◦ in the Trotter scheme with re-
peated dephasing and damping channels only (the inset). Dots are
derived results from experimental data, dashed lines are theoretically
expected results from an ideal model, and solid lines are numeri-
cal results including gate errors. (b) and (c) Experimental evolution
curves to give the results in (a). P(1) and P(+) are the populations
of the excited state and |+〉= (|0〉+ |1〉)/

√
2 state of the data qubit,

respectively. The dots are experimental data and dash lines are fitted
curves. The colors from red to dark red correspond to θ2 varying
from 0 to 70 degrees, respectively. (d) Estimation of dephasing time
Tφ by EM. The red points are the measured T ∗2 [first two data points
in (a)] and the green line shows the first-order Richardson extrapola-
tion based on these two points. The red hollow circle with error bar
is the calculated Tφ from the first pair of T1 and T ∗2 in (a) through
1/Tφ = 1/T ∗2 −1/2T1. Inset: error mitigation (EM) with Richardson
extrapolations.

measure the corresponding evolution curves of these states
on the bases of the Pauli operators σx, σy, and σz. Then,
by a global fitting of the twelve evolution curves, we obtain
all experimental T1, T2, and Ω, and compare them with the
theoretical expectations.

Figures 2(b)-(d) illustrate the experimental results for the
data qubit with simulated dephasing, damping and rotation
channels; all acting simultaneously. We separately fix two pa-
rameters and regulate the third one to verify the effectiveness,
controllability, and flexibility of each adjustment. The experi-
mental results are fairly consistent with the expected ones in-
cluding the gate errors (solid lines), but with discrepancies at
large θ1,2. These deviations mainly come from two aspects:
the high-order effects of Trotterization become significant for
large θ1,2 and the fitting errors become larger when the system
has a faster decoherence rate for larger θ1,2. This experiment

confirms the effective simulation of a Markovian environment
for an open system evolution, and such an approach not only
enables the simulation of arbitrary noise, but also allows for a
wide range of tunable noise intensity.

The tunability of the environmental noise intensity allows
the precise control of open quantum system dynamics, and
thus provides a valuable tool to extrapolate the behavior of
a quantum system with no presence of the inevitable noise
through the so-called EM method [15–17]. As a proof-of-
concept experiment, we find the dephasing time Tφ in the Trot-
ter scheme with repeated dephasing and damping channels
only [Fig. 3(a) inset]. In this experiment, the extra dephas-
ing rate from the dephasing channel is fixed with θ1 = 20◦

while the damping rate in the damping channel through θ2 is
varying. The measured T1 and T ∗2 (Ramsey time) as a func-
tion of θ2 are shown in Fig. 3(a). Based on the first two data
points of T ∗2 , we can derive Tφ = T ∗2 for T1 → ∞ by the 1st-
order Richardson extrapolations (see Ref. [33]), as shown in
Fig. 3(d). The resulting Tφ from this 1st-order extrapolation,
as well as the higher-order ones based on more T ∗2 points,
agrees well with the expected value [Fig. 3(d) inset]. This
demonstration nevertheless shows the potential of EM in more
complicated simulations of a quantum system coupled to an
environment with digitized and tunable noise intensity.

As observed in our experiments, the errors of Trotterization
appear larger for larger θ1,2 due to the finite Trotter step size
τ0. In principle, the error could be suppressed by reducing τ0.
However, the imperfection of the ancilla imposes a restriction
of τ0 (see Ref. [33]), and the finite gate time is also an intrinsic
limitation. Therefore, we propose and demonstrate the higher-
order Trotter scheme for the open quantum system simulation
to achieve a better precision. The higher-order Trotter scheme
is constructed from the generalized Trotter scheme mentioned
above by symmetrization [46], as illustrated in Fig. 4(a). For
general Liouvillians L j ( j ∈ {1, ..,m}) that include all coher-
ent and incoherent components, it can be proved that [33, 47]

e∑m
j=1 L j∆t = Πm

j=1eL j∆t/2Π1
j=meL j∆t/2 +O

(
∆t3) (2)

for the 2nd-order Trotter formula with a precision of O(∆t3),
in comparison to

e∑m
j=1 L j∆t = Πm

j=1eL j∆t +O
(
∆t2) (3)

for the 1st-order Trotter.
Different permutations of the Liouvillians

{
L j
}

in the Trot-
terization can have different accuracies. This is straightfor-
ward to understand for the case with dephasing (Ldph), damp-
ing (Ldamp), and rotating (LR) channels [Fig. 2(a)], because
LR is not commutative to either Ldph or Ldamp. As N is fi-
nite in the practical experiment, the incommutability between
channels leads to the differences in the simulation accuracy
for different channel permutations.

To quantify the precision of the quantum dynamics simu-
lation, we define the accuracy as A =

√
∑x, j(x j− x0

j)
2/
√

N,

where x ∈
{
〈σx〉 ,

〈
σy
〉
,〈σz〉

}
are the expectation values, j =
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FIG. 4: (a) Sequences of the 1st- and the 2nd-order Trotters for
simulating open quantum dynamics. (b) Numerical investigation
of the accuracy A for six different operation permutations. We
have different colors to denote different permutations of dephas-
ing (Ldph), damping (Ldamp) and rotation (LR) in the form of
A− B−C: blue, Ldph −Ldamp − LR and Ldamp −Ldph − LR;
green, Ldamp −LR −Ldph; cyan, Ldph −LR −Ldamp; magenta,
LR−Ldph−Ldamp and LR−Ldamp−Ldph. Hollow and solid dots
represent the 1st- and the 2nd-order Trotters, respectively, in (b-e).
(c) Numerically simulated evolutions of σy (blue) and σz (red) with
θ1 = 20◦, θ2 = 30◦, and θ3 = 25.7◦. The solid lines are the tar-
get evolution curves based on the master equation. (d) Experimental
accuracy A for the 1st-order Trotter (blue hollow dots, dashed line)
with permutation Ldph−Ldamp−LR and the 2nd-order Trotter (ma-
genta solid dots, dashed line) with permutation LR−Ldph−Ldamp,
respectively. The solid lines correspond to the accuracy when gate
and measurement errors are considered in the target evolution as the
reference. (e) Measured evolution curves of σy (blue) and σz (red)
with θ1 = 20◦, θ2 = 30◦, and θ3 = 25.7◦. The solid lines are the
same target evolution curves as in (c).

1,2, ...,N denotes the step of the evolution, and x0
j are the ex-

pectations of the target evolution.
We first numerically simulate the system evolutions as

a function of θ2 for different permutations of Liouvillians
(Ldph, Ldamp, and LR) based on the Trotter scheme also with
the intrinsic coherence times of the data qubit, and calculate
their accuracies. For an initial state ρin = |1〉〈1|, the results are
summarized in Fig. 4(b). Different permutations indeed have
different accuracies and the commutative relation leads to the
coincidence between the sequences Ldph−Ldamp−LR and
Ldamp−Ldph−LR, as well as between LR−Ldph−Ldamp
and LR−Ldamp−Ldph. More importantly, we find that the
2nd-order Trotter outperforms the 1st-order Trotter for all pos-
sible sequences and confirm the validity of high-order Trotter-

ization in simulating open quantum dynamics.
In Fig. 4(c), numerically simulated temporal evolution

curves for σy and σz of the data qubit are provided with
θ1 = 20◦, θ2 = 30◦, and θ3 = 25.7◦. The 2nd-order Trotter
shows better consistence with the target evolution (solid lines)
than the 1st-order Trotter. It is worth noting that the total num-
ber of Trotter steps is fixed when comparing the 1st- and the
2nd-order Trotters [as indicated in Fig. 4(a)], and the results
unambiguously reveal the advantage of the higher-order Trot-
terization in terms of the higher accuracy by re-ordering.

We then perform more realistic numerical simulations of
A based on QuTip [48, 49] with the experimental pulses and
the intrinsic coherence times of the data qubit (see Ref. [33]),
and obtain the optimal permutations for the 1st-order Trotter
(Ldph−Ldamp−LR) and the 2nd-order Trotter (LR−Ldph−
Ldamp), respectively. Figure 4(d) shows the corresponding
experimental results of the accuracies as a function of θ2.
Clearly, the 2nd-order Trotter always has a significant higher
accuracy, especially when θ2 is large. By taking into account
the gate and measurement errors, which modify the effective
coherence times in the master equation for the target evolu-
tion, the variation tendencies of the adjusted accuracies (solid
lines) are also consistent with the numerical simulations in
Fig. 4(b). Figure 4(e) shows the experimentally measured
evolutions of the system under the simulated open quantum
dynamics, in which the 2nd-order Trotter (solid dots) show a
better agreement with the target evolution (solid lines) than
the 1st-order Trotter (hollow dots), as expected.

Although the data quantum system in current experiment is
a two-level qubit, the extension to multi-qubit systems and
high-dimensional qudit systems can be straightforward. It
is generally considered that to realize an elementary chan-
nel of a quantum system that could be decomposed into two
Kraus operators requires a two-dimensional ancillary system
for unitary dilation [50, 51]. Furthermore, other theoretical
works [52, 53] have proved that arbitrary elementary quan-
tum channels with more than two Kraus operators can be effi-
ciently implemented in arbitrarily high-dimensional quantum
systems (d dimensions) with the assistance of only one an-
cilla qubit and at most 2log2d steps of adaptive control. Re-
cently, with the same experimental setup, arbitrary elemen-
tary quantum channels on a high-dimensional data quantum
system have been experimentally demonstrated [54]. There-
fore, the Trotterization scheme for the universal simulation of
open quantum system dynamics with high dimensions can be
applied in the same way, holding the advantage of mimick-
ing the quantum system in an environment with tunable noise
intensity in a wide range.

In conclusion, a universal digital quantum simulator based
on the Trotterization scheme is demonstrated for studying
the dynamics of a two-level open quantum system. We also
demonstrate the 2nd-order Trotter scheme for a more accu-
rate simulation of the quantum evolution with a given step
size. Benefiting from the universality and tunability, interest-
ing open quantum system phenomena could be explored and
the EM technique can be implemented in NISQ-based digital
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quantum simulators.
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I. THEORY OF OPEN QUANTUM SYSTEM DYNAMICS

As shown in Fig. S1, a closed quantum system is an ideal
quantum system that has no interaction with the environment.
The evolution of a closed quantum system can be represented
by a unitary gate acting on the quantum state of the system.
For an open quantum system, however, there are interactions
between the quantum system and the environment, and thus
the evolution of the quantum system is no longer unitary due
to these couplings.

A. Quantum Master Equation

The continuous evolution of a Markovian open quantum
system can be described by the master equation [1, 2], which
is a differential equation to properly describe the non-unitary
behavior of the system. The master equation can be written

most generally in the Lindblad form [3] as

dρ
dt

=−i∑
j
[H j,ρ]+∑

k
[2LkρL+

k −{L+
k Lk,ρ}]

= ∑
j
L j(ρ)+∑

k
Lk(ρ),

(S.1)

where H j are the Hamiltonians, which are Hermitian operators
representing the coherent part of the dynamics, and Lk are the
Lindblad jump operators representing the coupling of the sys-
tem to the environment. With Liouvillian L j(ρ) representing
the coherent evolution and Lk(ρ) describing the incoherent
evolution, the dynamics of the system can be described as

ρ(t) = e(∑ j L j+∑k Lk)tρ(0). (S.2)

For example, the dephasing of a qubit could be described
by

dρ
dt

=−i[H,ρ]+
γ1

2
(σzρσz−ρ) , (S.3)

with γ1 being the dephasing rate. For a two-level atom cou-
pling to the vacuum and undergoing spontaneous emission,
the master equation to describe this process is

dρ
dt

=−i[H,ρ]+ γ2 (2σ−ρσ+−σ+σ−ρ−ρσ+σ−) , (S.4)

where H = ωσz/2, Lindblad operator
√γ2σ− represents the

emission, and γ2 is the spontaneous emission rate.

†

†

Tren en

en

En

En

FIG. S1: The conceptual illustration of closed and open quantum
systems.
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B. Quantum channel

For an open quantum system (the data quantum system), the
evolution could be described by a unitary on a larger closed
system consisting of the data quantum system and the envi-
ronment. Then, the evolution from the input state ρin to the
output state ρout of the data quantum system could be obtained
by discarding the environment as

ρout = Tren
[
U(ρin⊗ρen)U†] , (S.5)

with Tren denoting the partial trace of the environmental de-
grees of freedom. Such a mapping could describe either a tem-
poral evolution or travelling through a distance of the quantum
system, and is also called “quantum channel” [1, 4]. A quan-
tum channel can be represented as a sum of the Kraus opera-
tors [4]

E (ρ) =
m

∑
k=1

EkρE†
k , (S.6)

where ∑m
k=1 E†

k Ek = I. As a special case, if an irreducible rep-
resentation of a channel has only one Kraus operator, then the
channel reduces to a unitary evolution:

E (ρ) =UρU†. (S.7)

There are two quantum channels for the data qubit in our
experiments. The first one is the dephasing channel, which
describes the loss of phase information without losing energy.
We can interpret the dephasing channel as random rotations
Rθ

z (a rotation of θ along the z-axis of the Bloch sphere) on the
quantum state, the effect of which makes the off-diagonal el-
ements of ρ decay exponentially to 0. According to Eq. (S.3),
for a dephasing rate γ1 and an evolution duration time τ , the
Kraus operators of a dephasing channel are:

E0 =

[
1 0
0 e−γ1τ/2

]
,

E1 =

[
0 0
0
√

1− e−γ1τ

]
,

(S.8)

where 1− e−γ1τ represents the probability of the data qubit to
dephase without losing energy. Suppose an initial data qubit
state is

ρ =

[
a b
b∗ c

]
, (S.9)

then the output state of the data qubit after the dephasing chan-
nel is

Edph(ρ) = ∑
k

EkρE†
k

=

[
a be−γ1τ/2

b∗e−γ1τ/2 c

]
.

(S.10)

The second quantum channel used in our experiment is the
amplitude damping channel, which describes the effect of en-
ergy dissipation, i.e. spontaneous emission. For example, an

excited quantum state |1〉 always has a probability of losing its
energy and finally returns to the ground state |0〉. For a damp-
ing rate γ2 and an evolution duration time τ , the corresponding
Kraus operators are

E0 =

[
1 0
0 e−γ2τ/2

]
,

E1 =

[
0
√

1− e−γ2τ

0 0

]
.

(S.11)

Suppose the initial state of a data qubit is described as
Eq. (S.9), then the output state of this qubit after the ampli-
tude damping channel is

Edamp(ρ) = ∑
k

EkρE†
k

=

[
1− ce−γ2τ be−γ2τ/2

b∗e−γ2τ/2 ce−γ2τ

]
.

(S.12)

C. Trotterization of Liouvillians

The achievable interaction Hamiltonian could be limited
and localized for a complex quantum system. Similar to the
Trotterization of the Hamiltonian simulation [5, 6], we could
implement the Liouvillians of the system by alternatively im-
plementing the local Liouvillians. For general Liouvillians
L j ( j ∈ {1, ..,m}) that include both coherent and incoherent
components, the complete Liouvillian could be represented as
e∑m

j=1 L jt . The Trotter decomposition of the whole Liouvillian
means: 1) divide each component into N pieces, i.e. the evo-
lution duration for each step is ∆t = t

N ; 2) implement each
piece of each channel in turn; 3) repeat the above sequence
for N times. By Taylor expansion,

e∑m
j=1 L j∆t = I +

m

∑
j=1

L j∆t +O(∆t2). (S.13)

Here, we have the time normalized to the norms of the opera-
tors

∥∥L j
∥∥, and thus we have ∆t� 1 for N� 1. Similarly, we

have

∏
j

eL j∆t = I +(L1 +L2 + ...+Lm)∆t +O(∆t2). (S.14)

Therefore,

e∑m
j=1 L j∆t = ∏

j
eL j∆t +O(∆t2) (S.15)

and

e∑m
j=1 L jt =

[
e∑m

j=1 L j∆t
]N

(S.16)

=

[
∏

j
eL j∆t +O(∆t2)

]N

(S.17)

=

(
∏

j
eL j∆t

)N

+
N

∑
k=1

Ck
N

(
∏

j
eL j∆t

)N−k

O(∆t2k).

(S.18)
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Since Ck
N < Nk and ∏ j eL j∆t = O (1), we have

Ck
NO(∆t2k) = Ck

NO( 1
N2k ) < O( 1

Nk ). Therefore,

∑N
k=1 Ck

N
(
∏ j eL j∆t

)N−k
O(∆t2k) = O(∆t), and we finally

have

e∑m
j=1 L jt =

(
∏

j
eL j

t
N

)N

+O(
1
N
). (S.19)

By simply repeating the Liouvillians in a fixed order, the target
Liouvillians could in principle be realized with an imperfec-
tion O (1/N) for N→ ∞.

There is another way to get Eq. (S.19). Based on the Baker-
Campbell-Hausdorff (BCH) formula

e(A+B)t = eAteBte−
1
2 [A,B]t

2
+O

(
t3) (S.20)

= e+
1
2 [A,B]t

2
eBteAt +O

(
t3) , (S.21)

the Trotterization of Liouvillians could be error free if L j is
commutative with Lk, ∀k 6= j. Therefore, the error is closely
related to the order of L j in general. According to the BCH
formula, we can get the accuracy of the 1st-order Trotter as

e(L1+L2)∆t = eL1∆teL2∆te−
1
2 [L1∆t,L2∆t]+O

(
∆t3)

= eL1∆teL2∆t (I +O
(
∆t2))+O(∆t3) (S.22)

= eL1∆teL2∆t +O(∆t2). (S.23)

Applying the iteration to
{
L j
}

, we obtain

e∑m
j=1 L j∆t = ∏

j
eL j∆t +O(∆t2). (S.24)

For the 2nd-order Trotter, we implement 2N Trotter steps
with repetitions of normal ordering

{
L1,L2, ...,L j, ...,Lm

}

followed by the reverse ordering
{
Lm, ...,L j, ...,L2,L1

}
, i.e.

Πm
j=1eL j∆t/2Π1

j=meL j∆t/2. (S.25)

Because we have

e(L1+L2)∆t = e
1
2 (L1+L2)∆te

1
2 (L1+L2)∆t , (S.26)

by applying Eq. (S.20) and Eq. (S.21) to the first term and the
second term on the right side of Eq. S.26, respectively, we can
get:

e
1
2 (L1+L2)∆te

1
2 (L1+L2)∆t

=
[
e

1
2L1∆te

1
2L2∆te−

1
4 [L1∆t,L2∆t]+O

(
∆t3)]

×
[
e

1
4 [L1∆t,L2∆t]e

1
2L2∆te

1
2L1∆t +O

(
∆t3)] (S.27)

=e
1
2L1∆te

1
2L2∆te

1
2L2∆te

1
2L1∆t +O

(
∆t3) . (S.28)

Applying the iteration to
{
L j
}

, we then have:

e∑m
j=1 L j∆t = Πm

j=1eL j∆t/2Π1
j=meL j∆t/2 +O

(
∆t3) . (S.29)

Therefore, we finally obtain

e∑m
j=1 L jt =

(
Πm

j=1eL j
t

2N Π1
j=meL j

t
2N

)N
+O

(
1

N2

)
. (S.30)

This expression indicates that we can suppress the error from
O
( 1

N

)
to O

(
1

N2

)
by simply re-ordering the Trotterization

terms. This could be helpful in practical experiments when
N is limited by the gate time or other factors.

II. EXPERIMENTS

A. Experimental device and setup

The experimental device consists of two superconducting
waveguide cavity resonators and a transmon qubit dispersively
coupled to them. One of the cavities (storage cavity) has a life-
time of T1s = 143 µs and a Ramsey phase coherence time of
T2s = 250 µs, whose first two Fock states |0〉 and |1〉 constitute
the two basis states of the data qubit, serving as the data quan-
tum system undergoing open system evolutions. The trans-
mon qubit, with a lifetime of T1q = 25 µs, acts as an ancil-
lary qubit to assist the control and readout of the data system.
The other short-lived cavity (lifetime is T1r = 44 ns) is used to
readout the ancillary qubit with the help of a Josephson para-
metric amplifier for a high fidelity measurement. The readout
of the data qubit is realized by mapping the information of the
data qubit to the ancilla through a decoding unitary, followed
by an ancilla measurement. The unitary is achieved with a
gradient ascent pulse engineering (GRAPE) technique [7, 8]
and transfers (α |0〉+ β |1〉) |g〉 to |0〉(α |g〉+ β |e〉), where
|g〉 and |e〉 are the ground and the excited states of the an-
cilla qubit, respectively. The dispersive coupling between
the ancilla qubit and the storage and the readout cavities are
χqs/2π = 1.90 MHz and χqr/2π = 3.65 MHz. A summary of
the device parameters are listed in Table I. The readout fideli-
ties of the ancilla are shown in Table II.

Our experiment is realized in the superconducting quan-
tum system controlled by field programmable gate arrays
(FPGA), as shown in Fig. S2. Different FPGA boards are
utilized to control the ancilla qubit (FPGA0), the readout cav-
ity (FPGA1) and the data quantum system (FPGA2), respec-
tively. FPGAs are necessary to realize the quantum channels
in the main text based on the adaptive control. The detailed
geometry of the device and details of the measurement setup
can be found in Ref. [9].

B. Experimental procedure

The open system dynamics could be simulated by Trotter-
ized Liouvillians, with each Trotter step corresponding to a
quantum channel

E j (ρ) = eL j∆tρ. (S.31)
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Description Term Measured value
ancilla frequency ωq/2π 5.692 GHz

storage cavity frequency ωs/2π 7.634 GHz
readout cavity frequency ωr/2π 8.610 GHz

ancilla anharmonicity Kq/2π 232 MHz
self-Kerr of storage cavity Ks/2π 4.23 kHz
ancilla-storage coupling χqs/2π 1.90 MHz
ancilla-readout coupling χqr/2π 3.65 MHz

ancilla lifetime T1q 30 µs
ancilla Ramsey coherence time T2q 40 µs

storage cavity lifetime (decay rate) T1s (κs/2π) 143 µs (1.1 kHz)
storage cavity coherence time T2s 252 µs

readout cavity lifetime (decay rate) T1r (κr/2π) 44 ns (3.62 MHz)

TABLE I: Detailed device parameters.

Prepared state Readout fidelity
|g〉 > 0.999
|e〉 0.989

TABLE II: Readout fidelities of the ancilla qubit. The readout fidelity
loss for |e〉 dominantly comes from the ancilla qubit decay during the
measurement time (320 ns).

Then, simulations of the propagators of Liouvillians for the
data quantum system can be realized by constructing a series
of gates or quantum channels acting on the state of the sys-
tem. The effect is in principle exactly the same as the target
Liouvillians acting on the initial state.

Therefore, the universal simulator [10] of an open system
can be realized in three steps:

1. Initial state |ψ(0)〉 preparation. Prepare the initial state
of our data quantum system to study the desired quan-
tum evolution. The preparation is realized with the
GRAPE method.

2. Implementation of elementary channels
{
E j
}

to the
system. For our digital quantum simulation of the open
system, each channel E j is realized digitally via an an-
cillary qubit coupling to the data quantum system.

3. Measurement of the controllable quantum system. In
current experiments, the quantum system after each
Trotter step is characterized.

C. Experimental sequences

The data quantum system under study is a bosonic mode
in the storage cavity (the data qubit whose basis states are
Fock states {|0〉,|1〉}) with an ancillary qubit to mimic the
environment. The quantum channel simulation on the data
qubit is realized by a unitary gate on the composite data qubit-
ancilla system followed by a partial trace of the ancilla, which

𝑒
𝐿i𝑡
𝑁

𝑅Ancilla

Data qubit

FIG. S3: Schematic of realizing a quantum channel on a data qubit
with the assistance of an ancilla qubit. The quantum channel can be
realized by a proper unitary operation on the whole system followed
by a reset operation on the ancillary qubit.
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FIG. S4: The circuit and the experimental pulse sequence for realiz-
ing the dephasing channel.

was first experimentally realized in Ref. [11]. The scheme is
schematically shown in Fig. S3, where the ancillary qubit is
reset after each use of the ancilla. In this work, we imple-
ment two different kinds of channels: dephasing channel and
amplitude damping channel.

For the dephasing channel, the circuit and the correspond-
ing experimental pulse sequence are shown in Fig. S4. The
realization can be divided into three steps:

1. Initialize and prepare the quantum sate of the ancilla
qubit by a rotation gate Rθ

x |g〉.

2. Realize a controlled-phase (CZ) gate between the an-
cilla and the data qubit, by utilizing the dispersive inter-
action (χs |e〉〈e|a†a, with χs being the cross-Kerr coef-
ficient) between the ancilla qubit and the storage cavity
over a time interval of 3π/χs.

3. Reset the ancilla to the ground state |g〉.

The circuit in the red box in Fig. S4 represents the sequence
of the unitary gate U on the composite system (including both
the data qubit and the ancilla qubit). The reason for choos-
ing this circuit is that we can adjust the dephasing rate of the
channel by changing the rotation angle θ at will. Ideally, the
simulated phase coherence time is [11]

1/T2 =−ln([2cos2(θ/2)−1])/τ0 +1/T2
0. (S.32)

Here, τ0 is the time interval for the repetition implementation
of the dephasing channel, and T 0

2 is the intrinsic phase coher-
ence time of the data qubit. It is worth noting that the unitary



S6

Tr

𝑅𝑥
𝜃

Z

Reset

Partial traceUPhotonic
qubit

Ancilla
qubit

𝑎 𝑏
𝑏∗ 𝑐

| ۧ𝑔 𝑅𝑥
−𝜃

𝑎+𝑐 2(𝜃) 𝑏 (𝜃)

𝑏∗cos(𝜃) 𝑐 2(𝜃)

sin cos

cos

| ۧ𝑔

𝜌𝑖𝑛 𝜌𝑜𝑢𝑡

𝜋/𝛘

𝜃 𝜋e−𝜃

Photonic
State
Flip
operation

Photonic
qubit

Ancilla
qubit

FIG. S5: The circuit and the experimental pulse sequence for realiz-
ing the amplitude damping channel.

gate U could also be realized the GRAPE technique. How-
ever, we need to update the optimized GRAPE pulse when
there is a change in the parameter θ , which would be resource
and time consuming.

For the amplitude damping channel, the circuit and the ex-
perimental pulse sequence are shown in Fig. S5. The unitary
gate U is composed by four gates including two ancilla qubit
rotation gates Rθ

x and R−θ
x , one CZ gate, and one controlled-

NOT (CNOT) gate. Similar to the dephasing channel, we can
conveniently adjust the corresponding damping rate of the am-
plitude damping channel by changing the angle θ . Here, the
CNOT gate is implemented by a measurement-based adaptive
approach [11]. Ideally, the circuit gives the simulated coher-
ence times as

1/T1 =−ln(cos2θ)/τ0 +1/T 0
1 , (S.33)

1/T2 =−ln(cos2θ)/2τ0 +1/T 0
2 . (S.34)

Here T 0
1 is the intrinsic energy relaxation time of the data

qubit.
The rotation gate on the data qubit is implemented by a

GRAPE pulse acting on the composite system.

III. EXPERIMENTAL IMPERFECTIONS AND
CALIBRATION

A. Experimental Imperfections

In our experimental system, both the ancilla and the data
qubit are inevitably coupled to their environment, and conse-
quently the experimental results would deviate from the above
exact formalism of the ideal model. In our system, we choose
the storage cavity with long coherence times as the data quan-
tum system, while the ancilla is a transmon qubit with much
shorter coherence times. It is cumbersome to do a full analy-
sis of the imperfection completely analytically, so we resort to
a numerical model. Based on numerical simulations with the
exact experimental pulses and measured device parameters in
Table I, our experimental imperfection is mostly attributed to
the decoherence of the ancilla. Here, we provide some quali-
tative analysis of the ancilla error.

For the dephasing channel (Fig. S4), there are two gates: (1)
During Rθ

x , the dephasing and decay of the ancilla can induce

a population uncertainty of the ancilla, which consequently
brings an uncertainty to the phase accumulation of the data
qubit. (2) For the CZ gate, the decay of the ancilla can also
induce an uncertainty of the accumulated phase of the data
qubit, while the dephasing of ancilla has no effect on the data
qubit. Therefore, the overall effect of the circuit is to induce
a random phase flip on the data qubit. In an ideal circuit, the
data qubit accumulates a phase of π with a probability of p =
sin2 θ

2 .

The situation is more complicated for the amplitude damp-
ing channel. Here, we take the decay of the ancilla as the
major error. In Fig. S5, the ancilla decay error mainly ap-
pears in the CZ gate and the adaptive CNOT gate. In the
CZ gate, the decay could be treated as a reset of the ancilla.
When the decay happens, this part is equivalent to a dephas-
ing channel (Fig. S4). The consequent adaptive CNOT gate
is equivalent to a bit-flip channel. So, the decay error oc-
curs during the CZ gate gives effective both dephasing and
bit-flip channels on the data qubit. Approximately, the de-
cay probability during the CZ gate is p ≈ 0.01sin2 θ . In the
CNOT gate, the decay leads to a measurement error of the
ancilla and then a wrong feedforward gate. In the ideal cir-
cuit, the data qubit is flipped from |1〉 to |0〉 with a prob-
ability of p = sin2 θ , which is determined by the ancilla’s
population at |e〉 after the R−θ

x gate. However, the decay of
the ancilla would modify this population, and thus reduces
the effective amplitude damping rate. To summarize these
two effects, the ancilla decay error mainly modifies the effec-
tive amplitude damping rate of the target amplitude damping
channel and also introduces extra dephasing and bit-flip chan-
nels with a rate ∼ 0.01sin2 θ/τ0. For θ � 1, we could esti-
mate the extra channel rate would be about two orders smaller
than the target dephasing or damping rate as 0.01sin2 θ/τ0�
−ln(cos2θ)/τ0 +1/T 0

1 ,−ln([2cos2(θ/2)−1])/τ0.

Other than the above gates, there are also unitary gates on
the composite system by the optimized GRAPE pulses: one is
the adaptive gate on the data qubit and the other one is the co-
herent Rabi rotation gate. According to previous demonstra-
tions of the GRAPE gates in our system, the imperfections of
the ancilla and cavity could give rise to a depolarization-like
channel to the data qubit with a probability pGRAPE = 1% ∼
2% for each gate, i.e. the density matrix decays to the identity
matrix with a rate of − 1

τ0
ln(1− pGRAPE). Therefore, the er-

ror due to the GRAPE unitary gate leads to considerable errors
to the simulation of open quantum system dynamics. Differ-
ent from the imperfections in other gates, which contribute
small modifications of the target decoherence rates, the er-
ror due to the GRAPE pulse increases with 1/τ0. In order to
suppress the influence of this type of error, we would like to
have − 1

τ0
ln(1− pGRAPE) <

1
T 0

1
, 1

T 0
2

, and thus we choose τ0 =

3.56 µs in our experiments ( 1
− 1

τ0
ln(1−pGRAPE)

= 170∼ 350 µs).
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B. Experimental results for calibration

As mentioned in the main text, to evaluate the simulation
on the open quantum system dynamics we initialize the data
qubit ρin into |0〉, (|0〉+ |1〉)/

√
2, (|0〉+ i |1〉)/

√
2, and |1〉

separately, and measure the corresponding evolution curves
of these states on the bases of the Pauli operators σx, σy, and
σz. Then, by a global fitting of the twelve evolution curves,
we obtain all experimental T1, T2, and Ω.

To calibrate the influence of the experimental imperfections
on the Trotter simulation of the open quantum system dynam-
ics, we first numerically implement the Trotter process with
0◦ for both dephasing angle θ1 and damping angle θ2 (Fig. 2a
in the main text), which theoretically induces no effect on
the coherence time of the data qubit. The representative ex-
perimental results are shown in Fig. S6. By a global fitting
of the twelve evolution curves, we can get the effective in-
trinsic coherence times of the data qubit as T 0

1,eff = 114 µs,
T 0

2,eff = 80 µs. These values are much lower than the intrinsic
ones, mainly due to the decoherence effects of the ancilla in
the numerical model. Therefore, the coherence times in prac-
tical experimental system should be modified as

1/T1 =− ln(cos2θ2)/τ0 +1/T 0
1,eff, (S.35)

1/T2 =− ln[2cos2(θ1/2)−1]/τ0

− ln(cos2θ2)/2τ0 +1/T 0
2,eff. (S.36)

The effect of the rotation gate is not included in the above
numerical simulations. So, we further execute the permutation
Dephasing-Damping-Rotating (Ldph-Ldamp-LR) channels as
an example. We initialize the data qubit to |1〉, and then im-
plement the Trotter process with θ1 = θ2 = 0 and θ3 = 38.6◦.
Fitting the curves with the master equation, we get the effec-
tive T 0

1,eff = 96 µs, T 0
2,eff = 82 µs, and Ω = 30.2 kHz. By
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FIG. S6: Experimental results of open quantum system dynamics for
calibration, with the parameters θ1 = θ2 = 0 (parameters in Fig. 2a
in the main text). Dots are the experimental data and dashed lines are
the fitting curves. Red: Initialize the data qubit to |1〉, then implement
the Trotter process, and finally measure the data qubit on the basis of
|1〉. Blue: Initialize the data qubit to |+〉 = (|0〉+ |1〉)/

√
2, then

implement the Trotter process, and finally measure the data qubit on
the basis of |+〉. The effective intrinsic coherence time is obtained
by a global fitting of all twelve curves. Here we just present two of
the curves.
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FIG. S7: Experimental results of the open quantum system dynamics
with θ1 = θ2 = 0 and θ3 = 38.6◦ (parameters in Fig. 2a in the main
text). Dots are the experimental data and dashed line represents the
fitting curve. we initialize the data qubit to |1〉, then implement the
Trotter process, and finally measure the data qubit on the basis of |1〉.
The effective intrinsic coherence time is obtained by a global fitting
of all twelve curves. Here we just present one of the curves.

comparing T 0
1,eff with and without the rotation gate, we could

evaluate the error of the rotation GRAPE gate is∼ 1.6%, con-
sistent with our estimation. We also find that the effective Ω
is very close to the target Ω, so we just consider the modifi-
cations of T 0

1,eff and T 0
2,eff in the master equation for the target

evolution in the main text.

IV. NUMERICAL SIMULATION OF TROTTER WITH
DIFFERENT PERMUTATIONS

To be more realistic, we simulate the experimental se-
quence numerically in QuTiP [12, 13] with the experimen-
tal pulses and the intrinsic coherence times of the data qubit.
Figure S8(a) shows the accuracy of the 1st-order Trotter (hol-
low dots) and the 2nd-order Trotter (solid diamonds), with the
dephasing angle θ1 = 20◦, damping angle θ2 = 30◦, and ro-
tating angle θ3 = 25.7◦. Different colors represent different
permutations. One can see that every permutation of the 2nd-
order Trotter performs better than all the permutations of the
1st-order Trotter. To compare the accuracy of these two kinds
of Trotter experimentally, we choose the most accurate per-
mutation of the 1st-order Trotter (Ldph-Ldamp-LR) and the
most accurate permutation of the 2nd-order Trotter (LR-Ldph-
Ldamp). Figure S8(b) shows the evolution curves of the QuTiP
simulation on the bases of σy and σz, from which we find
that the 2nd-order Trotter provides evolution curves nearly the
same as the target ones, and is obviously more accurate than
the 1st-order Trotter.

V. ERROR MITIGATION

In order to achieve high-precision quantum computation
with a noisy intermediate-scale quantum machine, a new tech-
nique called error mitigation [14, 15] was proposed for cer-
tain tasks, which allows the inference of ideal results, without
noise, by extrapolating data from several experimental noise
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FIG. S8: Numerical QuTip simulation of the 1st-order Trotter and the
2nd-order Trotter. (a) The accuracy of the 1st-order Trotter (hollow
dots) and the 2nd-order Trotter (solid diamonds) with dephasing an-
gle θ1 = 20◦, damping angle θ2 = 30◦, and rotating angle θ3 = 25.7◦.
Different colors represent different permutations in the form of A-B-
C. From left to right, Red: Ldamp-Ldph-LR; Blue: Ldph-Ldamp-
LR; Green: Ldamp-LR-Ldph; Cyan: Ldph-LR-Ldamp; Black: LR-
Ldamp-Ldph; Magenta: LR-Ldph-Ldamp. (b) Evolution curves of σy
(blue) and σz (red) with θ1 = 20◦, θ2 = 30◦, θ3 = 25.7◦. The solid
lines are the target evolution curves, solid dots represent the 2nd-
order Trotter, and hollow dots represent the 1st-order Trotter. The
2nd-order Trotter results are closer to the target evolution.

intensities. The value of a physical quantity E(λ ) in the ex-
periment with a noise intensity λ can be represented by the
Taylor’s expansion around the zero-noise value E?:

E(λ ) = E?+
n

∑
k=1

akλ k +O(λ n+1). (S.37)

Suppose we can obtain the experimental results E(λi) with a
series of noise intensities

λi = ciλ , (S.38)

with ci (c0 = 1) being a dimensionless scaling factor. Then, we
can estimate E? as a linear combination of the measured E(λi)
with a precision to the n-th order by Richardson’s deferred
approach to the limit [16, 17]:

E? = E?
n +O(λ n+1) (S.39)

=
n

∑
i=0

γiE(λi)+O(λ n+1), (S.40)

where the coefficients γi are functions of ci’s. This is achieved
by solving the following n+1 equations:

E(λi) = E?
n +

n

∑
k=1

ak(λi)
k, (S.41)

where i = 0,1, · · · ,n and E?
n is the n-th order estimation of the

expectation value.

We do the first three orders of Richardson extrapolations
with the experimental data sets in Table III. The error bars in
the inset of Fig. 3(d) in the main text are the statistical stan-
dard deviations calculated through propagation of the errors
of E(λi) in the estimation relation E?

n = ∑n
i=0 γiE(λi).

TABLE III: The data sets used to do Richardson extrapolation.

i 1/T1 (µs−1) ci T ?
2 (µs)

0 0.0090 1 35.56
1 0.0190 2.13 29.63
2 0.0442 4.93 22.00
3 0.0892 9.96 14.15
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